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Survival correlation of immune response in human cancers
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ABSTRACT
Background: The clinical benefit of immune response is largely unknown. We 

systematically explored the correlation of immune response with patient outcome in 
human cancers.

Results: The global immune gene signature was primarily located on the plasma 
membrane with a high gene density at 6p21 and 1q23-1q24. Immune responses varied 
with a wide range in human cancers. A total of 11 cancer types exhibited significant 
correlation of immune response with overall survival. Higher immune response was 
significantly associated with longer overall survival in 7 types and with shorter overall 
survival in 4 types. In addition, 11 cancer types exhibited significant correlation 
of immune response with progression-free interval. Higher immune response was 
significantly associated with longer progression-free interval in 7 types and with 
shorter progression-free interval in 4 types.

Methods: The Ingenuity Knowledge Base and human genome assembly GRCh38 
were used to annotate the immune gene signature by cellular components and genomic 
coordinates, respectively. We devised an mRNA-based metric of pre-existing immune 
conditions by using the gene signature, and calculated the metric for 10,062 The Cancer 
Genome Atlas tumor samples across 32 different cancer types. The Kaplan-Meier method 
was used to evaluate the overall survival and progression-free interval differences 
between dichotomic groups stratified by the median metric for each cancer type.

Conclusions: Immune responses have different impacts on patient outcome in 
different human cancers. Prospective verification is needed before the findings can 
be applied for clinical trial development.

INTRODUCTION

Development of immunotherapy such as checkpoint 
blockade therapy (against CTLA4 or PD-1/PD-L1) 
has shown great success in potentiating inefficient 
antitumor immune response and inducing durable 
control of tumors [1, 2], thus leading to improved patient 
survival in different types of cancer [3, 4]. However, the 
efficacy or clinical benefit of immunotherapy has been 
demonstrated to intimately depend upon the pre-existing 
immune conditions of a tumor [5–7]. It was previously 
reported that high expression of chemokines in the tumor 
microenvironment promoted T cell infiltration and induced 
immune-mediated tumor regression [8, 9]. IFN-γ produced 
by T helper type 1 cells was shown to activate cytotoxic 
T cells and potentiate the cell-mediated immune response 

in the tumor [10]. High pretreatment expression of PD-
L1 protein was significantly associated with the anti-
PD-L1 antibody [5], and pre-existing CD8+ T cells were 
significantly associated with therapeutic PD-1 blockade 
[7]. In addition, metastatic melanoma patients with 
overexpressed immune genes were more likely to respond 
favorably to ipilimumab (an antibody specific to CTLA4), 
and therefore had better clinical survival [6]. Our group 
recently demonstrated in endometrial cancer that genes 
negatively associated with survival were significantly 
enriched in immune-related pathways, while positively 
associated genes were predominantly cell cycle-related 
[11]. Consistent with that study were previous publications 
showing that high expression of immune gene signatures 
was associated with favorable prognosis in breast [12] 
and colorectal cancer [13]. Taking together, it appears that 
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the pre-existing immune-active tumor microenvironment 
might favor clinical response to immunotherapy in some 
cancer types.

However, the clinical benefit of immune response 
is largely unknown in many other cancer types, and 
the relationship between immune response and patient 
outcome has not been systematically investigated in a wide 
array of human cancers. In addition, it remains a challenge 
to characterize the immune response of a tumor in a way 
that is scalable and comparable among different cancer 
types. Using an unbiased approach, we recently analyzed 
data for 10,062 tumor samples in The Cancer Genome 
Atlas (TCGA) PanCanAtlas data set to identify a global 
immune gene expression signature and demonstrated with 
multifaceted evidence that this signature of 382 immune 
genes is robust and broadly applicable for human cancers 
[14]. In contrast to other PanCanAtlas pathway members 
such as TGF-β [15] and DNA damage repair pathways 
[16] that were selected by the domain experts, the global 
immune gene signature [14] was identified through an 
unsupervised clustering analysis on an encompassing 
immune-related gene list. It was a data-driven result 
from a large pool of functionally defined immune genes 
and therefore was unbiased and comprehensive. In the 
current study, we have extended this work by using the 
same cohort of patients and the identified immune gene 
signature to devise an mRNA-based metric for pre-existing 
immune conditions, and we applied this metric to infer the 
clinical benefits of immune response in human cancers. 
We correlated this metric with patient outcomes, including 
overall survival (OS) and progression-free interval (PFI), 
in order to determine whether immune response varies 
across tumor types, whether immune response has the 
same direction of impact on clinical outcome for different 
cancer types, and whether immune response has the 
same impact on OS and PFI for individual cancer types. 
Further, the spatial characteristics of the immune genes 
in the signature including both cellular and chromosomal 
locations is also examined.

RESULTS

Spatial characteristics of the global immune gene 
signature

To better understand the spatial characteristics of our 
previously identified global immune gene signature [14], 
we annotated the member genes’ cellular locations using 
the Ingenuity Knowledge Base. We found that the majority 
of the members of this gene set (~52%; 197 genes) were 
located on the plasma membrane, and only 7% (27 genes) 
were in the nucleus (Figure 1A). This cellular distribution 
makes sense because (i) the immune gene signature is 
indicative of the relationship between tumor cells and 
infiltrating immune cells, and (ii) the bipolar plasma 
membrane serves as an intimate interface between the cell 

and the surrounding tumor microenvironment. In addition, 
the genes on the plasma membrane are potent targets for 
therapeutic intervention, compared to those in the other 
cellular locations. Indeed, assessment of availability 
of targeting drugs showed that 59 of the 197 plasma 
membrane genes, but only 1 of the 27 nuclear members, 
were potential therapeutic targets.

Next, we examined the genomic coordinates 
of the immune gene signature in the human genome. 
Using a similar approach as described previously [17], 
we constructed the genome “landscape” of the immune 
gene signature in which the genes were plotted in two 
dimensions and the density at each region was indicated 
by the height of the peak (Figure 1B). We found that the 
signature’s genes were unevenly distributed across the 
genome, with heterogeneous peak heights. The p21 region 
on chromosome 6 (6p21) had the highest signature gene 
density, followed by the two consecutive cytoband regions 
on chromosome 1 (1q23-24).

An immune metric derived from the immune 
gene signature

We previously defined a global immune gene 
signature that is capable of qualitatively characterizing 
tumor immunogenicity in a wide array of human cancers 
[14]. To quantitatively determine the immune response of 
the tumors in the TCGA dataset, in this study we generated 
an immune metric by taking the median expression of the 
382 genes that were included in our previously identified 
immune gene signature [14]. A similar approach has 
successfully been used in prior studies from our group 
[15, 18] and others [19, 20]. The immune metric serves 
as a surrogate for tumor immune response, characterizing 
the pre-existing immune conditions of a heterogeneous 
tumor. For each tumor, the expression pattern of the 382 
member genes included in the immune gene signature was 
shown and summarized into an immune metric (Figure 
2A). On average, immune metrics differed by tumor 
lineage, with uveal melanoma (UVM) and adrenocortical 
carcinoma (ACC) tumors showing the lowest levels of 
immune response and diffuse large B-cell lymphoma 
(DLBC) showing the highest levels, followed by thymoma 
(THYM) and testicular germ cell tumor (TGCT). 
Consistent with our result, adrenocortical carcinoma 
was previously shown to have a low immune score due 
to the suppression of T cell activity by glucocorticoids 
[21]. Lung adenocarcinoma (LUAD) and skin cutaneous 
melanoma (SKCM) exhibited high immune response 
in our study, likely due to high mutational loads [22]. 
However, bladder urothelial carcinoma (BLCA), which 
was previously reported to have a relatively high 
mutational load [23], was shown in this study to have 
low immune response. Different from bladder urothelial 
carcinoma, thymoma has a relatively low mutational load 
[23] but was shown in this study to have high immune 
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response, likely because thymoma is associated with 
autoimmune disorders [24]. Mesothelioma was previously 
reported to have a low tumor mutation burden [25], and 
our study showed that MESO had relatively high immune 

response and likely responded to immune-checkpoint 
blockade therapy [26, 27]. This observation is consistent 
with our recent work in which two groups of endometrial 
cancer patients had similar mutation burden but exhibited 

Figure 1: Spatial characteristics of the global immune gene signature. (A) Distribution of the immune signature genes among 
different cellular locations. The numbers indicate the percentage of the member genes in each category. (B) Distribution of the immune 
signature genes across genomic locations. The signature genes’ densities are plotted in two-dimensional space representing chromosomal 
positions of the human genome assembly GRCh38. One dimension consists of the 23 chromosomes from Chr 1 to Chr X; the other, the 
locations on a chromosome from short (p) arm to long (q) arm. The gene density is indicated by the peak height and color bar. The two 
genomic locations with the highest gene density are also shown.
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different immune profiles [11]. Taking these data 
together, we believe that the immune metric is a reliable 
quantification of immune response in human cancers, 
which does not appear to be fully explained by mutational 
loads. In addition, a wide range of immune responses 
were evident within each tumor type (Figure 2B). 

Immune response is largely dependent on a wide variety 
of regulatory factors, such as mutations, transcription 
factors, and microRNAs. MiRNA-34a was previously 
reported to regulate PD-L1 gene expression and modulate 
the immune response in acute myeloid leukemia [28]. 
CTNNB1 gene mutation has been shown to be associated 

Figure 2: Immune response in human cancers. (A) Heat map of 382 member genes included in the immune gene signature across 
10,062 PanCanAtlas tumors. Red, higher expression (values normalized to SDs from the median across all cancers); blue, lower expression. 
mRNA features were summarized into an immune metric for each tumor profile (orange, higher inferred immune response; cyan, lower 
immune response). Cancer types (denoted by TCGA project name) are ordered by low to high median immune metric. (B) Boxplots 
of immune response, as inferred using the transcript levels of the immune gene signature. From the bottom, the horizontal lines in the 
boxplots represent 5%, 25% (lower edge of box), 50% (center of box), 75% (upper edge of box), and 95%. Cells of origin are indicated by 
different colors. Tumor types with two possible origins, such as bladder urothelial carcinoma (squamous cell or other), cervical squamous 
cell carcinoma and endocervical adenocarcinoma (gynecologic or squamous cell), and esophageal carcinoma (squamous cell or other), are 
shown in gray. Abbreviations: ACC: Adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; 
CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: cholangiocarcinoma; COAD: colon adenocarcinoma; 
DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: esophageal carcinoma; GBM: glioblastoma multiforme; HNSC: head 
and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: kidney renal papillary 
cell carcinoma; LGG: brain lower grade glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung 
squamous cell carcinoma; MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG: 
pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin 
cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid carcinoma; THYM: thymoma; 
UCEC: uterine corpus endometrial carcinoma; UCS: uterine carcinosarcoma; UVM: uveal melanoma. 
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with low immune response [29, 30]. On the other hand, 
patients with POLE gene mutations had higher immune 
activity [31] and were associated with favorable prognosis 
compared with patients without POLE mutations [32]. 
These complicated regulatory networks have contributed, 
at least in part, to the wide spectra of immune response 
within an individual cancer type or across different cancer 
types. This may also explain the difference in the response 
rates to immunotherapy among patients even within the 
same cancer types.

Association of immune response with patient 
overall survival

Next, we sought to examine the relationship 
between immune response and patient OS. For each of 
the 32 cancer types, we performed Kaplan-Meier survival 
analysis of dichotomic groups, high and low immune 
metric, as determined by the median value, and then 
calculated the hazard ratio (HR) for the high versus low 
groups and the corresponding 95% confidence intervals 
(CIs) (Figure 3). As shown in Figure 3, 20 cancer types 
had an HR value of less than 1, meaning that these cancer 
types had an association of higher immune response 
metric with longer OS. The other 12 cancer types had 
an HR value of greater than 1, meaning that these cancer 
types had an association of higher immune response with 
shorter OS. A wide range of CIs were observed among 
cancer types. The 95% CI ranges in 11 cancer types did 
not include the value of 1, meaning these cancer types had 
a significant association of immune response with OS.

In particular, higher immune responses were 
significantly correlated with longer OS in seven cancer 
types: breast invasive carcinoma (BRCA, P = 0.0472), 
cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC, P = 0.0197), head and neck 
squamous cell carcinoma (HNSC, P = 0.0388), lung 
adenocarcinoma (LUAD, P = 0.0096), sarcoma (SARC, P 
= 0.0075), skin cutaneous melanoma (SKCM, P = 3.98 × 
10–06), and uterine corpus endometrial carcinoma (UCEC, 
P = 0.0071) (Figure 4). In contrast, higher immune 
responses were significantly correlated with shorter OS 
in four cancer types: kidney renal clear cell carcinoma 
(KIRC, P = 0.0234), low-grade glioma (LGG, P = 0.0023), 
thymoma (P = 0.0108), and uveal melanoma (P = 6.24 
× 10–06) (Figure 4). Aside from the cancer types mentioned 
above, the rest of the cancer types did not show significant 
correlation between immune response and patient OS.

Association of immune response with patient 
progression-free interval

In addition to OS, PFI provides an additional 
perspective of tumor progression and metastasis. We next 
interrogated the association of immune response with PFI 
in a similar manner as we performed the Kaplan-Meier 

method on OS. A total of 23 cancer types had an HR 
value of less than 1, meaning that in these cancer types, a 
higher immune response was associated with longer PFI. 
The other 9 cancer types had an HR value of greater than 
1, meaning that in these cancer types a higher immune 
response was associated with shorter PFI (Figure 5).

Also shown in Figure 5 is that 11 cancer types 
had a significant association of immune response 
with PFI, as evidenced by their corresponding 95% 
CIs. In particular, 7 cancer types—adrenocortical 
carcinoma (ACC, P = 0.0059), cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC, 
P = 0.0022), cholangiocarcinoma (CHOL, P = 0.0009), 
liver hepatocellular carcinoma (LIHC, P = 0.0102), 
mesothelioma (MESO, P = 0.0432), skin cutaneous 
melanoma (SKCM, P = 0.0198), and uterine corpus 
endometrial carcinoma (UCEC, P = 0.018)—demonstrated 
a significant correlation of higher immune response with 
longer PFI. The other 4 cancer types—glioblastoma 
multiforme (GBM, P = 0.0091), brain lower grade glioma 
(LGG, P = 0.0004), prostate adenocarcinoma (PRAD, 
P = 0.0244), and uveal melanoma (UVM, P = 0.0287)—
demonstrated a significant correlation of higher immune 
response with shorter PFI (Figure 6). The rest of the 
cancer types did not show significant correlation between 
the immune response and PFI.

DISCUSSION

In this study, we assessed more deeply our recently 
identified immune gene signature that is applicable for 
all human cancers [14]. We identified the cellular and 
chromosomal locations of the 382 genes in the gene 
signature. We also devised an mRNA-based metric 
assessing pre-existing immune conditions in the tumor 
microenvironment and found that the metric varies with 
a wide range in human cancers. Our results provide a 
comprehensive view of the relationship between immune 
response and clinical outcome in human cancers.

Correlation with clinical outcome showed that 
in 7 cancer types (BRCA, CESC, HNSC, LUAD, 
SARC, SKCM, and UCEC), higher immune response 
was associated with significantly longer OS, and the 
opposite was the case for KIRC, LGG, THYM, and 
UVM. Consistent with these results, our recent work 
in endometrial cancer demonstrated that genes whose 
higher expression was associated with better survival 
were significantly enriched in immune-related pathways 
[11], and pre-existing immune condition was previously 
reported to favor the clinical outcome in skin cutaneous 
melanoma [5, 7]. Cervical cancer cases with lower 
immune response exhibited worse prognosis in our 
study, likely due to higher potentiality of epithelial-
mesenchymal transition [33]. As compared with uveal 
melanoma tumors with D3 (disomy 3), those with M3 
(monosomy 3) exhibited significantly worse prognosis 
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but had significantly higher CD8 T cell infiltrates and 
significantly higher expression of genes involved in 
immune-related functions [34], which is consistent with 
our results. Moreover, a previous report consistently 
showed that kidney renal clear cell carcinoma with higher 
immune response was associated with worse survival [35]. 
Different from our study, a previous publication showed 

that a subset of thymoma patients with activated T-cell 
signaling exhibited a favorable prognosis [36].

In addition, ACC, CESC, CHOL, LIHC, MESO, 
SKCM, and UCEC demonstrated a significant correlation 
of higher immune response with longer PFI, opposite to 
the correlative patterns observed for GBM, LGG, PRAD, 
and UVM. The association of the immune response with 

Figure 3: Immune response correlation with patient overall survival in human cancers. For each of the 32 cancer types, we 
correlated the tumor immune response with patient OS by using the Kaplan-Meier method with the Mantel-Cox log-rank test. The hazard 
ratio (HR, indicated by the solid square in the plot) and the corresponding 95% confidence interval (CI, indicated by the two vertical bars 
at the ends of the line) are shown. An HR value of less than 1 indicates that higher immune response is correlated with longer survival, 
and vice versa. The statistical significance depends upon whether the 95% CI range contains the value of 1. Tumor types are sorted in 
alphabetical order, and N indicates the number of analyzed samples. 
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Figure 4: Tumor types with significant correlation of tumor immune response with OS. Kaplan-Meier survival curves for 
(A) Breast Invasive Carcinoma (BRCA), (B) Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC), (C) Head 
and Neck Squamous Cell Carcinoma (HNSC), (D) Lung Adenocarcinoma (LUAD), (E) Sarcoma (SARC), (F) Skin Cutaneous Melanoma 
(SKCM), (G) Uterine Corpus Endometrial Carcinoma (UCEC), (H) Kidney Renal Clear Cell Carcinoma (KIRC), (I) Brain Lower Grade 
Glioma (LGG), (J) Thymoma (THYM), (K) Uveal Melanoma (UVM). In panels (A–G), higher immune response was significantly 
correlated with longer OS, and in panels (H–K), higher immune response was significantly associated with shorter OS.
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PFI of glioma patients (including brain lower grade 
glioma and glioblastoma multiforme) is consistent with 
a previous report [37], demonstrating that activated 
microglia/macrophages in the tumor microenvironment 
promote glioma cell growth and invasion [38, 39]. Our 
results showed that liver hepatocellular carcinoma with 
higher immune response was not associated with OS, 
which is consistent with a previous publication [40]. 
However, these patients had significantly longer PFI and 
thus would likely respond to immune checkpoint inhibitor 
therapies. The immune response also had a significant and 
positive association with PFI in adrenocortical carcinoma. 

Consistent with these results, a previous report showed 
that adrenocortical carcinoma patients with enrichment 
of upregulated immune genes had significantly longer 
survival [21]. Although the difference was not significant, 
adrenocortical carcinoma also had well-separated 
OS curves in our study (data not shown). Similarly, 
cholangiocarcinoma exhibited significant association of 
immune response with PFI but not with OS although the 
OS curves were well separated.

We found that spatially, the 382 genes of the global 
immune gene signature [14] are clustered together with 
a high density in the regions of 6p21 and 1q23-24. 

Figure 5: Immune response correlation with patient progression-free interval in human cancers. For each of the 32 cancer 
types, we correlated the tumor immune response with patient PFI by using the Kaplan-Meier method with the Mantel-Cox log-rank test. 
HRs (indicated by the solid squares in the plot) and the corresponding 95% CIs (indicated by the two vertical bars at the ends of the line) 
are shown. Tumor types (denoted by TCGA project name) are sorted in alphabetical order, and N indicates the number of analyzed samples.
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Figure 6: Tumor types with significant correlation of tumor immune response with PFI. Kaplan-Meier survival curves 
for (A) Adrenocortical carcinoma (ACC), (B) Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC), (C) 
Cholangiocarcinoma (CHOL), (D) Liver Hepatocellular Carcinoma (LIHC), (E) Mesothelioma (MESO), (F) Skin Cutaneous Melanoma 
(SKCM), (G) Uterine Corpus Endometrial Carcinoma (UCEC), (H) Glioblastoma Multiforme (GBM), (I) Brain Lower Grade Glioma 
(LGG), (J) Prostate Adenocarcinoma (PRAD), (K) Uveal Melanoma (UVM). In panels (A–G), higher immune response was significantly 
correlated with longer PFI, and in panels (H–K), higher immune response was significantly associated with shorter PFI.
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The short arm of chromosome 6 contains the human 
leukocyte antigen (HLA) complex that encodes the 
major histocompatibility complex (MHC) proteins and 
is responsible for the regulation of the immune system 
in humans. MHC class I molecules, including HLA-A, 
-B, and -C, present peptides from inside the cell to T 
lymphocytes, while MHC class II molecules (HLA-DP, 
-DM, -DO, -DQ, and -DR) present antigens from outside 
the cell. The long arm of chromosome 1 contains several 
Fc receptor-like glycoproteins. In particular, the protein 
encoded by the FCRL2 gene has four extracellular C2-type 
immunoglobulin domains, a transmembrane domain, and 
a cytoplasmic domain that contains one immunoreceptor-
tyrosine activation motif and two immunoreceptor-
tyrosine inhibitory motifs. FCRL2 expression was 
previously reported as a prognostic factor in chronic 
lymphocytic leukemia [41, 42].

Our results show that in the majority of human 
cancers, higher immune response is significantly 
associated with better clinical outcome (OS, PFI, or both), 
which is in agreement with previous reports [5, 7] that 
pre-existing immunity is probably necessary for most 
treatment response. More prominently, we demonstrated 
as well that in some cancer types higher immune response 
is significantly associated with worse outcome. This 
unexpected result indicates the diversity of mechanisms 
controlling antitumor immunity in different cancer 
types and suggests new strategies to promote the cancer 
immunity cycle. However, these survival results were 
obtained via retrospective analyses, and some cancer types 
had small patient sample sizes. Therefore, prospective 
confirmation or functional validation is needed to further 
corroborate these associations. Moreover, impacts of 
specific immune cell types on cancer prognosis warrant 
future investigation.

In summary, we have quantitatively characterized 
the pre-existing immune conditions in a wide spectrum of 
human cancers based on our recently identified immune 
gene expression signature and systematically examined 
the relationship of immune response and clinical outcome. 
Immune responses vary from cancer to cancer and have 
different associations with patient outcome in different 
human cancers.

MATERIALS AND METHODS

Patient samples

We previously described the global immune gene 
signature that we identified using TCGA PanCanAtlas 
patient gene expression data [14]. Patient survival data, 
including the OS time, PFI, and corresponding event 
status, were obtained from the TCGA PanCanAtlas 
Research Network [43]. A total of 10,062 PanCanAtlas 
tumor samples had both gene expression and survival data, 
covering 32 different cancer types. Data for patients with 

acute myeloid leukemia were excluded from this study 
because of a lack of clinical information.

Spatial characteristics of the global immune gene 
signature

We annotated the immune gene signature, 
including the genes’ cellular locations, by using the 
Ingenuity Knowledge Base (Qiagen; https://www.
qiagenbioinformatics.com). Information on available 
drugs targeting the genes in the signature was also 
retrieved from this annotation tool. We used Genome 
Reference Consortium human genome assembly GRCh38 
to map the genomic coordinates of the immune gene 
signature to the human genome and then visualize the 
gene distribution in two-dimensional space, representing 
chromosomal positions. One dimension consisted of 
the 23 chromosomes from Chr 1 to Chr X, and the 
other dimension indicated the genomic coordinates on a 
chromosome from short (p) arm to long (q) arm.

Gene expression analysis

To visualize the expression of the immune gene 
signature across human cancers, we next analyzed the 
mRNA expression profiles of the 382 immune genes in 
the signature using methods similar to those previously 
reported [14]. The gene expression data were first median 
centered across all the 10,062 PanCanAtlas tumors and 
then log transformed. Next, we used the next-generation 
clustered heat map (NG-CHM) tool developed at The 
University of Texas MD Anderson Cancer Center [44] 
to visualize the expression profiling of the immune gene 
signature among different cancer types. The patient 
samples in the heat map were ordered as follows. We first 
sorted the 32 cancer types in ascending order from left 
to right on the basis of their median immune response. 
Within each of the individual cancer types, patients were 
further sorted in ascending order based on their immune 
response.

Immune metric generation

By using the global immune gene signature, we 
devised an mRNA-based immune metric to quantify the 
immune response of each tumor sample. In brief, we first 
calculated the z score of each gene of the 382 immune 
signature genes across all the PanCanAtlas samples. 
Then we took the median of all calculated z scores within 
this immune gene signature as the immune metric for a 
quantitative surrogate of anti-tumor immune response. 
By this approach, we calculated the immune response 
metric for all 10,062 PanCanAtlas tumor samples. These 
metrics can be used to quantify the pre-existing immune 
conditions of the tumor microenvironment. A similar 
approach has been successfully applied in our previous 

https://www.qiagenbioinformatics.com
https://www.qiagenbioinformatics.com
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studies to characterize activities of the TGF-beta pathway 
[15] and tricarboxylic acid cycle metabolic pathway [18]. 
A much simpler approach involving only two genes was 
previously used to quantify immune cytolytic activity 
[20]; these two genes are included in the global immune 
gene signature.

Survival analysis

Two clinical survival outcome endpoints were 
chosen for analysis of association with immune response, 
OS and PFI [43]. OS was defined as the interval from the 
date of initial diagnosis to the date of last known contact 
(censored) or death. PFI was defined as the period from 
the date of diagnosis until the date of the first occurrence 
of a new tumor event, which included progression of 
the disease, locoregional recurrence, distant metastasis, 
new primary tumor, or death with tumor. Patients who 
were alive without these event types or who died without 
tumor were censored. The event time was the shortest 
period from the date of initial diagnosis to the date of 
an event. The censored time was from the date of initial 
diagnosis to the date of last contact or the date of death 
without disease. Of note, the survival times (OS and PFI) 
varied with a wide range because multiple cancer types 
were included.

The Kaplan-Meier method was used to examine 
the association of tumor immune response with patient 
survival outcomes. For each cancer type, we first filtered 
out patients either with no survival data available (no 
survival time or event status) or with survival time equal 
to zero. The remaining patients were then dichotomized 
into two groups based on the median immune metric. 
Patients with an immune metric value greater than 
or equal to the cutoff were categorized into the high-
immune-metric group, while those with an immune metric 
value less than the cutoff were categorized into the low-
immune-metric group.

Statistical analysis

The Kaplan-Meier method was used to evaluate 
survival difference between the dichotomic groups 
stratified by the immune response in each of the 32 cancer 
types. Statistical significance in survival difference was 
assessed via the Mantel-Cox log-rank test. All statistical 
tests were two-sided, and a P value of less than 0.05 was 
considered significant. The calculations and graphs were 
made with GraphPad Prism, version 7.03 (GraphPad 
Software, Inc., La Jolla, CA, USA).
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