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Abstract

Thioredoxin-interacting protein (TXNIP) inhibits the activity of thioredoxin (TXN), leading to

increased oxidative stress. Expression of the TXNIP gene is regulated by DNA methylation.

However, no study has reported the influence of lifestyle factors on TXNIP DNA methylation.

Our goal was to determine the association between smoking habits and TXNIP DNA methyl-

ation levels in a Japanese population. We conducted a cross-sectional study of 417 subjects

(180 males and 237 females) participating in a health examination. We used a pyrosequen-

cing assay to determine TXNIP DNA methylation levels in leukocytes. The mean TXNIP

DNA methylation level in current smokers (75.3%) was significantly lower than that in never

and ex-smokers (never: 78.1%, p < 0.001; ex: 76.9%, p = 0.013). Multivariable logistic

regression analyses showed that the OR for TXNIP DNA hypomethylation was significantly

higher in current smokers than that in never smokers, and significantly higher in current

smokers with years of smoking� 35 and Brinkman Index� 600 compared to that in non-

smokers. In conclusion, we found that current smokers had TXNIP DNA hypomethylation

compared to never and ex-smokers. Moreover, long-term smoking and high smoking expo-

sure also were associated with TXNIP DNA hypomethylation.

Introduction

Thioredoxin (TXN) is a ubiquitous thiol-active protein that is expressed in many organisms.

The protein contributes to cellular redox reactions that protect cells from oxidative stress, and

TXN expression typically is induced following exposure to reactive oxygen species (ROS) [1,

2]. Thioredoxin-interacting protein (TXNIP) is a TXN-binding protein that inhibits the activ-

ity of TXN, thereby influencing balance of the cellular redox state [3]. TXNIP mRNA expres-

sion also is induced in response to glucose elevation and plays an important role in pancreatic
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β-cell function and glucose homeostasis [4]. TXNIP has been implicated in metabolic control

including insulin release, glucose production, and glucose uptake from peripheral tissues

[5, 6].

Recent studies have shown an association between DNA hypomethylation of the TXNIP
gene and type 2 diabetes mellitus (T2DM) [7–10]. DNA methylation involves the transfer of a

methyl group to carbon 5 of the cytosine base, yielding 5-methylcytosine. DNA methylation

represses gene transcription by preventing the binding of transcription factors while also

recruiting proteins with affinity for methylated DNA [11]. Indeed, epigenetic modifications

such as DNA methylation have been shown to be associated with particular pathologies such

as cancer, cardiovascular disease, and metabolic disease [12–14]. Previous research has estab-

lished that changes in DNA methylation can occur in response to environmental factors [15]

and lifestyles [16–18].

Smoking is an important lifestyle factor that alters the DNA methylation pattern. Changes

in DNA methylation patterns due to smoking have been hypothesized to lead to changes in

gene expression and to be involved in the development or progression of various diseases [19].

Some novel smoking-associated changes in DNA methylation have been identified by

genome-wide methylation studies [20–22]. Most of the affected genes have been implicated in

the development of smoking-related diseases [23].

Smoking increases oxidative stress and inflammation, leading to increased risks of health

problems [24]. A recent study reported that cigarette smoke extract increased the levels of

TXNIP in MIN6 pancreatic β-cells and the levels of TXNIP may be higher in the sera of cur-

rent smokers compared to those in non-smokers [25]. Although it has been suggested that

smoking affects DNA methylation at the TXNIP gene, there have been (to our knowledge) no

epidemiological studies testing changes in DNA methylation of the TXNIP gene among smok-

ers. Hence, we conducted a cross-sectional study to investigate whether smoking habits are

associated with TXNIP DNA methylation levels in the general Japanese population.

Methods

Study participants

The present epidemiological study is part of the ongoing Yakumo Study, a population-based

health examination conducted in Yakumo, a town located in the prefecture of Hokkaido,

which lies in the northern part of Japan. A total of 525 subjects participated in a health exami-

nation at the end of August 2015. Among the participants, we excluded 27 individuals who did

not provide written informed consent for the present study, 32 who did not complete the self-

administered questionnaire, 20 who had samples that could not extract enough genomic DNA

because of inadequate peripheral blood samples and 2 who had extremely high (>95%) or low

(<3%) level of the TXNIP DNA methylation due to technical problems during the bisulfite

conversion and pyrosequencing assay process. We also excluded another 27 individuals who

had a clinical history of cancer. Thus, we analyzed a total of 417 subjects (180 males and 237

females). The protocol for this study was approved by the Ethics Committee of Fujita Health

University (Approval No. 164).

Collection of lifestyle information

Health information was obtained from the participants by trained public health nurses at the

health examination. A self-administered questionnaire was used to collect lifestyle data such as

smoking habits, alcohol consumption (current, ever, or never), and medical history of cancer

(yes or no). Regarding smoking habit, participants were categorized into three categories as

follows; current smokers: participants who currently smoke every day or sometimes, ex-
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smokers: participants who had smoked in the past but have quit, never smokers: participants

who have never smoked in the past. The questions regarding smoking status also included age

at which smoking started and the number of cigarettes smoked per day. The cumulative

amount of cigarette consumption was evaluated by the Brinkman Index (BI) based on the self-

administered questionnaire. The BI was determined as the number of cigarettes per day multi-

plied by years of smoking [26]. Anthropometric indices (height and weight) were measured

according to standardized methods in the health examination. Body mass index (BMI) was cal-

culated as body weight in kilograms (kg) divided by the square of the height in meters (m2).

Blood biochemical analysis

Blood samples were obtained from each participant during the health examination. Collected

specimens were centrifuged within an hour of sampling and stored at –80˚C until assessment.

Other biochemical analyses of blood were conducted at the laboratory of Yakumo General

Hospital (Hokkaido, Japan).

TXNIP DNA methylation data

Genomic DNA was extracted from peripheral blood samples using NucleoSpin Tissue kits

(TaKaRa, Japan) according to the manufacturer’s instructions. The extracted DNA was bisul-

fite-converted with the EpiTect Fast DNA Bisulfite Kit (QIAGEN, Germany) according to the

manufacturer’s protocol. For each sample, a polymerase chain reaction (PCR) was performed

in a 20-μL reaction mixture containing 20 ng (in 2 μL) bisulfite-treated genomic DNA, dNTPs,

TaKaRa EpiTaq HS (for bisulfite-treated DNA), MgCl2, the forward and reverse primers, and

EpiTaq PCR buffer. The PCR-amplified DNA sequencing (chr1: bp 145,441,434–663) is

shown in S1 Fig. After PCR amplification, the differential methylation at a CpG site (chr1: bp

145,441,552) within the 3’-untranslated region (3’-UTR) of TXNIP locus, the most frequently

reported CpG site in previous studies related to TXNIP DNA methylation [5, 6], was validated

using PyroMark Q24 Advanced (QIAGEN) amplification with a sequencing primer (5’-GG
GTTAGGTAAAAATGG-3’). The TXNIP DNA methylation level was calculated as the percent-

age of methylated cytosine using the height of the T and C peaks at the methylation site.

Statistical analysis

All statistical analyses were performed using JMP software (version 12.0; SAS Institute Inc.,

Cary, NC, USA). Normally distributed variables are presented as mean ± standard deviation

(SD). Continuous variables were compared across smoking habits using the Analysis of Vari-

ance (ANOVA) and Tukey-Kramer HSD tests. Categorical variables were compared using a χ2

test. The correlations between the TXNIP DNA methylation levels and current smoking status,

including the number of cigarettes per day, years of smoking, and the BI, were assessed using

Spearman’s rank correlation analysis, because all indices of smoking status were lognormally

distributed. Hypomethylation of the TXNIP gene was defined as frequencies of TXNIP gene

methylation that were below the median value (77.7%). Odds ratios (ORs) and 95% confidence

intervals (CIs) for hypomethylation of the TXNIP gene were estimated by a logistic regression

analysis. We calculated the ORs for hypomethylation of the TXNIP gene among those with

specific smoking habits using the never smokers as the reference group. Current smokers were

categorized according to the number of cigarettes per day (<20 and�20), years of smoking

(<35 and�35), and BI (<600 and�600). Current smokers were categorized based on the

median values of the number of cigarettes per day and the number of years of smoking. The lit-

erature defines subjects with BI� 600 as heavy smokers with associated increased risk for lung

cancer and metabolic syndrome [27]; therefore this value was used as the cut-off value for
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categorization of current smokers by BI. We calculated the ORs for hypomethylation of the

TXNIP gene by current number of cigarettes per day, years of smoking, and BI using the non-

smokers (never and ex-smokers) as a reference. We used sex, age, BMI, hemoglobin A1c (HbA1c),

high-density lipoprotein (HDL) cholesterol, alcohol consumption, and percentage of neutrophil as

confounding factors. A p-value of less than 0.05 was considered statistically significant.

Results

Table 1 shows the basic characteristics of study subjects according to smoking habits. Of 417

participants, 203 (48.7%) were never smokers, 149 (35.7%) were ex-smokers, and 65 (15.6%)

were current smokers. Current smokers were significantly younger and had significantly lower

serum levels of HDL cholesterol than did never smokers. Ex-smokers had significantly lower

serum levels of HDL cholesterol compared to never smokers.

Fig 1 shows the mean TXNIP DNA methylation levels according to smoking habits. The

mean TXNIP DNA methylation levels in current smokers (mean level ± SD: 75.3 ± 4.9%) were

significantly lower than those of never smokers (mean level ± SD: 78.1 ± 4.1%, p<0.001) and

those of ex-smokers (mean level ± SD: 76.9 ± 4.3%, p = 0.013). The TXNIP DNA methylation

levels in ex-smokers also were significantly lower than those of never smokers (p = 0.010).

Table 2 shows Spearman’s rank coefficients for the associations between TXNIP DNA

methylation levels and smoking status. The TXNIP DNA methylation levels were significantly

and negatively correlated with the number of cigarettes per day (rs = -0.187, p<0.001), num-

ber of smoking years (rs = -0.187, p<0.001), and BI (rs = -0.189, p<0.001). In men, the TXNIP
DNA methylation levels were negatively associated with the number of cigarettes per day (rs =

-0.210, p = 0.005), number of smoking years (rs = -0.221, p = 0.003), and BI (rs = -0.209,

p = 0.005); in women, these associations did not achieve statistical significance.

Table 3 shows the crude and multivariable-adjusted ORs and 95% CIs for hypomethylation

of the TXNIP gene according to smoking habits. Significantly higher crude ORs for TXNIP

Table 1. Characteristics of the study subjects according to smoking habits.

Never Ex Current p
n 203 149 65

Men, n (%) 30 (14.8) 106 (71.1) 44 (67.7) < 0.001b

Age (year)a 64.1 ± 10.0f 63.1 ± 9.1f 58.0 ± 9.7 < 0.001c

Body mass index (kg/m2)a 23.3 ± 3.5 24.1 ± 3.1 23.8 ± 3.3 0.065c

Hemoglobin A1c (%)a 5.7 ± 0.5 5.8 ± 0.6 5.8 ± 0.7 0.618c

LDL cholesterol (mg/dL)a 126.4 ± 30.9 123.0 ± 27.6d 134.1 ± 37.8 0.056c

HDL cholesterol (mg/dL)a 62.2 ± 14.4e,f 57.5 ± 13.1 53.6 ± 11.8 < 0.001c

Percentage of neutrophil (%)a 54.8 ± 8.2 54.8 ± 8.2 55.0 ± 7.5 0.977c

Alcohol consumption, n (%) Never 143 (70.4) 43 (28.9) 24 (36.9) < 0.001b

Ever 0 (0.0) 7 (4.7) 1 (1.5)

Current 60 (29.6) 99 (66.4) 40 (61.6)

Abbreviations: LDL, low-density lipoprotein; HDL, high-density lipoprotein.
a Mean ± SD.
b χ2 test.
c ANOVA.
d p< 0.05 (vs. Current smoker; Tukey-Kramer HSD tests).
e p< 0.01 (vs. Ex-smoker; Tukey-Kramer HSD tests).
f p< 0.01 (vs. Current smoker; Tukey-Kramer HSD tests).

https://doi.org/10.1371/journal.pone.0235486.t001
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DNA hypomethylation were observed in ex-smokers (OR, 1.88; 95% CI, 1.23–2.90) and cur-

rent smokers (OR, 3.72; 95% CI, 2.06–6.94) compared to never smokers. The multivariable-

adjusted ORs for TXNIP DNA hypomethylation were significantly higher in current smokers

compared to never smokers (OR, 2.09; 95% CI, 1.05–4.24).

Table 4 shows the crude and multivariable-adjusted ORs and 95% CIs for hypomethylation

of the TXNIP gene according to current number of cigarettes per day, number of years of

smoking, and BI. Significantly higher crude ORs for TXNIP DNA hypomethylation were

observed (compared to non-smokers) in current light smokers (number of cigarettes per day

<20), current heavy smokers (number of cigarettes per day�20), current smokers with years

of smoking <35, current smokers with years of smoking�35, and current smokers with

Fig 1. Comparison of TXNIP DNA methylation levels according to smoking habits. Boxplots (bold horizontal line:

mean; box: interquartile range; upper whisker: maximum value; lower whisker: minimum value) of TXNIP DNA

methylation levels in never smokers (n = 203), ex-smokers (n = 149), and current smokers (n = 65). �p< 0.05,
��p< 0.01 (Tukey-Kramer HSD tests).

https://doi.org/10.1371/journal.pone.0235486.g001

Table 2. Spearman’s rank correlation coefficients for the associations between TXNIP DNA methylation levels and smoking status.

Number of cigarettes per day Years of smoking Brinkman Index

n (%) rs p rs p rs p
Total 417 -0.187 < 0.001 -0.187 < 0.001 -0.189 < 0.001

Men 180 (43.2) -0.210 0.005 -0.221 0.003 -0.209 0.005

Women 237 (56.8) -0.044 0.499 -0.044 0.545 -0.044 0.499

Abbreviations: TXNIP, thioredoxin-interacting protein; rs, Spearman’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0235486.t002

PLOS ONE Association of smoking habits with TXNIP DNA methylation levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0235486 July 1, 2020 5 / 11

https://doi.org/10.1371/journal.pone.0235486.g001
https://doi.org/10.1371/journal.pone.0235486.t002
https://doi.org/10.1371/journal.pone.0235486


BI� 600. The multivariable-adjusted ORs for TXNIP DNA hypomethylation were signifi-

cantly higher (compared to those in non-smokers) in current smokers with years of smoking

�35 (OR, 2.95; 95% CI, 1.23–7.92) and in current smokers with BI�600 (OR, 2.28; 95% CI,

1.01–5.55).

Discussion

In this study, we showed that current smokers had significant DNA hypomethylation at a CpG

site (chr1: bp 145,441,552), which is located within the 3’-UTR of TXNIP, in leukocytes com-

pared to those in never and ex-smokers. Moreover, we observed that the TXNIP DNA hypo-

methylation was significantly associated with longer smoking histories and higher smoking

exposure (as assessed by years of smoking and BI, respectively). To our knowledge, this is the

first report demonstrating that smoking is associated with the TXNIP DNA hypomethylation

in a general population.

DNA methyltransferase 1 (DNMT1) catalyzes DNA methylation and plays an important

role in the process of DNA methylation. Satta et al. [28] demonstrated down-regulation of

DNMT1 expression in the frontal cortex of mice injected with nicotine. Therefore, the TXNIP
DNA hypomethylation by smoking may be caused by down-regulation of DNMT1 expression

due to nicotine exposure. Other components of cigarette smoke also have been reported to be

Table 3. Odds ratios (ORs) and 95% CIs for hypomethylation of the TXNIP gene according to smoking habits.

n Crude Multivariable adjusteda

Hypomethylation / Total OR (95% CI) OR (95% CI)

Never 80 / 203 1.00 1.00

Ex 82 / 149 1.88 (1.23–2.90) 1.13 (0.66–1.93)

Current 46 / 65 3.72 (2.06–6.94) 2.09 (1.05–4.24)

Abbreviations: TXNIP, thioredoxin-interacting protein; 95% CI, 95% confidence interval.
aAdjusted for sex, age, BMI, HbA1c, HDL cholesterol, alcohol consumption, and percentage of neutrophils.

https://doi.org/10.1371/journal.pone.0235486.t003

Table 4. Odds ratios (ORs) and 95% CIs for hypomethylation of the TXNIP gene according to smoking status.

n Crude Multivariable adjusteda

Hypomethylation/Total OR (95% CI) OR (95% CI)

Number of cigarettes per day

Non-smokers 162 / 352 1.00 1.00

1–19 18 / 27 2.35 (1.05–5.61) 1.87 (0.81–4.58)

� 20 28 / 38 3.28 (1.60–7.30) 2.02 (0.91–4.77)

Years of smoking

Non-smokers 162 / 352 1.00 1.00

1–34 23 / 35 2.25 (1.10–4.80) 1.37 (0.62–3.13)

� 35 23 / 30 3.85 (1.69–9.92) 2.95 (1.23–7.92)

Brinkman Index

Non-smokers 162 / 352 1.00 1.00

1–599 18 / 28 2.11 (0.96–4.88) 1.65 (0.72–3.95)

� 600 28 / 37 3.65 (1.74–8.40) 2.28 (1.01–5.55)

Abbreviations: TXNIP, thioredoxin-interacting protein; 95% CI, 95% confidence interval.

Non-smokers included never and ex-smokers.
aAdjusted for sex, age, BMI, HbA1c, HDL cholesterol, alcohol consumption, and percentage of neutrophils.

https://doi.org/10.1371/journal.pone.0235486.t004
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associated with altered DNA methylation. Based on genome-wide analysis of DNA methylation

in relation to smoking, Zhu et al. [23] hypothesized that exposure to naphthalene, a byproduct

of cigarette smoke, alters DNA methylation. Besingi et al. reported that changes in DNA meth-

ylation are not caused by the basic chemical components of tobacco, but from the burnt prod-

ucts generated during the smoking process. Several of the chemical components contained in

cigarette smoke are known to be key factors in DNA methylation changes [28], but the mecha-

nistic details of the association of smoking with DNA methylation remain unclear.

Previous studies have reported association of TXNIP DNA methylation levels and mRNA

expression levels [29]. They demonstrated that TXNIP DNA methylation levels were inversely

correlated with TXNIP mRNA expression. Furthermore, it has been reported that the 3’-UTR

region of the TXNIP mRNA contains regulatory regions that exert post-transcriptional effects

on gene expression [30]. Therefore, we infer that DNA hypomethylation within the 3’-UTR of

TXNIP may contribute to increases in mRNA levels of TXNIP. However, no previous study

has been published on whether TXNIP mRNA levels are altered in smokers compared to non-

smokers. Meanwhile, a previous study reported that the p38 mitogen-activated protein kinase

(MAPK) pathway up-regulated TXNIP expression through increasing TXNIP mRNA [31]. In

addition, an in vivo study demonstrated that p38 was significantly increased by exposure to

tobacco smoke, indicating the activation of MAPK pathway [32]. Therefore, we speculate that

tobacco smoke may activate MAPK pathway and then increase mRNA levels of TXNIP in cur-

rent smokers. One of the mechanisms underlying this biological pathway is likely involved in

DNA hypomethylation in TXNIP. TXNIP down-regulates the expression and function of TXN

[3]. Notably, an animal model study found that ROS induce the dissociation of TXNIP from

TXN and allows TXNIP to bind to NOD-like receptor protein 3 (NLRP3), leading to NLRP3

inflammasome activation under conditions of increased oxidative stress [33]. The signaling

pathway controlling the NLRP3 inflammasome is a major mediator of immune response fol-

lowing exposure to cigarette smoke [34]. We suggest that the TXNIP DNA hypomethylation

associated with smoking is involved in the development of smoking-related pathologies such

as cancer and cardiovascular diseases, and is mediated through the TXNIP-NLRP3

interaction.

Current smokers with longer smoking histories and higher smoking exposure had signifi-

cantly lower TXNIP DNA methylation compared to non-smokers. Previous literature also has

reported associations between DNA methylation and smoking status [35, 36]. Specifically,

some CpG sites exhibit decreased methylation in current smokers, with decreasing methyla-

tion seen with increasing smoking exposure [35]. Consistent with our results, another publica-

tion reported hypomethylation of various genes in current smokers, with the DNA

methylation levels showing an inverse correlation with the number of pack-years [36]. On the

other hand, the present study did not detect a significant association between the degree of

TXNIP DNA methylation and the current number of cigarettes per day. We suggest that hypo-

methylation of the TXNIP gene is more strongly affected by years of smoking and lifetime ciga-

rette consumption than by the current amount of cigarette smoking.

Our results showed that the TXNIP DNA methylation levels in ex-smokers were signifi-

cantly higher than those in current smokers. This finding suggests that TXNIP DNA hypo-

methylation may be counteracted by smoking cessation. Several epidemiological studies have

investigated the effects of smoking cessation on DNA methylation [22, 37]. Those studies

showed that smoking-associated decreases in DNA methylation at some CpG sites could be

reversed by smoking cessation, while other sites remained differentially methylated. There is

evidence that smoking cessation leads to improved prognoses in various pathologies such as

cancer, cardiovascular disease, and respiratory disease [38]. Restoration of TXNIP DNA meth-

ylation by smoking cessation may contribute to the beneficial effects of quitting smoking.
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Several epidemiological studies have identified associations between DNA hypomethylation

in TXNIP and T2DM [7–10]. The authors of those studies hypothesized that changes in DNA

methylation of the TXNIP gene might lead to failure of glucose homeostasis and a resulting

increased risk of T2DM. In fact, the TXNIP protein has been reported to inhibit glucose

uptake into fat and muscle and to mediate pancreatic β-cell death through apoptosis [4].

Smoking is a known risk factor for T2DM [39, 40]. The TXNIP DNA hypomethylation may be

one of the molecular mechanisms whereby smoking contributes to an increased risk of T2DM.

This study has several limitations. First, this work cannot address the possible causal rela-

tionship between TXNIP DNA methylation levels and smoking habits, given that this analysis

was designed as a cross-sectional study. Additional longitudinal studies are needed to elucidate

the possible causality of this relationship. Second, although we found that current smokers

decreased levels of TXNIP DNA methylation compared to those in never and ex-smokers, the

difference between two groups is so small (less than 3%). For example, the previous literature

also estimated the difference in DNA methylation levels at the CpG site in TXNIP in patients

with controlled and poorly controlled T2DM compared to with individuals free of diagnosed

T2DM [9]. They reported that DNA methylation levels is altered by only about 5% among con-

trolled and poorly controlled T2DM patients compared to those no T2DM. Another previous

research has also reported that poorly controlled T2DM group was hypomethylated compared

with good controlled T2DM group with a mean TXNIP DNA methylation levels difference of

approximately 3% [10]. Slight differences of TXNIP DNA methylation have also been reported

in another paper [7]. Therefore, we consider that even small differences in TXNIP DNA meth-

ylation between different smoking habits may be clinical significant. Third, we measured DNA

methylation in peripheral blood leukocytes. As methylation levels may be tissue specific, the

associations that we found in the present study may not be generalizable to other tissues. How-

ever, a previous study reported that smoking alters DNA methylation patterns in lung tissue, a

change that also was detectable in peripheral blood DNA [41]. Fourth, we need to consider the

type of white blood cells (WBCs) used in our analysis, because DNA methylation may differ

depending on the type of WBC. In the present study, we attempted to address this issue by

adjusting for the percentage of neutrophils in our multivariable analysis. Several DNA methyl-

ation studies in peripheral blood also perform statistical analyses using percentage of neutro-

phil as confounding factors [42, 43]. In addition, the WBC differential count is not an

estimated value, it is actually measured from each blood sample by an automated hematology

analyzer LH755 (Beckman Coulter, USA). Fifth, the data on smoking history were based on

patient recollections of smoking. Although those data were obtained by trained public health

nurses at the health examination, criticism about the reliability of data could not be dismissed.

In conclusion, we found that leukocytes from current smokers had decreased levels of

TXNIP DNA methylation compared to those from never and ex-smokers. Long-term smoking

and high smoking exposure also were associated with DNA hypomethylation in TXNIP. More-

over, DNA methylation of the TXNIP gene may be reversed by smoking cessation. Further lon-

gitudinal studies using a larger population would clarify the possible causal nature of these

associations.

Supporting information

S1 Fig. The PCR-amplified DNA sequencing and the analyzed CpG site position. A part of

3’-untranslated region (3’-UTR) of TXNIP locus. The PCR-amplified DNA sequencing is in

bold type. Arrows show PCR primers. The number 1 represents the analyzed CpG site.
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