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Abstract

Phosphorus (P) is an essential element which plays several key roles in all living organisms. Setaria italica (foxtail millet) is a
model species for panacoid grasses including several millet species widely grown in arid regions of Asia and Africa, and for
the bioenergy crop switchgrass. The growth responses of S. italica to different levels of inorganic phosphate (Pi) and to
colonisation with the arbuscular mycorrhizal fungus Funneliformis mosseae (syn. Glomus mosseae) were studied. Phosphate
is taken up from the environment by the PHT1 family of plant phosphate transporters, which have been well characterized
in several plant species. Bioinformatic analysis identified 12 members of the PHT1 gene family (SiPHT1;1-1;12) in S. italica,
and RT and qPCR analysis showed that most of these transporters displayed specific expression patterns with respect to
tissue, phosphate status and arbuscular mycorrhizal colonisation. SiPHT1;2 was found to be expressed in all tissues and in all
growth conditions tested. In contrast, expression of SiPHT1;4 was induced in roots after 15 days growth in hydroponic
medium of low Pi concentration. Expression of SiPHT1;8 and SiPHT1;9 in roots was selectively induced by colonisation with F.
mosseae. SiPHT1;3 and SiPHT1;4 were found to be predominantly expressed in leaf and root tissues respectively. Several
other transporters were expressed in shoots and leaves during growth in low Pi concentrations. This study will form the
basis for the further characterization of these transporters, with the long term goal of improving the phosphate use
efficiency of foxtail millet.
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Introduction

Phosphorus (P) is an essential, non-substitutable element for

plant growth. It is a component of cell membranes as phospho-

lipids, and is involved in a multitude of functions including energy

transfer, photosynthesis, many aspects of metabolism, intracellular

signalling and gene replication and expression. Low availability of

inorganic P (Pi) is a major constraint for crop production in many

low-input agricultural systems worldwide [1]. The importance of

phosphate for plant growth and yield has been reported in several

crop species including barley [2,3], maize [4,5], sugar beet [6],

common bean [7] and wheat [8]. Hence the acquisition and

utilization of P by plants is a significant factor in the determination

of final crop yield [9] and consequently P deficiency limits plant

growth and crop productivity in many soils [10].

In traditional agricultural systems, farmers depend on the

inherent fertility of the soil or the addition of manures to supply P

for the crop. However, agriculture intensification has resulted in

dependency on the application of phosphate fertilizers to increase

crop yields [11]. Phosphate fertilizer is largely derived from rock

phosphate, which is also the only significant global reserve of Pi

and a non-renewable resource which, according to some estimates,

maybe exhausted in only 50 to 100 years [12]. Clearly it would be

advantageous to reduce the dependency of crops on external

fertilizer addition without overly compromising yields. As mem-

brane transporters are the means by which nutrients enter and are

transported between cells, a fuller understanding of their roles and

functions will be important for developing plants with improved

phosphate acquisition and use efficiency [13].

Millets are an important group of plants predominantly

cultivated and consumed by people in Asia and Africa. The seeds

of millets are rich in essential nutrients including calcium,

magnesium and iron, and are used as a major source of food for

millions of people. The improvement of millets using biotechno-

logical tools is crucial for strengthening the food security of poor

people living in less developed nations [14]. Foxtail millet (Setaria
italica), probably first cultivated some 8,000 years ago in China, is
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widely grown as a grain crop not only in the semi-arid regions of

Asia (India, China and Japan) but also in Southern Europe, and is

becoming an increasingly important forage crop in the Americas,

Australia and North Africa [15]. Foxtail millet is a close relative of

biofuel grasses such as switchgrass (Panicum virgatum) and napier

grass (Pennisetum purpureum) and to pearl millet (Pennisetum
glaucum), for which it represents a genetically amenable model.

Moreover, the genome sequences of two foxtail millet varieties

were recently released [15–17].

The PHT1 family of phosphate transporters, first identified and

characterised in Arabidopsis, play critical roles in the uptake and

disposition of phosphate in plants [18]. Subsequently, family

members have been characterized in many plants including potato

(Solanum tuberosum), white lupin (Lupinus albus), tomato

(Solanum lycopersicum), Madagascar periwinkle (Catharanthus
roseus), barrel medic (Medicago trunculata), barley (Hordeum
vulgare), tobacco (Nicotiana tabacum), rice (Oryza sativa), maize

(Zea mays), wheat (Triticum aestivum) [19] and soybean (Glycine
max) [20].

PHT1 proteins transport Pi into cells such as the epidermal

cortical cells of the root via a proton-Pi co-transport mechanism

[19]. The properties of these transporters have been studied in

several expression systems, including by complementation of the

yeast pho84 mutant, which lacks a high affinity phosphate

transporter. The plant PHT1 proteins show different levels of

affinity from high (mM range) to low (mM range) when expressed

in plant cells, yeast or Xenopus laevis oocytes [21–23]. The

different reported affinities and expression patterns probably

reflect different functional roles such as uptake from the soil as

opposed to translocation and/or remobilisation of stored Pi within

the plant [19].

The arbuscular mycorrhizal (AM) symbiosis between soil fungi

in the phylum Glomeromycota and the roots of c. two-thirds of all

land plant species [24] is a classic mutualism whereby both

partners benefit. Arbuscular mycorrhizal fungi (AMF) enhance

nutrient acquisition for their host plant, particularly of poorly

mobile Pi forms, through exploring a larger soil volume by

extending their hyphae out into the soil and beyond the P

depletion zone that builds up around the root surface [25,26]. In

return, the AMF receive a supply of photosynthetically fixed

carbon from their host plant [27], which is essential for the fungus

to complete its lifecycle given these fungi are obligate biotrophs.

Previous work has shown that there are mycorrhiza-inducible

genes encoding phosphate transporters in plants [28]. These

include MtPHT1;4 in barrel medic [29], OsPHT1;11 and

OsPHT1;13 in rice [30,31], StPHT1;3, StPHT1;4 and

StPHT1;5 in potato [32,33], GmPHT1;7,GmPHT1;10 and

GmPHT1;11 in soybean [20], AsPHT1;1 in Astragalus sinicus
[28], ZmPHT1;6 in maize [25,34], SlPHT1;3, SlPHT1;4 and

SlPHT1;5 in tomato [35,36], and BdPHT1;3, BdPHT1;7,

BdPHT1;12 and BdPHT1;13 in purple false brome (Brachypo-
dium distachyon) [37].

However, while phosphate is known to be a major determinant

of plant growth, the current literature contains no information on

the effects of Pi on S. italica despite the fact that millets are well

known for their ability to grow in unimproved soils [38].

Therefore, in the present study we examined the response of

foxtail millet plants to different phosphate concentrations and

demonstrated that Pi availability has a major influence on both the

growth and yield of foxtail millet. To understand the underlying

mechanisms by which this species responds to Pi availability, the

expression patterns under the influence of different phosphate

regimes have been characterised for the twelve PHT1 family

members encoded by the foxtail millet genome. The resultant

information should, in the longer term, enable the development of

strains of this key food crop with improved phosphate use

efficiency.

Materials and Methods

Plant growth experiments
Seeds of Setaria italica cultivar ‘Maxima’ (Acc.No: Bs 3875)

were obtained from the Welsh Plant Breeding Station, Genetic

Resources Unit, Institute of Grassland and Environmental

Research, Aberystwyth, UK and propagated by single seed

descent. Plants were grown in 1:1 (v/v) perlite:vermiculite and

supplied with basal nutrient solution consisting of: 2.0 mM

Ca(NO3)2, 0.5 mM MgSO4, 0.1 mM KCl, 10 mM H3BO3,

0.5 mM MnCl2, 0.5 mM ZnCl2, 0.2 mM CuCl2, 0.1 mM Na2MoO4

and 0.1 mM Fe-EDTA. The Pi concentration was varied by

supplying KH2PO4 while K2SO4 was used to maintain a constant

concentration of potassium in nutrient solutions of differing

phosphate concentration. The plants were grown in a glasshouse

with 16 h light at 26uC. Plant height, date of flowering and seed

weight were recorded. Chlorophyll was measured according to

[39].

For RNA isolation, seeds were sown and grown as above and

supplied with nutrient solution containing either sufficient

(300 mM) or deficient (10 mM) Pi. Fifteen plants were maintained

at each Pi concentration. After 15 days, root and shoot portions

were separated and 3 plants from each group were immediately

frozen in liquid nitrogen for RNA isolation. The remaining plants

were analysed for fresh and dry weights.

Hydroponic culture
Plants, 6 per container, were grown in 10 L of nutrient solution

as above but containing 300 mM or 10 mM Pi. All nutrients were

prepared and diluted with de-ionized water and the pH adjusted

to 6.0. Fifteen-day old seedlings grown on the inert 1:1 (v/v)

perlite:vermiculite medium and supplied with de-ionized water

were transferred to hydroponic culture to initiate experiments.

The pH of the nutrient solutions was checked every alternate day

and adjusted to 6.0 with 0.1 M H2SO4 or 0.1 M KOH. The

nutrient solutions were replaced weekly.

Arbuscular mycorrhiza experiments
Pots (3 L) were filled with a sand and Agsorb (a calcinated

attapulgite clay soil conditioner; Oil-Dri, USA) mix (1:1, v/v) and

0.25 g L21 of bonemeal (Vitax, Leicestershire, UK), a complex N

and P source to encourage AM development. Mycorrhizal

treatments received 100 g fresh weight inoculum of the AM

fungus, Funneliformis mosseae (previously Glomus mosseae; for

current phylogenetic classification see [40]) which included

chopped roots, spores and growth medium. The AMF inoculum

was originally obtained from Plant Works Ltd. (Kent, UK) and

kept as AM pot cultures for 5 months in a glasshouse with

Plantago lanceolata L. as the host plant in order to generate

sufficient material for the subsequent experiments. The non-AM

controls received the same amount of inoculum, but which had

been autoclaved prior to addition [41]. To equalise the starting

microbial community among the pots, 10 mL of filtered washings

of the AMF inoculum, passed through a 20 mm mesh and No. 42

Whatman filter paper (Whatman International Ltd, Maidstone,

UK) to remove AMF propagules, was added to the non-AM pots

[42,43]. Three seeds were sown in each pot and after germination

thinned to 1 plant per pot. The plants were fed with nutrient

solution as outlined above containing 30 mM Pi. Ten pots

(replicates) were maintained for each AMF and non-AMF

PHT1 Family of Foxtail Millet
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treatment. Root and leaf samples were harvested from 5 plants in

each group 2 months after inoculation with the AM fungus, and

the remaining plants (5 each) were allowed to grow to maturity for

yield determination. For AMF root colonisation assessment, roots

were cleared in 10% KOH, acidified in 1% HCl and stained with

acid fuchsin (as [44] but without phenol). AMF colonisation was

examined with a Nikon Optiphot-2 microscope using both

brightfield and epifluorescence and x200 magnification and %

root length colonisation (RLC), arbuscule and vesicle frequency

recorded. At least 100 root intersections were observed for each

sample [45].

Assay of P content
Total and inorganic P contents were assayed using the modified

Ames [46] protocol described by Chiou et al. [47].

Semi quantitative and quantitative real-time RT-PCR
Primers were designed for all 12 SiPHT1 genes, the actin-2

gene (Siactin-2) (Si026509 m.g) and the Elongation Factor-Ia (EF-
Ia) gene (Si022040 m.g) using primer3 [48]. Eight of the SiPHT1
genes do not contain introns, while four genes (SiPHT1;9, 10, 11
and 12), the Siactin-2 gene and the EF-Ia gene do contain

introns. Primers were designed in such a way to span the introns

for all the intron-containing genes. Details of these primers, the

sizes of the PCR products and the annealing temperatures (Tm) are

given in Table S1.Total RNA was isolated from leaf, root and

shoot (defined as all aerial parts including leaf) using an RNeasy

Plant Mini Kit (Qiagen, Manchester, UK), was treated with

DNaseI (Qiagen, Manchester, UK) and then the integrity of the

RNA was analyzed using an Agilent bioanalyzer (Agilent

Technologies, Berkshire, UK) and quantified using a Nanodrop

ND-1000 Spectrophotometer (Thermo Scientific, Wilmington,

DE, USA). cDNA was made from 500 ng of RNA using a

SuperScript II reverse transcriptase first-strand synthesis system

(Invitrogen, Paisley, UK). Semi quantitative RT-PCR was

performed in a Techne TC-512 thermal cycler (Bibby Scientific

Ltd., Staffordshire, UK) using the following conditions; initial

denaturation at 94uC for 2 min followed by 35 cycles of 30 s

denaturation at 94uC, 30 s annealing at 58 to 62uC, based on the

Tm of gene-specific primers (Table S1), and 30 s extension at 72uC
with the final extension at 72uC for 5 min. The products were

separated on 10% polyacrylamide gels. The identity of all PCR

products was verified by sequencing.

For quantitative real-time PCR (qPCR), expression levels of

SiPHT1;2, SiPHT1;3 and SiPHT1;4 were analysed in leaf and

root samples from 15-day old hydroponically grown plants. In the

mycorrhiza experiment, the expression levels of SiPHT1;8,

SiPHT1;9 and SiPHT1;11 were similarly analysed. For quanti-

fication 20 mL reactions were employed containing 10 mL 2x

SsoFast EvaGreen Supermix (Bio-Rad Laboratories Ltd, Hert-

fordshire, UK), 5 mL primers (500 nM each primer) and 5 mL

diluted cDNA (1:50). Standard curves were constructed from an

appropriate range of dilutions of cDNA. The cycling conditions for

qPCR were: enzyme activation at 95uC for 30 s, denaturation at

95uC for 5 s, annealing/extension at 60uC for 5 s (45 cycles),

melting curve 65 to 95uC (5 s/step). The Ct (cycle threshold)

values and starting quantity were calculated with CFX Manager

2.0 software. Two different control genes, Siactin-2 (Si026509

m.g) and EF-Ia (Si022040 m.g) were tested for stability of

expression using a range of tissues obtained from plants grown in

several different conditions. Based on the Ct values, EF-Ia was

chosen for the normalization of the expression levels in all samples.

The details of these primers are given in Table S1.

Bioinformatic analyses
The determination of the genome sequence of S. italica [15,17]

allowed the identification of likely orthologues of genes known to

be involved in phosphate responses in other plants. To this end

BLASTP searches were made of the predicted proteins encoded by

the S. italica inbred Yugu1 genome (JGI 8.3X chromosome-scale

assembly release 2.0, annotation version 2.1) at the Phytozome

website (http://www.phytozome.net/) [49]. For analysis of the

phylogenetic relationships between PHT1 proteins, their amino

acid sequences were aligned and then the evolutionary history

deduced using the Maximum Likelihood method, based on the

JTT matrix-based model [50]. Evolutionary analyses were

conducted using MEGA5 [51]. For analysis of the promoters of

the SiPHT1 genes, a 3000 bp region upstream of the translation

start ATG was selected for each of the 12 SiPHT1 genes identified

in the S. italica inbred Yugu1 genome [15]. For comparison, the

upstream regions of a number of mycorrhiza-inducible transport-

ers from other cereals were also selected for such analysis. Analyses

of these putative promoter regions for known cis-regulatory

elements, including the phosphate starvation related regulatory

element P1BS [52] and CTTC motif [53,54] were performed

using the PLACE database [55] or manually. In addition the

EARS (Evolutionary Analysis of Regulatory Sequences) method

was employed to search for evolutionarily conserved regions in the

putative promoter regions of the AMF-inducible S. italica PHT1
genes [56].

Statistical analysis
The experiments were conducted using a randomized design.

All results were analysed on SPSS 16.0 (SPSS Inc., Chicago, IL,

USA) using a t-test at the 1% level or an one-way analysis of

variance (ANOVA) with Levene’s test to assess equality of variance

and a Bonferroni post-hoc test to determine significant differences

among means. The number of replicates for each experiment is

indicated in the figure legends.

Results

Phosphate influences the growth and yield of foxtail
millet in glasshouse conditions

Plants grown at the higher concentrations of Pi were observed to

be taller (Figure 1A) and produce larger full seed heads compared

to those grown in low (10 mM) Pi (Figure 1B). Differences in plant

height among Pi treatments could be observed within 3–4 weeks of

growth (Figure 1C), and significant differences in fresh and dry

weight and root to shoot ratios were apparent as early as 16 days

(Figure 1D). After 5 weeks plants grown in 10 mM Pi showed the

characteristic dark green appearance of phosphate-deficient

plants, which was reflected in higher levels of both chlorophyll a
and b (Table S2). After 8 weeks, plants grown in the absence of

added Pi or with only 10 mM Pi were half the height of plants

grown with 50 or 300 mM Pi and this difference was statistically

significant (Figure 1C). Although the heights of plants grown in

50 mM Pi were greater than those grown on 100 mM Pi and

similar to those of plants grown in 300 mM Pi, 50 mM Pi was not

sufficient for optimal growth of foxtail millet as these plants had

high chlorophyll content (Table S2) which is an indication of Pi

stress. Seed weight produced per plant increased with increasing Pi

supply, and plants grown in 50 mM produced less than half the

weight of seed per plant compared to plants that received 300 mM

(Figure 1E) despite there being no difference in plant height

between these two Pi treatments. Plants grown in the absence of

added Pi or with only 10 mM Pi took longer, on average, to flower

(.85 days) compared to plants grown on 50, 100 or 300 mM Pi (ca

PHT1 Family of Foxtail Millet
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75 days). Based on these data, 10 mM Pi was chosen to represent

Pi-deficient conditions and 300 mM Pi was used to represent Pi-

sufficient conditions in subsequent experiments.

Changes in total and inorganic phosphate content of
hydroponically grown plants as a function of phosphate
level in the medium

The total and inorganic P contents differed between plants

grown hydroponically in high and low Pi conditions (300 mM,

Figure 2A or 10 mM, Figure 2B). After 1 week, plants grown in

both concentrations showed a higher level of total P in the roots

than in the leaves (Figure 2A and B). There was no significant

difference between the amount of total P in leaf samples from the

plants grown in 300 mM (Figure 2A) and 10 mM (Figure 2B) Pi in

the first week of the experiment. In contrast, the amount of Pi was

significantly higher in the roots of the plants grown in 300 mM Pi

and total P concentration was significantly higher in the plants

grown on 10 mM Pi (Figure 2B). In the plants grown in Pi-

sufficient conditions (Figure 2A), the levels of both total P and Pi in

the roots declined between week 1 and 3 then stabilised. In

contrast, leaf total P and Pi increased after week 1, and Pi was

between 40–50% of total leaf P. In the plants grown in Pi-deficient

conditions (Figure 2B) both the total and inorganic P levels

declined very rapidly in the roots and more gradually in the leaf

tissue between week 1 and week 2, and were significantly lower

compared to plants grown in higher concentrations of Pi. Overall,

Pi amounts were virtually undetectable in the roots and

maintained at a very low level in the leaf tissue of the plants

grown in 10 mM Pi after the first week.

The plants grown in Pi-deficient conditions (10 mM) produced

shorter, denser roots with more root hairs compared to those

grown under Pi-sufficient conditions (300 mM) (Figure 2C). The

latter plants also exhibited fewer lateral roots.

The PHT1 phosphate transporters of foxtail millet;
comparison with those of other plants

Genes encoding twelve PHT1 family phosphate transporters

(Table S3) and two apparent pseudogenes (Gene loci Si013484

m.g and Si035855 m.g) were identified in the S. italica genome.

Phylogenetic analysis of the predicted PHT1 protein sequences

revealed that these could be clustered with orthologues previously

identified in other members of the Poaceae, in particular purple

false brome (Brachypodium distachyon), rice, sorghum (Sorghum
bicolor) and maize (Figure 3).

Expression analysis of 12 SiPHT1s in leaf and root samples
of hydroponically grown plants by semi quantitative RT-
PCR

To gain an overview of the expression of the PHT1 family RT-

PCR was performed for the twelve SiPHT1 genes in the ‘shoot’

(all aerial tissues including leaves), leaf and root (Figure 4). The

shoot tissue of 15-day old seedlings showed the expression of many

members of the PHT1 gene family. The transcripts of six genes,

SiPHT1;1, SiPHT1;2, SiPHT1;3, SiPHT1;4, SiPHT1;11 and

Figure 1. Plant growth experiments. Foxtail millet plants grown in pots containing a 1:1 (v/v) ratio of perlite:vermiculite and supplied with
nutrient solution containing various concentrations of inorganic phosphate (Pi). A, 6-week old plants grown in various concentrations of Pi; from left
to right: 300 mM, 100 mM, 50 mM, 10 mM and no added Pi (0 mM); B, image of flowers representative of plants grown for 12 weeks in the presence of
sufficient (300 mM) or deficient (10 mM) Pi; C, plant height measured weekly for plants grown in the presence of various concentrations of Pi.
Statistical analysis was conducted at the end of the recording period (i.e. at 8 weeks); D, shoot (S) and root (R) weight (mg) and root:shoot (R:S) weight
ratio of foxtail millet seedlings grown for 16 days in the presence of sufficient (300 mM) or deficient (10 mM) Pi; and E, seed yield (seed dry weight) of
plants grown in the presence of various concentrations of Pi after 16 weeks of growth. Data shown are means 6 standard deviation (SD), n = 5. Values
followed by the same letter were not significantly (P,0.05) different based on a Bonferroni post-hoc test. For Fig. 1D, data were tested by a t-test; ***
represents a significant difference (P,0.001) between the shoots or roots of plants grown with high (300 mM) compared to low (10 mM) Pi
concentrations.
doi:10.1371/journal.pone.0108459.g001
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SiPHT1;12, were detected both in plants grown in Pi-sufficient

conditions (300 mM Pi) and in plants grown in Pi-deficient

conditions (10 mM Pi). In contrast the transcripts of four genes,

SiPHT1;6, SiPHT1;8, SiPHT1;9 and, SiPHT1;10, were only

detectablein shoot samples from plants grown under Pi-deficient

conditions (10 mM Pi), indicating that transcription of these genes

was strongly induced by P-starvation.

In 15-day old leaf SiPHT1;2 and SiPHT1;3 were the main

transporters detected, whereas in 15-day root SiPHT1;2 and

SiPHT1;4 were the principal transporters expressed. In older (31-

day) leaves, expression of 4 additional transporters, SiPHT1;4,

SiPHT1;6, SiPHT1;11 and SiPHT1;12, was induced by growth

in Pi-deficient conditions (10 mM Pi). In 31-day old root tissue no

additional transporters appeared to be up-regulated by growth in

Pi-deficient conditions (10 mM Pi) but two additional transporters,

SiPHT1;3 and SiPHT1;9, were detectable in plants grown in Pi-

sufficient conditions.

Expression analysis of SiPHT1;2, SiPHT1;3 and SiPHT1;4 in
leaf and root samples of hydroponically grown plants by
quantitative real time RT-PCR

In order to obtain more quantitative information on expression

levels in response to Pi supply, quantitative real time PCR was

carried out for the SiPHT1;2, SiPHT1;3 and SiPHT1;4 genes

using cDNA from 15-day old hydroponically grown root and leaf

samples. Based on the Ct values EF-Ia was chosen as a reference

gene for the normalization of SiPHT1 isoform expression levels as

compared to Siactin-2, EF-Ia showed less variation in Ct values

among different samples (Table S4). This finding is in agreement

with a recent study that reported that EF-Ia is superior to Siactin-
2 as a reference gene in foxtail millet [57]. As indicated above, the

results of RT-PCR analysis suggested that SiPHT1;2, SiPHT1;3
and SiPHT1;4 are the most widely expressed transporters in

millet (Figure 4).The results confirmed that SiPHT1;2 is ex-

pressed in both roots and leaves of plants grown under Pi-deficient

and Pi-sufficient conditions. Expression levels were significantly

higher in leaves of P-deficient plants, where expression was

strongly (.7 fold) induced by growth in Pi-deficient conditions

(Figure 5). Expression of this transporter in the root sample was

also up-regulated by low Pi and significantly higher levels of

expression were seen, but to a lesser degree than in the leaf. The

expression of SiPHT1;3 predominantly in leaves was also further

substantiated by qPCR, as was a slight decrease in expression

levels in samples from plants grown in Pi-sufficient conditions.

Similarly, the results of qPCR confirmed that SiPHT1;4 is

expressed predominantly in roots, with approximately 3-fold

higher expression in samples from plants grown in Pi-deficient

conditions (10 mM Pi) than in samples from plants grown in Pi-

sufficient conditions (300 mM Pi). Such induction of expression by

growth in Pi-deficient conditions had not been apparent from

simple RT-PCR analysis (Figure 4).

Expression analysis of SiPHT1 family members in
response to colonisation by F. mosseae

S. italica plants were grown with live (AMF) or autoclaved AMF

inoculum (non-AMF) of F. mosseae as described in the Methods

section. After 2 months RNA was extracted from leaf and root

samples for RT-PCR and root samples assessed for AMF

colonisation. The AM roots showed colonisation of between 17

and 29% (2362.5%) of the root length. Arbuscules were less

frequent (0.7560.5%), while vesicles were absent. Extraradical

mycelium and attached spores were also observed outside the root,

while no colonisation by AMF was observed in roots from the non-

AMF treatment. In addition to bands for SiPHT1;2 and

SiPHT1;4, which had been previously found in non-AM

colonised plants (Figure 4), RT-PCR analysis of root samples

from AM colonised plants revealed clearly detectable bands for

SiPHT1;8, and SiPHT1;9, indicating the induction of these 2

genes by AM fungal colonisation (Figure 6A). A lower-intensity

band corresponding to SiPHT1;12 was also evident in the same

root sample. Expression of SiPHT1;8, SiPHT1;9 and

SiPHT1;12 was not detectable in root samples from the non-

AM colonised plants, confirming that expression of these genes

was specifically induced by AMF colonisation. The leaf samples

Figure 2. Assay of total and inorganic phosphate content in leaf and root samples. A and B, Total P and inorganic P (Pi) content in leaf and
root samples of foxtail millet grown hydroponically in media containing 300 mM (A) and 10 mM (B) Pi. The total height for the bar represents total P,
while inorganic P is shown within the total P bar and indicated by the lighter shading. Values shown are the means 6 SD (n = 5). Data were analysed
by a t-test where *** represents a significant difference (P,0.001) between the plants grown with high (300 mM) compared to low (10 mM) Pi
concentrations. C, Root architecture of 20-day old foxtail millet plants grown hydroponically in medium containing 300 or 10 mM Pi. The insets show
roots magnified to illustrate the induction of root hairs in plants grown in 10 mM Pi.
doi:10.1371/journal.pone.0108459.g002
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showed expression of SiPHT1;11 in addition to SiPHT1;2 and

SiPHT1;3 consistent with the results of previous experiments

(Figures 4 and 5).

Based on these results six SiPHT1 isoforms (SiPHT1;2,

SiPHT1;3, SiPHT1;4, SiPHT1;8, SiPHT1;9 and SiPHT1;11)

were selected for further analysis by qPCR. The results confirmed

the specific induction of SiPHT1;8 and SiPHT1;9 in mycorrhizal

roots as expression of these two genes was not detected in leaf

samples from AM colonised plants or in non-AM leaves or roots

(Figure 6B), although their expression had previously been

detected by semi-quantitative RT-PCR in shoots of un-colonised

plants (Figure 4). Of these two genes induced by mycorrhiza in

roots, SiPHT1;9 showed significantly higher expression compared

to SiPHT1;8. SiPHT1;11 was expressed in leaf samples but was

not specific for mycorrhizal plants, indeed the level of expression

was higher in the non-AM control plants than in the AM colonised

plants. Moreover, as found in previous experiments, SiPHT1;2
was expressed ubiquitously.

Arbuscular mycorrhizal colonisation improves the seed
yield of foxtail millet

The AM plants produced a significantly higher seed yield than

the non-colonised control plants (Figure 7). This result is consistent

with the main role of AMF in capturing poorly mobile phosphate

ions from the soil environment and transferring this phosphate to

their associated host plant.

Bioinformatic analysis of promoters
Bioinformatic analysis revealed the presence of several types of

known cis-regulatory elements in the putative promoter regions of

the SiPHT1 genes. In particular, P1BS motifs were found in the

promoter regions of SiPHT1;3, SiPHT1;4, SiPHT1;5,

SiPHT1;6, SiPHT1;8, SiPHT1;9, SiPHT1;10 and SiPHT1;12
(Figure 8). The P1BS motif is an 8 bp sequence (GNATATNC)

present in many phosphate starvation responsive genes in plants

[52]. A second motif, the ‘‘CTTC’’ motif [53], comprising a 7 bp

core sequence (TCT(T/C)GTT) previously identified as being

present in the promoters of multiple AMF-inducible PHT1 genes

in both subfamilies I and V [54], was found in the putative

promoter regions not only of the AMF-inducible SiPHT1;9 gene

but also in the promoters of SiPHT1;5 and SiPHT1;10, which

Figure 3. Phylogenetic analysis of plant PHT1 family members. Roman numerals (I–IV) indicate the four PHT1 subfamilies identified by Nagy et
al. [33] together with a more-recently identified family of arbuscular mycorrhizal fungus (AMF)-inducible transporters (V) specific to the Poaceae [65].
Sequence names start with the first letter of the genus and the first one or two letters of the species name, followed by the gene name. Accession
numbers for the proteins are given in Table S5. PHT1 family members from S. italica are indicated by open diamonds or, in the case of AMF-inducible
members, filled diamonds. Other plant PHT1 family members that have been described to be AMF-inducible are indicated by filled circles.
doi:10.1371/journal.pone.0108459.g003

PHT1 Family of Foxtail Millet

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e108459



were not found to be induced by AMF in the current study.

Investigation of the promoter regions of SiPHT1;9 and related

family I AMF-inducible genes from other monocots (SbPHT1;1,

ZmPHT1;6, BdPHT1;7 and OsPHT1;11) using the EAR

algorithm [56] revealed that the CTTC motif was present,

together with an upstream P1BS motif, in a conserved region

corresponding to 2263 to 2173 of the SiPHT1;9 promoter

(Figure S1).

Figure 4. RT-PCR analysis of expression patterns of the foxtail millet PHT1 gene family. cDNA produced by reverse transcription of mRNA
was prepared from various tissues of plants grown in Pi-deficient (10 mM) and Pi-sufficient (300 mM) conditions and then amplified with primers
specific for each of the 12 SiPHT1 genes and for the Siactin-2 gene. PCR products were separated on 10% polyacrylamide gels and visualized using
SYBR safe DNA gel stain. The 15 and 31 d leaf and root samples were obtained from hydroponically grown plants; 15 dshoot was obtained from pot
grown plants (perlite:vermiculite).
doi:10.1371/journal.pone.0108459.g004

Figure 5. Quantitative real-time PCR analysis of SiPHT1;2, SiPHT1;3 and SiPHT1;4. Quantitative real-time PCR analysis of SiPHT1;2, SiPHT1;3
and SiPHT1;4 expression in leaf and root samples of 15 d foxtail millet plants grown hydroponically in media containing either 300 mM or 10 mM Pi.
Values are mean 6 SE of 3 biological replicates each consisting of 3 technical replicates. The values were compared by one way ANOVA for the
expression of genes. Values indicated by the same letter are not significantly different (p,0.05), based on a Bonferroni post-hoc test for the
expression level of the same gene in different tissues.
doi:10.1371/journal.pone.0108459.g005
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Discussion

Phosphate influences the growth and yield of foxtail
millet in glasshouse conditions

Before embarking upon characterisation of the expression

pattern of the SiPHT1 family genes in response to Pi, it was

necessary first to characterise growth of S. italica under conditions

of varying P supply. Plant height, fresh and dry weights, time to

flowering, seed yield and determination of total and inorganic

phosphate content were measured and based on these data 10 mM

Pi was selected as representative of phosphate-deficient conditions

whilst 300 mM Pi was taken as being phosphate-sufficient for

subsequent experiments. The latter concentration is similar to that

required by rice [58], while 100 mM Pi is sufficient for optimal

growth of barley [59].

The root morphology of plants grown hydroponically with

10 mM Pi showed shortened primary root, increased root hairs

and lateral roots. This type of change in root architecture induced

by P starvation has been well documented in many species

including Arabidopsis [60,61] and Lupin [62,63]. The prolifera-

tion of root hairs under P starvation is believed to increase the

adsorptive surface, to increase exudation of organic acids and

phosphatases, and possibly to result in greater expression of Pi

transporters [64].

Figure 6. Expression analysis of SiPHT1 genes in roots and leaves of plants colonised by F. mosseae. A; expression analysis by semi
quantitative RT-PCR. cDNA was prepared and PCR performed as described in the legend to Figure 4. B; expression analysis by quantitative real-time
PCR of SiPHT1;2, SiPHT1;3, SiPHT1;4, SiPHT1;8, SiPHT1;9 and SiPHT1;11 in leaf and root samples of 2 month old foxtail millet AM or non-AM plants.
Values are mean 6 SE of 3 biological replicates each consisting of 3 technical replicates. The values were compared by one way ANOVA for the
expression of genes. Values indicated by the same letter are not significantly different (p,0.05), based on a Bonferroni post-hoc test for the
expression level of the same gene in different tissues.
doi:10.1371/journal.pone.0108459.g006

Figure 7. Seed yield (dry weight) of AM or non-AM foxtail
millet. The seeds were harvested after 16 weeks of growth. Values are
mean 6 SD (n = 5). Data were tested using a t-test where *** = P,0.001.
doi:10.1371/journal.pone.0108459.g007
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PHT1 transporter gene family of foxtail millet
The PHT1 gene family of phosphate transporters in plants

comprises multiple members which can be assigned to one of 5

subfamilies based on sequence similarity [33,65]. They include

both low and high affinity transporters and whilst most family

members are expressed in roots, individual members have

complex and overlapping expression patterns reflecting different

physiological functions [19,66]. For example OsPHT1;6 is a high

affinity transporter with an apparent Km of 97 mM when expressed

in yeast, and is expressed in root epidermal cells where it is likely

responsible for Pi uptake from the soil. In contrast OsPHT1;2 is

expressed throughout the stele, exhibits an apparent Km in the

mM range when expressed in Xenopus oocytes, and may be

involved in translocation of stored Pi in the plant [21].

The foxtail millet PHT1 family comprises 12 members

(Figure 3) and evidence for expression of all genes except the

closely related SiPHT1;5 and SiPHT1;7 was obtained (Figure 4).

SiPHT1;2 was found to be expressed in all the tissues and

conditions tested in this study, and would appear to be a widely

expressed PHT1 transporter with higher expression in leaf (and to

a lesser extent root samples) of Pi-depleted plants (Figure 5).

SiPHT1;2 grouped in the phylogenetic tree with OsPHT1;8
(Figure 3) which has been shown to be a high affinity transporter

expressed under all conditions although, unlike SiPHT1;2,

OsPHT1;8 is more highly expressed in roots than shoots [23].

OsPHT1;8 is only 1.5-fold up regulated by P deficiency in roots

and is not affected by P supply in leaf tissue [23]. However, in

another study, expression of OsPHT1;8 was also found to be up-

regulated in the shoot by P deficiency [67]. SiPHT1;2 also

grouped with BdPHT1;9, which displays both shoot and root

expression [37], as did maize PHT1;1 and PHT1;4/PHT1;2
[37,68]. Like SiPHT1;2, ZmPHT1;2 was up regulated in both the

root and leaf tissues by P deficiency [68].

In contrast to SiPHT1;2, expression of SiPHT1;3 was found to

be predominantly expressed in leaf tissue in 15-day old hydro-

ponically grown plants and rather than being induced by Pi-

deprivation was slightly decreased under such conditions (Fig-

ure 5). However, its expression was also detectable in the roots of

plants grown for 31 days in Pi-sufficient conditions (Figure 4).

Similar predominant expression of some PHT1 family members

in tissues other than roots has been reported in other plant species.

For example, in Arabidopsis AtPHT1;5 was expressed in

cotyledons and hypocotyl during early seedling growth and was

suggested to be involved in remobilisation of stored phosphate

from phytate. At later times, expression was confined to vascular

tissues and the transporter may be involved in remobilisation of

phosphate from senescing leaves [69]. A transporter from purple

false brome, BdPHT1;10, closely related to SiPHT1;3 (Figure 3),

has been shown to be expressed in shoots but not roots [37].

Conversely SiPHT1;4 is predominantly expressed in roots and

induced by low Pi (Figure 5), but is also detected in aerial tissue

under low Pi conditions (Figure 4). Phylogenetic analysis revealed

that SiPHT1;4 is grouped with BdPHT1;4 of purple false brome,

which is expressed in roots but not shoots [37]. In rice and

Arabidopsis, where expression of the PHT1 family has been most

extensively studied, the majority of family members are expressed

in roots. AtPHT1;1, AtPHT1;2, AtPHT1;3 and AtPHT1;4 are

expressed in the root epidermis and induced by low Pi.

AtPHT1;7, AtPHT 1;8 and AtPHT1;9 are also expressed at

low levels in Pi starved roots [69], while both AtPHT1;1 and

AtPHT1;4 have been shown to play a major role in Pi acquisition

in Arabidopsis [70,71]. OsPHT1;4 and OsPHT1;8 were ex-

pressed in roots of 3 rice cultivars [66] and OsPHT1;6 was shown,

through RNA interference, to play an important role in Pi uptake

while OsPHT1;2 was suggested to be involved in the root to shoot

transport of Pi [21]. Barley HvPHT1;1, which is expressed in

roots, is moderately up regulated by P deficiency and encodes a

high affinity P transporter [72]. It also groups with SiPHT1;4 in

Figure 8. Schematic diagram showing the locations of the P1BS and CTTC motifs in promoter regions of 8 SiPHT1s. The P1BS and CTTC
motifs are shown in green and red respectively and are located between 21 to 23000 bp upstream of the start codon ATG.
doi:10.1371/journal.pone.0108459.g008
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the phylogenetic tree (Figure 3). We did not observe any evidence

for other SiPHT1 family members being induced by low Pi in

roots but RT-PCR and qPCR analysis of bulk tissues may of

course fail to detect genes that are highly expressed in very specific

but quantitatively minor locations, such as root tips or root hairs.

Other methods which preserve spatial information, such as use of

promoter reporter fusions, will be required to explore such

possibilities.

Colonisation with the arbuscular mycorrhizal fungus F.
mosseae induces the expression of SiPHT1;8 and SiPHT1;9
in roots

Arbuscular mycorrhizal fungi have previously been demon-

strated to confer a wide range of benefits to their associated host

[27] and plants may get 70% of their phosphate [65] via AM

fungi, in addition to acquiring other limiting resources such as

nitrogen [73] and water [74]. Consistent with this, the seed yield of

AM plants showed a 30% increase over the non-AM control plants

(Figure 7), even though both sets of plants were grown in the

presence of a small quantity of bonemeal to encourage AM

symbiosis establishment and therefore were not as phosphate

deficient as the plants grown hydroponically with 10 mM Pi. Thus,

understanding this important plant-fungal interaction and ensur-

ing maximum benefit to the plant is an attractive means to

improve yields in low input agricultural systems.

Arbuscular mycorrhizal colonisation induced the expression of

SiPHT1;8 and SiPHT1;9 in roots, as demonstrated by semi-

quantitative and quantitative RT-PCR, while SiPHT1;2 showed a

more than 2-fold increase in expression in the leaves of AM plants

whereas SiPHT1;11 expression was reduced. Weak, but detect-

able, selective expression of SiPHT1;12 was also observed in AM

roots (Figure 6). As mentioned in the introduction, AM-inducible

PHT1 transporters have been described in many monocot and

dicot species, and their role in the symbiosis is supported by the

observation that typically they are expressed exclusively in

arbuscule-containing root cells [29]. However, in some cases,

low levels of expression in un-colonised plants, and in tissues other

than roots, has been detected [75], suggesting additional roles in

phosphate homeostasis. Such additional roles for SiPHT1;8 and

SiPHT1;9 are clearly suggested from the observation in the

present study of their expression in the shoots of un-colonised

plants (Figure 4). In order to probe such roles, further work will be

required to localise the expression of these transporters to specific

tissues. SiPHT1;9 is a member of subfamily I of the PHT1
transporters, an evolutionarily ancient grouping which contains

many AMF-inducible transporters from both monocots and dicots

(Figure 3). These include HvPHT1;11 from barley [76] and

OsPHT1;11 from rice [30]. In contrast, SiPHT1;8 is a member of

subfamily V, a group of AMF-inducible transporters that arose

relatively recently in the Poaceae [65] and which is exemplified by

HvPHT1;8 from barley [77] and OsPHT1;13 from rice [31,65].

In addition to playing key roles in symbiotic phosphate uptake by

plants, there is evidence that AMF-inducible PHT1 transporters

also play a role in controlling the development and lifespan of

arbuscules [65]. Interestingly, while both OsPHT1;11 and

OsPHT1;13 are required for the proper development of the

AM symbiosis in rice, only the former contributes to symbiotic Pi

uptake [65]. Further investigations, for example using RNAi, will

be required to assess whether SiPHT1;9 and SiPHT1;8 play

corresponding roles in millet.

Promoters of foxtail millet PHT1 contains regulatory
elements specific for the expression by Pi starvation and
arbuscular mycorrhizal colonisation

Identification of P1BS motifs in the putative promoter regions of

several of the SiPHT1 genes is consistent with their induction by

Pi starvation, as has been reported for PHT1 promoters in other

plant species such as rice. For example the promoter region of

SiPHT1;4, expression of which is increased by Pi starvation in

roots (Figure 5), contains two P1BS motifs.

Identification of a CTTC motif in the putative promoter region

of the SiPHT1;9 gene is consistent with the induction of

expression of this gene in roots as a result of AMF colonisation.

While first identified in the promoter of the AMF-inducible potato

transporter StPHT1;3 [53], this motif has subsequently been

reported in the promoters of many members of the PHT1
subfamily I in dicots, and most recently in that of subfamily V gene

OsPHT1;11 from rice [54]. Using deletion analysis of the

StPHT1;3 promoter and other approaches, this motif was

demonstrated to be necessary and sufficient for the transcriptional

response to AMF colonisation under low Pi conditions [54].

However, the results of analysis of the promoters of AMF-

inducible PHT1 genes from tobacco and eggplant using deletions

and mutations suggest that both a CTTC motif and an upstream

P1BS motif is required for high-level AMF-inducible transcription

[52]. Such an arrangement of motifs is evident in the putative

SiPHT1;9 promoter as well as in the promoters of other AMF-

inducible monocot PHT1 subfamily I genes including

OsPHT1;11 from rice [54] (Figure S1).

While the promoter of the AMF-inducible subfamily V

OsPHT1;13 gene from rice also contains a CTTC motif [54],

no such motif is present in the promoter of SiPHT1;8 (Figure 8),

despite its induction following AMF colonisation (Figure 5). Thus,

the promoter elements responsible for the induction of expression

of SiPHT1;8 by AMF colonisation remain unclear and require

experimental determination in future.

Conclusion

In conclusion, we have characterised the growth response of

foxtail millet to different levels of Pi and shown that despite this

crop being typically grown in unimproved soils, optimal growth

and yield requires 300 mM Pi, similar to that required by rice.

Therefore development of millet plants with improved P

acquisition and use efficiency could provide a significant benefit

to resource poor farmers. We identified the 12 members of the

PHT1 family of phosphate transporters and characterised their

expression in response to Pi supply and AMF colonisation as a first

step towards development of improved millet varieties by breeding

or biotechnological approaches.
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