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In normal aging, changes in the body composition occur that result in a shift toward decreased muscle mass and increased fat
mass. The loss of muscle mass that occurs with aging is termed sarcopenia and is an important cause of frailty, disability, and
loss of independence in older adults. Age-related changes in the body composition as well as the increased prevalence of obesity
determine a combination of excess weight and reduced muscle mass or strength, recently defined as sarcopenic obesity. Weight
gain increases total/abdominal fat, which, in turn, elicits inflammation and fatty infiltration in muscle. Sarcopenic obesity appears
to be linked with the upregulation of TNF-q, interleukin (IL)-6, leptin, and myostatin and the downregulation of adiponectin and
IL-15. Multiple combined exercise and mild caloric restriction markedly attenuate the symptoms of sarcopenic obesity. Intriguingly,
the inhibition of myostatin induced by gene manipulation or neutralizing antibody ameliorates sarcopenic obesity via increased
skeletal muscle mass and improved glucose homeostasis. In this review, we describe the possible influence of endocrinal changes

with age on sarcopenic obesity.

1. Introduction

Skeletal muscle contractions power human body movements
and are essential for maintaining stability. Skeletal muscle
tissue accounts for almost half of the human body mass
and, in addition to its power-generating role, is a crucial
factor in maintaining homeostasis. Given its central role in
human mobility and metabolic function, any deterioration in
the contractile, material, and metabolic properties of skeletal
muscle has an extremely important effect on human health.
Aging is associated with a progressive decline of muscle mass,
quality, and strength, a condition known as sarcopenia [1].
The term sarcopenia, coined by I. H. Rosenberg, originates
from the Greek words sarx (flesh) and penia (loss). Although
this term is applied clinically to denote loss of muscle
mass, it is often used to describe both a set of cellular
processes (denervation, mitochondrial dysfunction, inflam-
matory, and hormonal changes) and a set of outcomes such as
decreased muscle strength, decreased mobility and function
[2], increased fatigue, a greater risk of falls [3], and reduced
energy needs [4]. In addition, reduced muscle mass in aged

individuals has been associated with decreased survival rates
following critical illness [5]. In most countries, there has been
arapid and continuing increase in life expectancy. By the year
2030, 20% of the adult USA population will be older than 65
years [6]. In the 27 member states of the EU, the percentage
of people aged 65 years and older will rise from 17.1 in 2008
to 25.4 in 2035 and to 30 in 2060 [7]. The estimated direct
healthcare costs attributable to sarcopenia in the USA in 2000
were $18.5 billion ($10.8 billion in men and $7.7 billion in
women), which represented about 1.5% of total healthcare
expenditures for that year [8]. Therefore, age-related losses
in skeletal muscle mass and function present an extremely
important current and future public health issue.

Lean muscle mass generally contributes up to ~50% of
total body weight in young adults but declines with aging to
be 25% at 75-80 years old [9, 10]. The loss of muscle mass is
typically offset by gains in fat mass. The loss of muscle mass is
most notable in the lower limb muscle groups, with the cross-
sectional area of the vastus lateralis being reduced by as much
as 40% between the age of 20 and 80 years [11]. On a muscle
fiber level, sarcopenia is characterized by specific type II
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muscle fiber atrophy, fiber necrosis, and fiber-type grouping
[11-13]. In elderly men, Verdijk et al. [13] showed a reduction
in type II muscle fiber satellite cell content with aging.
Although various investigators showed very contradicting
results for age-dependent changes of satellite cell numbers
[13-16], most studies point to an age-dependent reduction
in muscle regenerative capacity due to reduced satellite cell
proliferation and differentiation.

Another morphologic aspect of sarcopenia is the infil-
tration of muscle tissue components by lipids because of
the increased frequency of adipocyte or lipid deposition
(17, 18] within muscle fibers. As with precursor cells in
bone marrow, liver, and kidney, muscle satellite cells that
can express an adipocytic phenotype increase with age [19],
although this process is still relatively poorly understood in
terms of its extent and spatial distribution. Lipid deposition,
often referred to as intramyocellular lipid, may result from a
net buildup of lipids due to the reduced oxidative capacity of
muscle fibers with aging [17, 20].

Several possible mechanisms for age-related muscle atro-
phy have been described; however, the precise contribution of
each is unknown. Age-related muscle loss is a result of reduc-
tions in the size and number of muscle fibers [21] possibly
due to a multifactorial process that involves physical activity,
nutritional intake, oxidative stress, and hormonal changes
[3, 22]. The specific contribution of each of these factors is
unknown, but there is emerging evidence that the disruption
of several positive regulators (Akt and serum response factor)
of muscle hypertrophy with age is an important feature in the
progression of sarcopenia [23, 24].

Obesity is currently epidemic in the USA, with almost
70% of Americans overweight and one of three obese
[25]. Obesity is associated with increased morbidity and
mortality, and there is unchallenged evidence that obesity
increases the risk for the development of hypertension,
dyslipidemia, type 2 diabetes mellitus, sleep apnea, cancers
of the breast, prostate, and colon, and all-cause mortality
[26-28]. This review introduces the relationship between
endocrinal changes with age and sarcopenic obesity.

2. Sarcopenic Obesity

Aging is associated with important changes in body com-
position and metabolism [29, 30]. Between the age of 20
and 70 years, there is a progressive decrease of fat-free
mass (mainly muscle) of about 40% and a rise in fat mass.
There is a relatively greater decrease in peripheral compared
to central fat-free mass. After the age of 70 years, fat-free
mass and fat mass decrease in parallel. Fat distribution
changes with age such that there is an increase in visceral
fat, which is more marked in women than in men. Also, fat
is increasingly deposited in skeletal muscle and in the liver.
The higher visceral fat is the main determinant of impaired
glucose tolerance in the elderly. Increased intramuscular and
intrahepatic fat contribute to impaired insulin action through
locally released adipokines and fat-free fatty acids. Increased
pancreatic fat with declining 3-cell function also plays a role
[31].
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Due to the loss of skeletal muscle, the basal metabolic
rate declines by 2%-3% per decade after the age of 20
years, by 4% per decade after the age of 50 years, equating
approximately 150 kcal per day, and overall by 30% between
the age of 20 and 70 years [32]. This, together with decreased
intensity and duration of physical activity as well as decreased
postprandial energy expenditure due to a decreased fat oxi-
dation, accounts for the decreased energy expenditure seen
with aging. Medical complications of obesity in the elderly
are mainly concentrated around the metabolic syndrome
(with glucose intolerance, hypertension, dyslipidaemia, and
cardiovascular disease). The metabolic syndrome peaks at the
age of 50-70 years in males and of 60-80 years [33]. The
metabolic syndrome is a recognized risk factor for strole but is
also related to subclinical ischaemic brain lesions, placing the
subjects at risk for future cognitive impairment [34]. Obesity
also increases the risk of heart failure, and estimates suggest
that having a body mass index (BMI) > 30 kg/m* doubles the
risk [35]. Other obesity-related disorders are osteoarthritis,
pulmonary dysfunction such as the obstructive sleep apnoea
syndrome, certain cancer types, reduced cognitive skills, and
urinary incontinence [6, 36, 37].

The obesity elderly are also likely to have functional lim-
itations because of the decreased muscle mass and strength
and increased join dysfunction, disabilities of activities of
daily living, frailty, chronic pain, and impaired quality of
life [6, 38]. Indeed, Baumgartner [39] observed that men
and women older than 60 years of age with sarcopenic
obesity showed, respectively, an 8- and 11-fold higher risk of
having three or more physical disabilities. More importantly,
it was observed that the association with functional status
impairment was stronger for sarcopenic obesity than for
either obesity or sarcopenia alone. Unintentional injuries
such as sprains and strains occur more often [40]. Obesity
is an important risk for frailty either through increased levels
of inflammatory markers or through sarcopenia [41].

Interestingly, the proposed mechanism involved in sar-
copenic obesity could be the increased production from
adipose tissue of different substances, such as tumor necrosis
factor-a (TNF-«) and leptin, which are known to influence
insulin resistance and growth hormone (GH) secretion [42].
This hypothesis has been confirmed by Schrager et al. [43]
who observed in a large-scale sample of men and women
that the degree of obesity, as evaluated by BMI and its
distribution, and by waist circumference, directly affected
inflammation which in turn contributed to the development
and progression of sarcopenia. Further increases in leptin, at
least partially depending on the age-related fat mass increase,
may lead to leptin resistance and thus to a reduction of
fatty acid oxidation in muscles, contributing to ectopic fat
deposition in organs such as the liver, heart, and muscles
[44] and, in turn, to the loss of muscle quality in obese older
subjects.

Studies in both humans and animals demonstrate that
obesity is a state of low-grade, chronic inflammation, char-
acterized by elevated circulating proinflammatory molecules
produced predominantly from enlarged adipocytes and acti-
vated macrophages in adipose tissue [45, 46]. Lipocalin-2
would be a possible candidate regulating the amount of
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adipose tissue under chronic inflammation and insulin resis-
tance. Lipocalin-2 is abundantly produced by adipocytes [47,
48]. Expression of lipocalin-2 in adipose tissue is elevated in
various experimental models of obesity and in obese humans
[49-51]. Its expression can be induced by various inflamma-
tory stimuli, including lipopolysaccharides and interleukin
(IL)-1B [52, 53]. Intriguingly, lipocalin-2 deficiency in mice
elicits marked decreases in the expression and the activity
of 12-lipoxygenase, an enzyme responsible for metabolizing
arachidonic acid, and the production of TNF-«, a critical
insulin resistance-inducing factor [54]. It remains to be
elucidated whether lipocalin-2 levels increase with normal
aging and further with sarcopenic obesity in mammals.

3. Endocrinal Adaptation with Age

3.1. GH and Testosterone. Testosterone increases muscle pro-
tein synthesis [55], and its effects on muscle are modulated
by several factors including genetic background, nutrition,
and exercise [56]. In males, levels of testosterone decrease by
1% per year and those of bioavailable testosterone by 2% per
year from age 30 [57, 58]. In women, testosterone levels drop
rapidly from 20 to 45 years of age [59].

GH is a single-chain peptide of 191 amino acids produced
and secreted mainly by the somatotrophs of the anterior
pituitary gland. GH coordinates the postnatal growth of
multiple target tissues, including skeletal muscle [60]. GH
secretion occurs in a pulsatile manner with a major surge
at the onset of a slow-wave sleep and less conspicuous
secretory episodes a few hours after meals [61]. The secretion
of GH is maximal at puberty accompanied by very high
circulating insulin-like growth factor-I (IGF-I) levels [62],
with a gradual decline during adulthood. Indeed, circulating
GH levels decline progressively after 30 years of age at a rate
of ~1% per year [63]. In aged men, daily GH secretion is 5- to
20-fold lower than that in young adults [64]. Therefore, many
researchers have indicated age-related endocrine defects such
as decreases in anabolic hormones. Although hormonal
supplementation for the elderly has been conducted on a large
scale, it was found not to be effective against sarcopenia and
to have minor side effects [64-67].

Increased adiposity is often associated with high circu-
lating levels of free fatty acids [68, 69], which inhibit GH
production and decrease plasma levels of IGF-I [70, 71].
A recent study showed that sarcopenic obese persons had
depressed GH secretion compared to obese persons [72].
Similarly, obese individuals tend to have lower testosterone
levels [73]. Of note, low levels of these anabolic hormones
have been reported to be positively associated with low
muscle strength [74, 75] and may therefore contribute to
muscle impairment in obese individuals [76].

3.2. Insulin. Insulin is a powerful anabolic signal in proteins
[77]. Insulin was infused directly into the femoral artery to
increase the leg insulin levels to approximate postprandial
values while avoiding systemic hypoaminoacidemia. Insulin
significantly stimulated muscle protein synthesis in young but
not older subjects. There was no significant change in muscle

protein breakdown as measured by two- and three-pool mod-
eling. The increase in synthesis in young subjects resulted in a
shift from a negative to positive protein net balance across the
leg-indicating overall net protein accretion during the clamp
in young subjects. In the older subjects, however, the net
muscle protein balance remained negative. Insulin resistance
has been long recognized as a characteristic of aging in
humans and rodents [78]. Blood flow was lower in older
as compared to younger subjects at baseline and during the
clamp and tended to increase from baseline in young adults
only during the clamp. As hypothesized by Timmerman and
Volpi [79], this effect was likely mediated through insulin-
induced vasodilation. Insulin is a potent stimulator of the
endothelial-derived vasodilator and nitric oxide [80]. In a
subsequent study, they reported that this age-related insulin
resistance of muscle protein synthesis could be overcome
by increasing insulin levels to approximately double the
postprandial levels via improvements in mammalian target
of rapamycin signaling [81].

Available experimental evidence points to the develop-
ment of adiposity as the main cause of the decreased insulin
action in old rats [82] and elderly humans [83, 84]. Studies in
rats have demonstrated that fat mass accretion occurs at early
aging and is paralleled by a marked decrease of insulin action
in visceral fat tissue.

3.3. TNF-«, IL-6, and C-Reactive Protein (CRP). Inflam-
mation may negatively influence skeletal muscle through
direct catabolic effects or through indirect mechanisms (i.e.,
decreases in GH and IGF-I concentrations, induction of
anorexia, etc.) [85]. There is growing evidence that higher
levels of inflammatory markers are associated with physical
decline in older individuals, possibly through the catabolic
effects of these markers on muscle. In an observational
study of more than 2000 men and women, TNF-« showed
a consistent association with declines in muscle mass and
strength [86]. The impact of inflammation on the devel-
opment of sarcopenia is further supported by a recently
published animal study showing that a reduction in low-
grade inflammation by ibuprofen in old (20 months) animals
resulted in a significant decrease in muscle mass loss [87].
An age-related disruption of the intracellular redox balance
appears to be a primary causal factor for a chronic state
of low-grade inflammation. More recently, Chung et al.
[88] hypothesized that abundant nuclear factor-«B (NF-
kB) protein-induced age-related increases in IL-6 and TNEF-
«. Moreover, reactive oxygen species (ROS) also appear
to function as second messengers for TNF-« in skeletal
muscle, activating NF-«B either directly or indirectly [89].
Indeed, marked production of ROS has been documented
in muscle of the elderly [90, 91]. However, it is not clear
whether NF-«B signaling is enhanced with age. Despite some
evidence supporting enhanced NF-«B signaling in type I
fibers of aged skeletal muscle, direct evidence for increased
activation and DNA binding of NF-«B is lacking [92, 93]. For
example, Philips and Leeuwenburgh [93] found that neither
p65 protein expression nor the binding activity of NF-xB
was significantly altered in the vastus lateralis muscles of



26-month-old rats despite the marked upregulation of TNF-
« expression in both blood and muscle. Upregulated TNF-«
expression in serum and muscle seems to enhance apoptosis
in mitochondria resulting in a loss of muscle fibers [93-95].
It has been shown that TNF-« is one of the primary signals
inducing apoptosis in muscle.

IL-6 and CRP, known as “geriatric cytokines’, are multi-
functional cytokine produced in situations of trauma, stress,
and infection. During the aging process, levels of both IL-6
and CRP in plasma become elevated. The natural production
of cytokines is likely beneficial during inflammation, but the
overproduction and the maintaining of an inflammatory state
for long periods of time, as seen in elderly individuals, is
detrimental [96, 97]. A number of authors have demonstrated
that a rise in plasma levels of proinflammatory cytokines,
especially IL-6, and proteins under acute conditions is asso-
ciated with a reduction in mobility as well as a reduced
capacity to perform daily activities, the development of
fragility syndrome, and increased mortality rates [96-98].
In older men and women, higher levels of IL-6 and CRP
were associated with a two- to three-fold greater risk of
losing more than 40% of grip strength over 3 years [99].
In contrast, there were no longitudinal associations between
inflammatory markers and changes in grip strength among
high functioning elderly participants from the MacArthur
Study of Successful Aging [100]. More recently, Hamer
and Molloy [101] demonstrated, in a large representative
community-based cohort of older adults (1,926 men and
2,260 women (aged 65.3+9.0 years)), that CRP was associated
with poorer hand grip strength and chair stand performance
in women but only chair stand performance in men. In
addition, Haddad et al. [102] demonstrated atrophy in the
tibialis anterior muscle of mice following the injection of
relatively low doses of IL-6. In a recent randomized trial that
employed aerobic and strength training in a group of elderly
participants, significant reductions in various inflammatory
markers (IL-6, CRP, and IL-18) were observed for aerobic but
not strength training [103]. In contrast, combined resistance
and aerobic training that increased strength by 38% resulted
in significant reductions in CRP [104].

3.4. Myostatin. Myostatin was first discovered during screen-
ing for novel members of the transforming growth factor-f
superfamily and shown to be a potent negative regulator of
muscle growth [105]. Mutations in myostatin can lead to mas-
sive hypertrophy and/or hyperplasia in developing animals,
as evidenced by knockout experiments in mice. Myostatin
levels increase with muscle atrophy due to unloading in mice
and humans [106, 107] and with severe muscle wasting in HIV
patients [108]. Administration of myostatin in vivo to adult
mice induces profound muscle loss analogous to that seen
in human cachexia syndromes [109]. Together, these studies
suggest that increased levels of myostatin lead to muscle
wasting.

Many researchers have conducted experiments to inhibit
myostatin in models of muscle disorders such as Duchenne
muscular dystrophy, ALS, and cancer cachexia [23]. In addi-
tion, several investigators examined the effect of inhibiting

International Journal of Endocrinology

myostatin to counteract sarcopenia using animals [110, 111].
More recently, Murphy et al. [111] showed, by way of one-
weekly injections, that a lower dose of PF-354 (10 mg/Kg)
significantly increased the fiber cross-sectional area (by 12%)
and in situ muscle force (by 35%) of aged mice.

Skeletal muscle is the primary site of insulin-mediated
glucose disposal, the largest reservoir of glycogen in the
human body, and a key determinant of energy expenditure.
Hence, several recent studies have also investigated the effects
of genetic and pharmacological inhibition of myostatin, and
the resultant resistance-trained phenotype, on the prevention
and treatment of obesity and type 2 diabetes mellitus [112,
113]. Similar to these results, Zhang et al. [114] demonstrated
that the inhibition of myostatin increased skeletal muscle
mass and reduced body weight, fat mass, and circulating
concentrations of triacylglycerol caused by a high-fat diet.
Postnatal blockade of myostatin with a neutralizing antibody
in obese insulin-resistant mice significantly improved glu-
cose homeostasis, lowered circulating triacylglycerols, and
increased circulating concentrations of the adipose tissue-
derived cytokine and adiponectin [115, 116]. These find-
ings highlight the therapeutic potential of antibody-directed
myostatin inhibition for sarcopenic obesity. Although many
researchers expect myostatin levels to be increased not only
in muscle but also in serum, blood myostatin levels have not
been shown to increase with age [117].

3.5. Adiponectin and Leptin. Adipose tissue itself gener-
ates a myriad of hormones and other bioactive proteins,
including leptin (in normal concentrations induces satiety
and regulates body composition) and adiponectin (anti-
inflammatory and antiatherogenic) [118]. Adiponectin is an
abundant plasma protein. Structurally, adiponectin contains
a carboxyl-terminal globular domain and an amino-terminal
collagenous domain and also shares extensive sequence
homology with collagen VIII and X [119]. Adiponectin cir-
culates in serum as a range of multimers from low-molecular
weight trimers to high-molecular weight dodecamers [120].
With the exception of severe cases of undernutrition [121] and
in the newborn [122], there is a strong negative correlation
between plasma adiponectin concentrations in humans and
fat mass [119], with obesity reducing adiponectin levels and
weight reduction increasing them [45, 123].

Adiponectin has been shown to improve a whole-body
insulin sensitivity in models of genetic and diet-induced
obesity [124,125]. Adiponectin stimulates fatty acid oxidation
and glucose uptake in skeletal muscle [126] and adipose tissue
[127], effects which are dependent on AMP-activated protein
kinase (AMPK) signaling. The activation of adiponectin is
dependent on signaling through adiponectin receptor Adi-
poRI and AdipoR2. A study in human skeletal muscle [128]
and in primary myotubes [129] suggested that skeletal muscle
contains abundant levels of both AdipoR1 and AdipoR2 but
that liver primarily expresses AdipoR2. Adiponectin’s activa-
tion of AMPK signaling is blunted in obesity [130], despite
similar AdipoR1 and AdipoR2 expression. Adiponectin-
levels also decline with age [131]. Adiponectin activates
AMPK and inhibits NF-xB signaling, decreasing monocyte,
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macrophage, and dendritic cell production of TNF-a and
interferon (IFN)-y while increasing the production of anti-
inflammatory cytokines, IL-10, and IL-1Re [45]. Adiponectin
directly inhibits natural killer (NK) cells by preventing IL-2-
stimulated cytotoxicity and IFN-y production [132].

In contrast to adiponectin levels, serum leptin levels
reflect overall adipose mass [45]. Leptin is an adipokine that
regulates energy balance and glucose homeostasis [133]. Lep-
tin acts mainly through the central nervous system, binding
to specific hypothalamic receptors and regulating appetite,
neuroendocrine pathways, and the autonomic nerves which
bring about effects on peripheral tissues [134]. Neverthe-
less, leptin receptor expression has been reported to occur
in pancreatic f-cells, muscle, liver, and fat, among other
peripheral tissues, suggesting the existence of a direct effect
of leptin in addition to its central action [135]. With the
exception of fat tissue [136, 137], in vivo treatment with
leptin has an insulin-sensitizing effect on peripheral tissue.
In skeletal muscle, chronic peripheral leptin administration
induces an increase of glucose uptake under euglycemic-
hyperinsulinemic conditions [137, 138], and the same has
been observed after the microinjection of leptin into the ven-
tromedial hypothalamus [136]. In addition, leptin is largely
proinflammatory because leptin increases TNF-«, IL-6, and
IL-12 production by monocytes [45, 118]. Serum leptin levels
and hypothalamic leptin resistance increase with age [139].

Interestingly, in obese but not in lean rats, leptin admin-
istration has been proven to decrease insulin signaling in
liver [140]. Since obese rats show central leptin resistance and
hyperleptinemia similar to aged rats [141], it can be speculated
that during aging, the direct effects of leptin on peripheral
tissues could prevail over its central action and contribute
to the development and maintaining of a state of insulin
resistance.

3.6.IL-10 and IL-15. Serum IL-10 may be positively correlated
with obesity in middle aged humans [142]. Exercise releases
IL-10 into the circulation, implying production by skeletal
muscle [143]. Macrophage IL-10 production increases in old
mice [144, 145]. Two recent studies showed marked increase
in serum IL-10 in elderly humans [146], although an earlier
study did not show a significant difference between middle-
aged and very old humans [147]. IL-10 is broadly anti-
inflammatory, inhibiting antigen presentation and suppress-
ing release of TNF-q, IL-2, I[EN-y, IL-4, and other cytokines
[148]. Indeed, mice homozygous for targeted deletion of
the IL-10 gene had elevated levels of TNF-«, IL-6, IFN-y,
and IL-18 in serum particularly at a later age (between 72
and 90 weeks) [149]. In addition, these mice had higher
mortality rates when compared to age and sex-matched B6
control mice. On the other hand, IL-10 stimulated NK cell
proliferation, cytotoxicity, and cytokine secretion in vitro
when combined with IL-1 [150]. In murine cytomegalovirus-
infected mice, IL-10 promoted NK cell cytotoxic granule
release but increased NK cell activation-induced cell death
[151]. In the elderly cohort, BMI correlated inversely with the
percentage of NK cells and correlated directly with the NK
cell apoptosis rate [152]. Therefore, serum IL-10 levels may

regulate the amount of adipose tissue by modulating several
inflammatory cytokines and/or recruiting immune cells (e.g.,
NK cells).

IL-15 mRNA is expressed in many tissues [153], but IL-
15 biosynthesis is very complex, and RNA levels do not
necessarily indicate protein secretion. IL-15 isoforms have
alternative signal peptides of 21 and 48 amino acids. Impor-
tantly, IL-15 requires the presence of IL-15Ra for efficient
biosynthesis and secretion [154, 155]. Like IL-15, IL-15R«
synthesis is widespread within and outside of lymphoid
tissues. Skeletal muscle tissue produces very high levels of
IL-15 and expresses IL-15R« [156]. IL-15 levels are reported
to increase transiently immediately following resistance [157]
and aerobic [158] exercise, suggesting that IL-15 is indeed
released from muscle tissue. In mice, muscle and serum IL-15
protein levels decline progressively with advanced age [159].
A study of aging rats showed that a longevity-promoting
regimen of calorie restriction prevented age-related declines
in muscle IL-15 expression observed in ad libitum-fed rats
[94]. In an intriguing brief report involving human subjects,
Gangemi et al. [160] observed significantly elevated serum
IL-15 levels in centenarians living independently, suggesting
high expression of IL-15 conferred protection from both
frailty and age-related disease. IL-15 also has important effects
on adipose tissue. IL-15 inhibits adipocyte differentiation
in culture and obese people have low-blood IL-15 levels
[156, 161, 162]. IL-15-deficient mice become obese despite
unaltered food consumption; IL-15 injections reversed both
this obesity and diet-induced obesity, lowered glucose levels
and increased insulin sensitivity [161, 163]. Figure 1 provides
an overview of the action of dysregulated adipokines to
various organs (e.g., hypothalamus and skeletal muscle) in
sarcopenic obesity.

4. Therapeutic Application

4.1. Physical Exercise (Combination). Adipose tissue infiltra-
tion of skeletal muscle increases with age [164, 165]. Recent
studies have demonstrated that mitochondrial damage occurs
in obese individuals due to enhanced ROS and chronic
inflammation caused by increased fatty acid load [166].
Specifically, in skeletal muscle, the expression of PGC-l«
drives not only mitochondrial biogenesis and the establish-
ment of oxidative myofibers but also vascularization [167].
It was found that a high-fat diet or fatty acid treatment
caused a reduction in the expression of PGC-la and other
mitochondrial genes in skeletal muscle [168]. A recent study
has also demonstrated that transgenic overexpression of
PGC-1« in skeletal muscle improved sarcopenia and obesity
associated with aging in mice [169]. Therefore, the well-
known sarcopenia-attenuating effects of endurance training
may be attributable to the protection against mitochondrial
disorders (apoptosis, oxidative damage, etc.) caused by an
increase in the production of PGC-1« [167].

The American College of Sports Medicine recommends
a multicomponent training exercise programme (strength,
endurance, balance, and flexibility) to improve and maintain
physical function in older adults [170]. Resistance exercise has
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FIGURE 1: Obesity-induced changes in adipokine secretion and the development of insulin resistance in sarcopenic muscle. Expansion
of adipose tissue in obesity leads to increased macrophage infiltration and inflammation with enhanced production of proinflammatory
cytokines such as TNF-« and IL-6. This is accompanied by a dysregulated secretion of leptin and adiponectin. These adipocyte- and
macrophage-derived adipokines elicit a variety of adverse effects on numerous tissues including the hypothalamus, liver, pancreas, and skeletal
muscle. On the systemic level, altered adipokine secretion can lead to increased food intake and reduced energy expenditure through actions

in the hypothalamus and to decreased muscle insulin sensitivity.

been investigated as an approach to counteract sarcopenia by
stimulating protein synthesis and cause muscle hypertrophy
with increased muscle strength and with improved physical
performance [171]. Endurance training improves aerobic
capacity. Most of the studies had a multicomponent program
of 90-min sessions per week, consisting of 15 min of balance
training, 15 min of flexibility, 30 min of aerobic exercise, and
30 min of high-intensity resistance training.

To study the impact of each exercise modality in more
detail, Davidson et al. [172] randomized 60- to 80-year-old
obese subjects into 4 groups: a control group, a group that
had progressive resistance training, a group that performed
aerobic exercise, and a group that combined progressive
resistance training with aerobic exercise. After 6 months,
body weight decreased by 0.6 kg in the resistance, by 2.8 kg
in the aerobic, and by 2.3 kg in the combined exercise group.
Abdominal fat and visceral fat decreased and endurance
capacity improved significantly in the aerobic and combined
exercise group. Skeletal muscle mass and muscle strength
increased in the resistance and combined exercise groups
only. Insulin resistance improved by 31% in the aerobic
group and by 45% in the combined exercise group, whereas
it did not change in the resistance training group. The
combination of progressive resistance training and aerobic
exercise is the optimal exercise strategy for simultaneous
improvement of insulin resistance and functional limitations
in the elderly. Aerobic exercise only is the second best
choice.

4.2. Nutrition and Diet. Diet-induced weight loss results in
a decrease in both fat mass and fat-free mass and so could

exacerbate the age-related loss of muscle mass and further
impair physical function. Based on intensive research con-
cerning sarcopenia and sarcopenic obesity, dietary guidelines
were adjusted to prevent sarcopenic obesity and to guide the
medical profession in managing weight loss in the presence
of sarcopenic obesity [173, 174].

In the treatment of subjects with, or at risk of, sarcopenic
obesity, the energy deficit should be more moderate than
usual (range of 200-750kcal) with emphasis on a higher
intake of proteins (up to 1.5 g/Kg) of high biological quality,
ensuring adequate renal function. When restricting energy
intake, protein intake must be maintained or even increased
as dietary protein, and amino acids are the most effective
means to slow down or prevent muscle protein catabolism. In
particular, Leucine is an important mediator of the response
to amino acids. It increases muscle protein synthesis by
modulating the activation of mammalian target of rapamycin
complex 1 and signaling components of translation initiation
[175]. In order to optimize the anabolic response to ingested
high-quality proteins, certain peculiarities of old age have to
be taken into account [173]. In contrast to younger people, the
elderly have a diminished anabolic response to proteins when
they are coingested with carbohydrates.

5. Conclusions and Perspectives

Obesity is a major public health problem. The population is
growing older, and the prevalence of obesity in the elderly
is rising. Aging and obesity are two conditions that present
an important part of health costs. The impact of sarcopenic
obesity on physical, metabolic, and cardiovascular functions
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is becoming a primary concern amongst nutritionists, geri-
atricians, and public health officers. The etiopathogenesis
of sarcopenic obesity is complex and multiple factors can
interplay, including lifestyle, endocrine, and immunological
factors [176, 177]. Decreased physical activity and energy
expenditure with aging predispose to fat accumulation and
fat redistribution but muscle loss. Sarcopenic obesity seems
to be modulated by an age-related decrease in serum IL-15
and adiponectin and/or chronic inflammation (upregulation
of TNF-a, IL-6, and myostatin).

Lifestyle intervention should be the first step, and its
effects have been extensively in the obese elderly. Multicom-
ponent exercise includes flexibility training, aerobic exercise,
and resistance training. Obesity and specifically sarcopenic
obesity, in the elderly, are potentially preventable, and should
be tackled from younger ages and also during major later-life
transitions such as retirement.
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