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Abstract: Heat sinks are commonly used for cooling electronic devices and high-power electrical
systems. The ever-increasing performance of electronic systems together with miniaturization calls
for better heat dissipation. Therefore, the heat sink materials should not only have high thermal
conductivities, low densities, and cost, but also have coefficients of thermal expansion matching
to those of semiconductor chips and ceramic substrates. As traditional materials fail to meet these
requirements, new composite materials have been developed with a major focus on metal matrix com-
posites (MMCs). MMCs can be tailored to obtain the desired combination of properties by selecting
proper metallic matrix and optimizing the size and type, volume fraction, and distribution pattern
of the reinforcements. Hence, the current review comprehensively summarizes different studies
on enhancing the thermal performance of metallic matrices using several types of reinforcements
and their combinations to produce composites. Special attention is paid to the types of commonly
used metallic matrices and reinforcements, processing techniques adopted, and the effects of each of
these reinforcements (and their combinations) on the thermal properties of the developed composite.
Focus is also placed on highlighting the significance of interfacial bonding in achieving optimum
thermal performance and the techniques to improve interfacial bonding.

Keywords: metal matrix composite; heat-sink; aluminum matrix composite; reinforcement

1. Introduction

Heat sinks are commonly used for cooling electronic devices and high-power electrical
systems [1]. Chingulpitak et al. [2] and Ahmed et al. [3] defined heat sink as “a type of heat
exchanger used as a cooling system in electronic component”. Pawar et al. [4] consider
heat sink as an “environment or object that absorbs and dissipates heat from another object
using thermal contact (either direct or radiant)”. The advantages of the heat sink are low
initial cost, simple installation, and a reliable manufacturing process [2,5]. They are widely
used in cooling of electronic equipment and/or components including microprocessors,
power modules, lasers, light-emitting diodes (LEDs), plasma and liquid crystal displays
(LCDs and thermoelectric coolers (TECs) [4,6,7].

Microelectronics systems find wide application in today’s world, ranging from digital
watches to supercomputers [8]. The incessant growth in microelectronic systems has been
driven by an insatiable quest for ‘faster-smaller-cheaper’ devices [9,10]. As the speed and
operating frequency of the chip increases, the power dissipation goes up [3,8]. A reduction
in ‘interconnection-delays’ by densely packing these chips and also hundreds of millions
of transistors on a very small area on each chip enhances the performance further [8].
This comes with a penalty of an increase in the power density at the chip and module
levels [8,11–17]. Therefore, the speed increases and the volume reduces at the expense of
heat generation [3,6,8,14–16,18]. The temperature of the device will rise if the heat is not
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dissipated at a rate greater than the generation rate. Consequently, the effective life of
the component is reduced [3,4,6,11,14,19,20]. In total, 55% of microelectronics failure are
reported to be due to higher operating temperatures [1,11,19]. The effective containment
of the operating temperature within the design limits can ensure a longer service life and
reliable performance [4,12]. Therefore, the demand for improved thermal management
solutions in microelectronic packaging has received intense research focus.

Figure 1 shows a schematic arrangement of the high-performance processor package.
The package consists of an integrated heat spreader that is attached adhesively or soldered
to the chip using a thermal interface material. The heat spreader spreads the heat from
the chip to a wider area heat sink through a thermal interface material. Finally, the heat is
dissipated from the heat sink fins to the surroundings [21].
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The electronic systems have been continuously evolving following two important
trends, namely ‘enhanced performance’ and ‘miniaturization’ [12,22]. The enhancement
in performance is achieved at the expense of higher power densities, leading to a higher
heat generation rate. To dissipate heat at a greater rate, the heat transfer area of the
heat sink may be increased [23]. However, the resulting increase in size and weight is
against the miniaturization trend [23,24] and can induce mechanical stresses in the attached
components [12,23,24]. Moreover, the end cost may be higher [23]. Therefore, the heat sink
materials should not only have high thermal conductivities [3,7,11,12,21] but also be lighter
and cheaper [4,7,12,15]. Since the semiconductor chips and ceramic substrate have low
coefficients of thermal expansion (i.e., between 3 × 10−6 K−1 and 7 × 10−6 K−1) [11], heat
sinks must also match those [6,7,11,21]. Traditionally, Cu, Al, Cu-Mo, and Cu-W blends;
Cu-Mo-Cu and Cu-Invar (64Fe-36Ni) laminates; and Invar and Kovar (53Fe-29Ni-17Co)
alloys have been used as heat sink materials [15,25]. Al and Cu have an unacceptably
high coefficient of thermal expansion, which induces thermal stresses, leading to brittle
fracture of ceramic substrates. Tungsten and Molybdenum have high densities while
Invar and Kovar alloys have poor thermal conductivity and high cost. As traditional
materials fail to meet all the requirements, new composite materials have been developed,
with a major focus on metal matrix composites. Hence, the focus of this review paper is
to comprehensively summarize the types of commonly used reinforcements, processing
techniques adopted, and the effects of each of these reinforcements (and their combinations)
on the thermal properties of the developed composite.
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2. Metal Matrix Composites

Metal matrix composites (MMCs) are a type of composite in which, typically, the
ceramic reinforcements are embedded in a metallic or alloy matrices [22,26–28]. MMCs
can be tailored to combine metallic properties (high thermal conductivity, small density,
toughness, ductility) with ceramic characteristics (low coefficient of thermal expansion,
high strength and modulus), making them the most appropriate candidate as a heat sink
material [11,22,25–34]. The desired combination of thermal conductivity and coefficient of
thermal expansion can be obtained by optimizing the size and type, volume fraction, and
distribution pattern of the reinforcements [31,34,35].The different types of matrix materials
and reinforcements used for heat sink applications are presented in Figure 2.

Materials 2021, 14, x FOR PEER REVIEW 3 of 32 
 

 

2. Metal Matrix Composites 
Metal matrix composites (MMCs) are a type of composite in which, typically, the 

ceramic reinforcements are embedded in a metallic or alloy matrices [22,26–28]. MMCs 
can be tailored to combine metallic properties (high thermal conductivity, small density, 
toughness, ductility) with ceramic characteristics (low coefficient of thermal expansion, 
high strength and modulus), making them the most appropriate candidate as a heat sink 
material [11,22,25–34]. The desired combination of thermal conductivity and coefficient of 
thermal expansion can be obtained by optimizing the size and type, volume fraction, and 
distribution pattern of the reinforcements [31,34,35].The different types of matrix materi-
als and reinforcements used for heat sink applications are presented in Figure 2. 

 
Figure 2. Different types of matrix materials and reinforcements used for heat sink applications. 

2.1. Copper Matrix Composites 
Copper is the most widely used matrix material for heat sink applications due to its 

high thermal conductivity (400 Wm−1K−1), high melting temperature, and good weldability 
[36–45]. To overcome the high coefficient of thermal expansion of copper, different rein-
forcements have been incorporated in the copper matrix, namely diamond particles 
[36,38–41,44–67], graphite (particles, fibers, or foam) [44,68–70], carbon fibers (CFs) 
[39,54,71–73], carbon nanotubes (CNTs) [74,75], SiC (particles or fibers) [37,71,76,77], tung-
sten (particles, fibers, or wires) [42,43,71,78,79], molybdenum particles [80], and a hybrid 
of Y2O3 and WO3 particles [81]. 

The achievement of desired thermal properties from the copper matrix composite is 
determined by the interface between the matrix and the reinforcement [38,46,58,67,82–84]. 
The formation of a weak interfacial bond due to the non-wettability of liquid copper and 
absence of chemical reactivity with carbon-based reinforcements (diamonds, carbon 
fibers, and graphite) results in high thermal resistance at the interface. Consequently, the 
thermal conductivity of such composites is low [38,40,41,44,50,53–65,67,70,76,84–91]. Two 
approaches have been adopted in the literature to improve interfacial bonding: alloying 
copper matrix and coating reinforcements with carbide-forming elements. 

2.1.1. Diamond Reinforcements 
Diamond-reinforced copper matrix composites have attracted the most interest of 

researchers due to their high thermal conductivity (up to 2200 Wm−1K−1) [36,41]) and low 
coefficient of thermal expansion (2.3 × 10−6 K−1 [41]). To take full advantage of its excellent 
thermal properties, the copper matrix was primarily alloyed with carbide-forming 
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2.1. Copper Matrix Composites

Copper is the most widely used matrix material for heat sink applications due to its
high thermal conductivity (400 Wm−1K−1), high melting temperature, and good weld-
ability [36–45]. To overcome the high coefficient of thermal expansion of copper, dif-
ferent reinforcements have been incorporated in the copper matrix, namely diamond
particles [36,38–41,44–67], graphite (particles, fibers, or foam) [44,68–70], carbon fibers
(CFs) [39,54,71–73], carbon nanotubes (CNTs) [74,75], SiC (particles or fibers) [37,71,76,77],
tungsten (particles, fibers, or wires) [42,43,71,78,79], molybdenum particles [80], and a
hybrid of Y2O3 and WO3 particles [81].

The achievement of desired thermal properties from the copper matrix composite is
determined by the interface between the matrix and the reinforcement [38,46,58,67,82–84].
The formation of a weak interfacial bond due to the non-wettability of liquid copper
and absence of chemical reactivity with carbon-based reinforcements (diamonds, carbon
fibers, and graphite) results in high thermal resistance at the interface. Consequently, the
thermal conductivity of such composites is low [38,40,41,44,50,53–65,67,70,76,84–91]. Two
approaches have been adopted in the literature to improve interfacial bonding: alloying
copper matrix and coating reinforcements with carbide-forming elements.

2.1.1. Diamond Reinforcements

Diamond-reinforced copper matrix composites have attracted the most interest of
researchers due to their high thermal conductivity (up to 2200 Wm−1K−1) [36,41]) and
low coefficient of thermal expansion (2.3 × 10−6 K−1 [41]). To take full advantage of
its excellent thermal properties, the copper matrix was primarily alloyed with carbide-
forming elements, such as Zr, Cr, B, and Ti. The thermal conductivity of the composite
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first increases and then decreases with an increasing content of Zr, Cr, B, and Ti as shown
in Figure 3. He et al. [38] reported a maximum thermal conductivity of 677 Wm−1K−1 at
1 wt% Zr. Li et al. [65] and Wang et al. [46] reported a maximum thermal conductivity of
930 Wm−1K−1 at 0.5 wt% Zr. Bai et al. [62] found that the thermal conductivity of composite
approaches 660 Wm−1K−1 at 5 wt% B. Weber et al. [84] reported maximum thermal
conductivities of 600 and 700 Wm−1K−1 at 0.005 at% and 2.5 at% Cr and B, respectively.
Che et al. [54] obtained a maximum thermal conductivity of 670 Wm−1K−1 by alloying
the matrix with 3 vol% Ti. It was observed that the concentration of alloying elements
should be optimized to achieve the maximum value of thermal conductivity as shown in
Figure 3. At lower concentrations, inadequate interfacial bonding due to the small size of
interfacial carbides results in inferior thermal conductivity. At higher concentrations, the
thermal resistance of the interfacial carbide adversely affects the thermal conductivity of the
composite [38,46,54,65,84]. Moreover, the excess alloying elements will remain in the matrix
unreacted and deteriorate the thermal conductivity of the composite [40,53,54,60,64,84].
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The secondary approach to improve the interfacial bond between diamond particles
and the copper matrix is the diamond surface modification. The carbide-forming elements,
such as B, Ti, W, Cr, Mo, or Si, are deposited on the surface of diamond by magnetron sput-
tering [45,49,60,63], the molten salt method [40,41,48,53,67], the diffusion method [36,58,59],
vacuum evaporation deposition [91], and electroless chemical deposition [52]. This coating
serves as an intermediate layer that not only strengthens the interface between diamond
and copper but also mitigates the degree of graphitization of diamond particles at elevated
temperatures [53]. Figure 4 not only shows that the thermal conductivity improves with
the application such coatings, but also that the larger thicknesses of those coatings can
have an adverse effect. A thermal conductivity of 300 Wm−1K−1 for copper/diamond com-
posite reinforced with (1.9 µm thick) Cu-0.5B-coated diamond particles was reported [45].
Maximum thermal conductivities of 811 [60] and 493 Wm−1K−1 [67] were reported for
copper matrix composites reinforced with diamond particles with 220- and 285-nm-thick
Ti coating, respectively. Abyzov et al. [36,58,59] observed that the thermal conductivity of
the copper/diamond composite increases from 500 Wm−1K−1 at 500-nm-thick tungsten
coating on diamond reinforcement to 900 Wm−1K−1 with the reduction in the coating
thickness to 100 nm. Kang et al. [40] synthesized a composite yielding a high thermal
conductivity of 658 Wm−1K−1 by applying 1-µm-thick WC coating on the diamond partic-
ulate reinforcement. Some researchers have reported thermal conductivities of 562 [41] and
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596 Wm−1K−1 [53] accompanied with coefficients of thermal expansions of 7.8 × 10−6 K−1

and 7.15 × 10−6 K−1 with Cr7C3- and Mo2C-coated diamond particulate-reinforced copper
matrix composites. Zhu et al. [92] reinforced Si-coated diamond particles into copper ma-
trix to obtain a thermal conductivity of 535 Wm−1K−1. Cho et al. [93] reinforced TiC-coated
diamond particles into copper matrix to obtain a thermal conductivity of 557 Wm−1K−1.
Chang et al. [49] demonstrated that though the intermediate carbide layer can potentially
improve the interfacial thermal conductance, the large thickness and low crystallinity of the
intermediate layer will have an adverse effect on the thermal conductivity. The increase in
thickness from 10 to 20 nm of the intermediate TiC layer deposited on a diamond substrate
at room temperature was found to reduce the interfacial thermal conductance from 29
to 19 MW/(m2·K). On the other hand, an increase in the coating deposition tempera-
ture (10 nm thickness) to 873 K increased the interfacial thermal conductance from 29 to
85 MW/(m2·K) due to the transformation of the intermediate TiC layer from an amorphous
to crystalline state.
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Alternatively, some studies [61] have combined both the techniques by alloying copper
matrix with Ti and modifying the diamond surface with a thin Ti coating. The particle
composite system used to homogeneously blend Cu-Ti powders caused the finer Ti particles
to attach to the coarse Cu powders. The formation of the diamond/TiC/Ti/CuTi/Cu
structure at the interface resulted in a thermal conductivity of 630 Wm−1K−1. In a similar
study involving alloying matrix and coating diamond with Cr, a thermal conductivity of
810 Wm−1K−1 was achieved [91]. In an attempt to avoid the usage of carbide-forming
elements, diamond particles were coated with copper nanoparticles [39], but the maximum
thermal conductivity that could be achieved was 460 Wm−1K−1. Some researchers have
adopted a new technique of applying a dual layer coating on diamond particles with
W [48,64] or Mo [63] as the inner layer and Cu as the outer layer. The resulting thermal
conductivities were reported as 721, 661, and 351 Wm−1K−1, respectively. The advantages
of this technique are a uniform distribution of diamond particles, lowering of the sintering
temperature, and a very strong interfacial bond.

2.1.2. Graphite Reinforcements

High thermal conductivity (>900 Wm−1K−1), negative coefficient of thermal expan-
sion (−1.45 × 10−6 K−1), and low cost have made graphite fibers a potential reinforcement.
The enhanced machinability of the composite is an additional advantage [70]. To improve
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interfacial bonding, they were coated with Cr. The inplane thermal conductivities and
coefficients of thermal expansion were reported to range from 380–412 Wm−1K−1 and
6.1–9.4 × 10−6 K−1 [70]. In another study [44], the incorporation of graphite flakes resulted
in a maximum thermal conductivity of 560 Wm−1K−1 perpendicular to the pressing direc-
tion. To obtain isotropic properties, W-coated graphite particles were used as reinforcement,
but the resulting thermal conductivity reported was just 158 Wm−1K−1 [69]. A composite
presenting a combination of bulk thermal conductivity and coefficient of thermal expan-
sion (i.e., around 342 Wm−1K−1 and 7.4 × 10−6 K−1, respectively) suitable for heat sink
application was obtained by infiltrating liquid copper into graphite foam [94].

2.1.3. Carbon Fiber Reinforcements

Carbon fibers have a thermal conductivity as high as 900 W/mK and a negative
coefficient of thermal expansion (−0.6 × 10−6 K−1) along the fiber orientation. They were
used as reinforcements to synthesize copper matrix composites for thermal management
applications. Thermal conductivities of 220 and 120 Wm−1K−1 of unidirectional composites
in the longitudinal and transverse direction, respectively, were reported by Korab et al. [72].
In a similar study [39], optimum thermal conductivities of 330 and 160 Wm−1K−1 in
the longitudinal and transverse directions, respectively, were reported by incorporating
35% volume fraction pitch-type carbon fibers (K6371T) in the copper matrix. In order to
overcome anisotropy in properties, cross-ply composites were fabricated, but the thermal
conductivities obtained in the in-plane and transverse directions (i.e., 150 and 50 Wm−1K−1,
respectively) were below 300 Wm−1K−1 [95]. Novel hydrothermal sintering successfully
yielded an approximate isotropic thermal conductivity of 300 Wm−1K−1 with 40% volume
fraction of copper-coated carbon fibers [73].

2.1.4. Carbon Nanotubes (CNTs)

CNTs possess outstanding thermal conductivity (3000–6000 Wm−1K−1) with an ex-
traordinarily low coefficient of thermal expansion (0× 10−6 K−1), which can be exploited to
achieve enhanced thermal performance. Unfortunately, retaining the thermal conductivity
of matrix metal while incorporating CNTs has been a great challenge due to the inho-
mogeneous dispersion of CNTs. The formation of such clusters deteriorates the thermal
conductivity of the composite [74]. A composite exhibiting a thermal conductivity and
a coefficient of thermal expansion of 395 Wm−1K−1 and 5 × 10−6 K−1, respectively, was
successfully fabricated by filling copper in the pores of the macroscopic CNT [75].

2.1.5. Graphene

Graphene possesses outstanding in-plane thermal conductivity in the range of
1000–5300 Wm−1K−1, and a through-plane thermal conductivity in the range of
5–20 Wm−1K−1. Moreover, it possesses a negative coefficient of thermal expansion of
−1.28 × 10−6 to −8 × 10−6 K−1 [96,97]. Though such outstanding properties make it an
ideal reinforcement for MMCs intended for heat sink applications, its proper alignment
is essential for an enhancement of its thermal performance. A thermal conductivity of
396 Wm−1K−1 was reported by reinforcing copper matrix with 0.3 wt% graphene by
electrostatic self-assembly and powder metallurgy [98]. Chu et al. [96,97] developed an
effective method to obtain copper matrix composites with highly aligned graphene rein-
forcements by using a vacuum filtration process followed by spark plasma sintering (SPS).
Consequently, a copper matrix composite with 30 vol % graphene nanosheets yielded an
in-plane thermal conductivity of 458 Wm−1K−1 along with a low through-plane coefficient
of thermal expansion of 6.2 × 10−6 K−1 [97]. In another study [96], 35 vol% graphene nano-
platelet reinforcement lead to a higher in-plane thermal conductivity of 525 Wm−1K−1.
Graphene nano-sheets (1 wt%) when added to Cu/WC-TiC-Co composite improved its
thermal conductivity from 190 Wm−1K−1 to 350 Wm−1K−1 [99]. The powder mix was
coated with copper to ensure good interfacial bonding.
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2.1.6. Silicon Carbide (SiC)

SiC possess a thermal conductivity and coefficient of thermal expansion of
200–300 Wm−1K−1and 4.5 × 10−6 K−1, respectively. Only a few researchers have focused
on investigating the appropriateness of using SiC as a heat sink material. A maximum
achieved thermal conductivity of 400 Wm−1K−1was reported for a composite with 40%
volume fraction SiC reinforcements [37]. Since SiC is unstable in copper at high temper-
atures, it is generally coated with W, Cr [76], and Mo [77]. A thermal conductivity of
306 Wm−1K−1 with a coefficient of thermal expansion of 11 × 10−6 K−1 was reported with
Mo-coated SiC particle inclusion in copper matrix [77].

2.1.7. Metal Particles

Tungsten (W) is specifically used as a reinforcement in Cu [42,43,78,79] or
CuCrZr [36,43,71,100] matrix for heat sinks subjected to high heat flux. Since the com-
posite is subjected to elevated temperatures, it must possess structural, mechanical, and
thermal properties. The CuCrZr matrix composites reinforced with 30% and 50% vol-
ume fraction of W particles exhibited stable thermal conductivities of around 300 and
240 Wm−1K−1, respectively, over a temperature range of 300 to 600 ◦C [71]. The coefficient
of thermal expansion of those composites was also found to stabilize in the range of 13.3
to 14.4 × 10−6 K−1, and 9.7 to 10.3 × 10−6 K−1 with 30% and 50% volume fraction W
particle reinforcements, respectively, over a temperature range of 150 to 550 ◦C. In an-
other study, a composite with 60 wt.%W–40 wt.% Cu showed stable thermal conductivity
(260–240 Wm−1K−1) over a temperature ranging from room temperature to 1000 ◦C [78].

Molybdenum (Mo) as a reinforcement has not received much research attention.
Chen et al. [80] reported a thermal conductivity of 270 Wm−1K−1 with 55% volume fraction
Mo/Cu matrix composite.

2.1.8. Metal Oxides

Metal oxides as reinforcements have also been the least explored. Das et al. [81] used
Y2O3 and WO3 to synthesize Y2W3O12 hybrid powders. The thermal conductivities of
all the composites with 40% to 70% volume fraction Y2W3O12 reinforcements were below
300 Wm−1K−1.

Figure 5 presents an overview of the effectiveness of various reinforcements in im-
proving the thermal conductivity of copper matrix composites. It can be observed that, in
general, diamond particles serve as an effective reinforcement to significantly improve the
thermal conductivity as compared to other reinforcements. Especially, the W coating on
diamond particles proved to be consistently effective in rendering high thermal conductiv-
ity to the composites as evidenced from several studies [36,40,48,55,56]. Moreover, Zr is
observed to be an effective carbide-forming element for alloying copper matrix. On the
contrary, a general reduction in the thermal conductivity of the composite was observed
compared to that of matrix material, with the incorporation of carbon fibers, CNT, W, and
Mo reinforcements. However, a minimal improvement was observed in a plane where
graphene reinforcements were aligned.

Figure 6 presents an overview of the effectiveness of various reinforcements in
reducing the coefficient of thermal expansion of copper matrix composites. It can be
observed that, in general, diamond particles serve as an effective reinforcement to sig-
nificantly reduce the coefficient of thermal expansion as compared to other reinforce-
ments [41,53,59–61,63,65,84]. The improved reinforcement–matrix interfacial bonding due
to the alloying of copper matrices [65,84] and/or by the surface metallization of diamond
reinforcement [41,53,59,60,63] with carbide-forming elements led to this improvement.
Especially, Ti as a coating on diamond particles [60] and/or as an alloying element in
copper matrix [61] proved to be effective in achieving a desired reduction in the coefficient
of thermal expansion.
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2.2. Aluminum Matrix Composites (AMCs)

Aluminum, being lighter, has a high specific thermal conductivity, which makes it the
leading matrix material for heat sink composites in automotive and aerospace electronics,
and also in portable electronic devices [101–106]. However, the high coefficient of thermal
expansion (~23 × 10−6 K−1) of aluminum is compensated by reinforcement with carbides
(SiC [33,101,107–112], B4C [105]), nitride (BN [107,113], Si3N4 [114], AlN [111,115]), ox-
ides (Al2O3 [107]), diamond [102,106,116–126], graphite flakes [68,127–129], and carbon
fibers [39,130–133].

2.2.1. Carbide, Nitride, and Oxide reinforcements

SiC is the most commonly used carbide reinforcement for aluminum matrix com-
posites. Saraswati et al. [111] achieved an acceptable coefficient of thermal expansion
(7 × 10−6 K−1) along with a low thermal conductivity (160 Wm−1K−1). Zhang et al. [112]
achieved an acceptable coefficient of thermal expansion (7.3 × 10−6 K−1) with 73 vol%
SiC particle-reinforced Al-Si alloy matrix. However, the resulting AMC suffered profound
thermal fatigue damage as a result of thermal cycling. Schobel et al. [33] focused on the
effect of void kinetics on the development of internal stresses and the resulting macroscopic
thermal expansion behavior during thermal cycling of pure aluminum and Al-Si alloy
matrix reinforced with SiC particles. The thermal fatigue damage was more profound
in pure aluminum matrix than in Al-Si alloy matrix. Elomari et al. [109] demonstrated
that the preoxidation of SiC can enhance the thermal performance of the composite at
elevated temperatures. The enhanced performance was attributed to enhancement in the
volume fraction of the ceramic phase from 47 to 55% due to the formation of a silicion oxide
layer on its surface. The reinforcement of Al-Si alloy matrix with bimodal SiC particles
resulted in enhanced thermal conductivity of the composite [110]. The increment in the
volume fraction of finer particles reduces the micro-pores and sintering time. This favors
the formation of new phases (Al9Si and Al3.21 Si0.47), which contributes to the increment
of the thermal conductivity. The maximum thermal conductivity (235 Wm−1K−1) was
reported at 45 vol% of finer SiC particles (i.e., 0 vol% larger SiC particles).

Manivannan et al. [107] developed AMCs reinforced with micron-sized 5 vol% cubic
boron nitride (CBN), SiC, and Al2O3. A comparison of their thermal performance dis-
covered that the CBN reinforcement yielded enhanced thermal conductivity, although
the value remained relatively low for most applications. In another study, Manivan-
nan et al. [113] reinforced AA (AA6061 T6) with micron-sized CBN particles. An improved
thermal conductivity compared to the base alloy using a pin-fin apparatus was reported.
Though CBN is considered to be one of the best conductors and is an abrasive, its potential
as an efficient reinforcement to enhance the thermo-mechanical properties of AMCs has not
been fully explored. The B4C and AlN-reinforced aluminum composites have not attracted
much research focus. Tayebi et al. [105] reported the coefficient of thermal expansion
to be 8 × 10−6 K−1 with Al/25%B4C composite. Zhang et al. [115] reported a thermal
conductivity and coefficient of thermal expansion of 130 Wm−1K−1 and 11.2 x10−6 K−1

with Al/50% AlN composite.
The efforts to develop aluminum nanocomposites for heat sink application is scarce.

Matli et al. [114] fabricated Al/Si3N4 nanocomposite through the powder metallurgy route
with subsequent microwave sintering and hot extrusion. A coefficient of thermal expan-
sion of 19.3 × 10−6 K−1 (reduction by 17.2%) was reported. Reddy et al. [101] fabricated
Al/SiC nanocomposites through a similar route. A coefficient of thermal expansion of
19.2 × 10−6 K−1 (reduction by 17.6%) was reported. In both instances, the resulting coeffi-
cient of thermal expansion was above the acceptable range to meet market requirements.

2.2.2. Carbon-Based Reinforcements

Diamond forms weak interfacial bonds with Al matrix. Alloying matrix material with
a small amount of Si was found to form SiC at the matrix–diamond interface. A thermal
conductivity of 375 Wm−1K−1 and a coefficient of thermal expansion of 7 × 10−6 K−1
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was achieved with AlSi/diamond (60 vol%) composite through the gas pressure infil-
tration route (GPI), where SiC was not formed at the interface [119]. The formation of
a brittle, hydrophilic interfacial phase Al4C3 instead of SiC was considered to serve as
a thermal barrier. To prevent the formation of Al4C3 and to improve interfacial bond-
ing, the diamond particles were coated with SiC [121], TiC [116], Ti [123], and W [124].
A thermal conductivity of 365 Wm−1K−1 in combination with a low coefficient of thermal
expansion of 5.69 × 10−6 K−1 was reported with 60 vol% TiC-coated diamond particle
reinforcement [116]. Yang et al. [123] fabricated AMC with Al-Si alloy matrix reinforced
with Ti-coated diamond particles by gas pressure infiltration. The coefficient of thermal
expansion was found to range between 5.07 × 10−6 K−1 and 9.27 × 10−6 K−1 with 50 vol%
diamond particle reinforcement [123]. It is to be noted that the addition of a small amount
of Si to Al reduces the propagation of thermal fatigue damage and helps to provide higher
thermal stability in AMC [118]. Che et al. [124] reported an outstanding thermal conductiv-
ity of 620 Wm−1K−1 with gas pressure-infiltrated W-coated diamond-reinforced AMC.

Significant progress was realized when Ruch et al. [102] established the superior-
ity of the gas pressure infiltration process over squeeze casting in the fabrication of
Al/diamond composite. A thermal conductivity as low as 131 W/m−1K−1 of squeeze-
casted Al/diamond composite shot up to 670 W/m−1K−1 when fabricated by GPI. The
characteristic long exposure time of diamond crystals to aluminum melt involved in this
process promotes interfacial bonding and thermal conductance. Monje et al. [125] further
explored the effect of the reinforcement-matrix melt contact time and infiltration tempera-
ture on the thermal conductivity of Al/diamond composite fabricated by the gas pressure
infiltration process as presented in Figure 7. The higher the infiltration temperature, the
shorter the contact time and vice-versa, which was observed to be required to attain maxi-
mum thermal conductivity. Maximum thermal conductivity of 636 Wm−1K−1 was reported
at a contact time of 15 min and infiltration temperature of 760 ◦C. At the higher infiltration
temperature of 850 ◦C, a maximum thermal conductivity of 676 Wm−1K−1 was achieved
at a contact time of 1 min [125]. The enhanced thermal conductivity was due to the di-
rect contact between the diamond surface and carbon-enriched Al layer (diffusion layer).
The breaking away of the carbon atoms from the diamond surface and their subsequent
diffusion through liquid Al results in the formation of the diffusion layer. The formation
of the diffusion layer precedes the Al4C3 formation. After exceeding the solubility limit
(43 atomic%) of carbon in Al, the Al4C3 phase precipitates on the diamond surface either
in a particle form or as a continuous layer. For enhanced interfacial bonding and thermal
conductance, the Al/diffusion layer/diamond system is preferred [125]. Zhang et al. [126]
demonstrated that the process parameters can be optimized in the gas pressure infiltration
process to achieve superior thermal conductivity of the Al/diamond composite by acti-
vating diffusion reaction on the diamond faces as shown in Figures 7 and 8. The pressure
optimization at infiltration temperatures as low as 750 ◦C can easily activate the diffusion
reaction on the {100} face of diamond. The {111} face of diamond, being chemically more
stable, requires higher energy levels to breakout carbon atoms from its surface. Therefore,
to activate the diffusion reaction, this face requires temperature optimization. Moreover,
higher infiltration temperatures require smaller pressure as shown in Figure 8. A thermal
conductivity of 760 Wm−1K−1 was recorded at an optimum infiltration temperature and
pressure of 800 ◦C and 0.8 MPa [126]. Later, Wang et al. [106] also demonstrated that by
controlling the processing parameters, squeeze casting can be used to obtain Al/diamond
composites with a thermal conductivity of 606 Wm−1K−1. The enhanced thermal conduc-
tivity was attributed to the activation of the diffusion reaction on the {111} face of diamond,
resulting in good interfacial bonding and interfacial thermal conductance. Further stud-
ies are required to confirm the mechanism of improvement of thermal conductivity in
Al/diamond composite and to explore the effect of Al4C3 on the thermal conductivity.
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Some new approaches were adopted to reduce the usage of high-volume fraction of
diamond reinforcement. Diamond film (6.5 vol%) was coated on spiral W wire and was
reinforced in the Al matrix, resulting in a thermal conductivity of 294 Wm−1K−1 [117].
A novel technique that has been reported is to infiltrate liquid Al into diamond-coated
Cr-modified copper foam as shown in Figure 9. The resulting composite featured a thermal
conductivity of 315.7 Wm−1K−1 at merely 4.6 vol% of diamond [134].

Graphite flake-reinforced Al matrix composites features excellent machinability in
combination with high specific thermal conductivity. Oddone et al. [129] developed
50 vol% graphite flake-reinforced AMCs. A significantly high in-plane thermal conductivity
(390 Wm−1K−1) with zero or negative through-plane CTE was reported. However, a dras-
tic reduction in hardness and tensile strength with an increasing volume fraction of graphite
flakes was noticed. An increase in thermal conductivity (from 324 to 783 Wm−1K−1) was re-
ported with an increase in the volume percentage of graphite flakes (from 10 to 80%) while
the coefficient of thermal expansion reduced in the parallel (from 16.9 to −2.5 × 10−6 K−1)
and perpendicular (from 15.2 to 10.1 × 10−6 K−1) direction to the basal plane [127]. Addi-
tionally, an increase in the size of the graphite flakes can increase the thermal conductivity.
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The maximum thermal conductivity reported was 604 Wm−1K−1 with the increase in the
size of the graphite flakes from 150 to 500 µm [128]. These composites are commonly
fabricated through the powder metallurgy route to avoid the formation of Al4C3, which
reduces the thermal conductivity and corrosion resistance.
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Another carbon-based reinforcement is carbon fiber. Beronska et al. [135] fabricated
AMC by reinforcing 57.6 vol% unidirectional carbon fiber in Al-3wt% Mg alloy by the
gas pressure infiltration process. Mg was added to suppress the formation of Al4C3. A
thermal conductivity of 540.8 W/mK in the longitudinal direction was reported. The
coefficient of thermal expansion in the longitudinal direction was found to range from
−1 × 10−6 K−1 to −1.9 × 10−6 K−1 with an increase in the temperature from 100 to
300 ◦C. The enhanced thermal performance was attributed to the amorphous layer formed
at the fiber–matrix interface in the presence of oxygen, which probably was absorbed
during the infiltration. Lee et al. [136] reported a longitudinal thermal conductivity of
273.2 Wm−1K−1 with AMC reinforced with unidirectional carbon fiber fabricated by the
low-pressure infiltration process. It was demonstrated that the growth rate of Al4C3
was more profound during the cooling than the infiltration process. The increase in
time from 10 to 60 min to cool from 849 to 500 ◦C resulted in a decrease in the thermal
conductivity from 273.2 to 230 Wm−1K−1, respectively. Silvain et al. [39] and Kurita
et al. [131] reinforced aluminum matrix with 50 vol% carbon fibers. A small amount of
Al-Si alloy (5 vol%) was added to the aluminum matrix to reduce the melting point and
improve the densification of the composite upon sintering. A in-plane thermal conductivity
and coefficient of thermal expansion of 258 Wm−1K−1 and 7.09 × 10−6 K−1, respectively,
were reported. Tokunaga et al. [133] achieved a thermal conductivity of 323 Wm−1K−1

with 40 vol% reinforcement of carbon fibers in aluminum matrix with Al-12.2 mass% Si
alloy (10 vol%). Pei et al. [132] reinforced carbon fibers into AA6063 matrix. A thermal
conductivity of 407 Wm−1K−1 along the fiber direction with a very low coefficient of
thermal expansion between −0.26 × 10−6 K−1 and 0.26 × 10−6 K−1 was reported.

Studies investigating the thermal performance of CNT-reinforced AMCs are scarce [130,137].
These studies focused on the contribution of CNTs to AMC based on theoretical analysis.
Studies investigating the thermal performance of graphene-reinforced AMCs are also
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scarce. Zhang et al. [138] reported a thermal conductivity of 260 Wm−1K−1 with 0.3 wt%
graphene-reinforced AMC fabricated by powder metallurgy.

Recently, hybridizing AMCs with secondary reinforcements to mitigate the side effects
of adding primary reinforcements [103,139–142] and to make the resulting composite more
suitable for the intended application has gained popularity. Shu et al. [103] hybridized
aluminum matrix with Ti and B4C to form TiCx-TiB2/Al composites. The resulting thermal
conductivity was just 160 Wm−1K−1. Molina et al. [139] reported a thermal conductivity
of 390 Wm−1K−1 by reinforcing Al-12wt%Si alloy matrix with graphite flakes and SiC
particles. Chamroune et al. [140] hybridized aluminum matrix with graphite flakes and
carbon fibers, featuring an in-plane thermal conductivity of 410 Wm−1K−1 with in-plane
and through plane coefficients of thermal expansion of 15 × 10−6 K−1 and 2.4 × 10−6 K−1,
respectively, using solid-liquid sintering. In another study, Peng et al. [141] reinforced
graphite flakes and carbon fibers in aluminum matrix, yielding a thermal conductivity
of 402 Wm−1K−1. Graphite flakes were coated with copper while the carbon fibers were
doped with nitrogen to improve their wettability in Al matrix and the composite was
fabricated through the optimized vacuum gas pressure infiltration method. Xue et al. [142]
reported a thermal conductivity of 400 Wm−1K−1 and a coefficient of thermal conductivity
of 7.8× 10−6 K−1 with diamond/SiC/ Al-7Si-0.3Mg hybrid AMC. Han et al. [143] reported
a thermal conductivity of 482.14 Wm−1K−1 and a coefficient of thermal of 2.5 × 10−6 K−1

by reinforcing aluminum matrix with 70 vol% graphite flakes, and 3-D copper networks
coated with 5 vol% graphene. The enhanced thermal performance was attributed to the
effective heat transfer path provided by copper networks and to the better distribution of
graphite reinforcements.

Figure 10 presents an overview of the effectiveness of the various reinforcements in
improving the thermal conductivity of aluminum matrix composites. It can be observed
that, in general, diamond as well as graphite reinforcements are effective in significantly
improving the thermal conductivity as compared to other reinforcements. In fact, graphite
featured the highest thermal conductivity in the direction parallel to its basal plane. How-
ever, a heavy reinforcement loading in the range of 48 vol% to 80 vol% for graphite, and
58 vol% to 68 vol% for diamond was used to realize the aforementioned effect. Interestingly,
a significantly high ratio of thermal conductivity to diamond loading was observed when
a much smaller volume percentage of diamond was used in the fabrication of diamond
network and diamond film-coated tungsten-reinforced AMCs, respectively [117,134]. On
the contrary, a general reduction in the thermal conductivity of the composite was observed
compared to that of the matrix material with the incorporation of Al2O3, SiC, BN, and AlN
reinforcements. However, a minimal improvement was observed with reinforcement with
graphene and carbon fibers.

Figure 11 presents an overview of the effectiveness of various reinforcements in re-
ducing the coefficient of thermal expansion of aluminum matrix. It can be observed that,
in general, diamond reinforcement is effective in significantly reducing the coefficient of
thermal expansion as compared to other reinforcements [116,119,123]. Graphite reinforce-
ment induced a very large anisotropy in the coefficient of thermal expansion of aluminum,
ranging from a negative [127,129] to unacceptably high [129,140] values. On the other hand,
hybrid AMCs present a desired reduction in the coefficient of thermal expansion [142,143].

2.3. Silver Matrix Composite

Silver has the highest thermal conductivity (429 Wm−1K−1) among all the matrix
materials considered for thermal management. Due to its scarcity and high cost, it has been
rarely investigated. Zhao et al. [144] reported a thermal conductivity of 768 Wm−1K−1 by
reinforcing silver matrix with Cr-coated diamond particles. Pal et al. [145] studied the effect
of functionalization of CNT reinforcement on the thermal conductivity of composite. The
non-covalently functionalized CNTs resulted in a thermal conductivity of 530 Wm−1K−1

due to lower interfacial resistance.
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2.4. Magnesium Matrix Composite

Given the low thermal conductivity (156 Wm−1K−1) of magnesium, it has also rarely
been explored for thermal applications. Molina et al. [146] reported a thermal conductivity
of 716 Wm−1K−1 with TiC-coated bimodal diamond particle reinforcement. The enhance-
ment in their thermal conductivity was attributed to the nano-scale coating thickness, and
to the bimodal mixture of thee reinforcing particles. Hou et al. [147] reported a low thermal
conductivity of 120.6 Wm−1K−1 with Ni-coated short carbon fiber (1 vol%) reinforcement.

2.5. Beryllium Matrix Composite

Beryllium possesses a thermal conductivity of 200 Wm−1K−1 and a coefficient of
thermal expansion of 9.5 × 10−6 K−1. Parsonage et al. [148] fabricated a beryllium matrix
composite reinforced with BeO, but a marginal improvement in the thermal conductivity
and coefficient of thermal expansion to 215 Wm−1K−1 and 8.7 × 10−6 K−1, respectively,
was reported.

2.6. Indium Matrix Composite

Zeng et al. [149] reinforced indium with 50 vol% diamond particles and achieved a
maximum thermal conductivity of 211 Wm−1K−1.

3. MMC Processing

Metal matrix composites reinforced with particles, platelets, non-continuous, and contin-
uous fibers are essentially produced in either the liquid state or in the solid state [86,150,151].
The most popular liquid state processing methods are stir casting and liquid metal infiltra-
tion while the solid state processing route is called powder metallurgy.

3.1. Liquid State Processing

This method enables the incorporation of high-volume fraction of reinforcements,
which is imperative to obtain a low coefficient of thermal expansion along with high
thermal conductivity of the composite.

3.1.1. Stir Casting Process

In this process, the reinforcements in the form of short fibers and particles are stirred
into a molten metal prior to casting [22,25,81]. Manivannan et al. [107,113] used the bottom
tapping stir casting method to fabricate AMCs. This method prevented oxide formation on
the surface of the molten metal. The major limitation of this process is the inhomogeneous
distribution of reinforcement caused by the density difference between the melt and the
reinforcements [22,25,107,113].

3.1.2. Liquid Metal Infiltration
Squeeze Casting

The reinforcing particles are first pressed in a mold to make a preform. The preform
is preheated in a forming gas atmosphere (94% Ar and 6% H2). The preheat tempera-
ture depends on the type of reinforcement. Meanwhile, the matrix metal (aluminum or
copper) is melted separately. The preform is placed inside a die preheated to a relatively
much lower temperature. The molten metal is immediately poured with simultaneous
application of vacuum to the preform and a predetermined vertical pressure to the melt.
The infiltration of molten metal into the preform is caused by the downward pressure
applied by a hydraulic or pneumatic piston. The applied pressure is determined such that
the piston displacement rate completes the infiltration in a few seconds before the actual
commencement of solidification. The relatively cold die aids in rapid solidification of the
composite under the applied pressure. The casted samples are either air cooled or annealed
followed by furnace cooling to room temperature [22,25,86,150]. A schematic diagram of a
typical squeeze casting unit is shown in Figure 12.
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The low-temperature processing ability along with rapid infiltration and solidification
have made this technique more attractive for the fabrication of AMCs [80,106,109,120,132].
The infiltration and solidification times are too short for the formation of interfacial com-
pound (Al4C3). No graphitization of carbon fibers was observed in the fabrication of AMC
by this method [132]. Neither the formation of interfacial Al4C3 nor any reaction between
diamond reinforcements and Si when present in the AMC matrix were observed [102].
Rather, the addition of silicon adversely affected the coefficient of thermal expansion at
high temperatures [112]. Though Khalid et al. [120] could avoid the formation of undesired
Al4C3 during fabrication of AMC reinforced with monocrystalline diamond, a transfor-
mation of diamond particles into the amorphous carbon phase was reported. Pingping
wang et al. [106] optimized the squeeze casting process by increasing the preheat and
infiltration temperatures, and also the contact time between the diamond preform and
the molten Al to promote the formation of the Al-C diffusion layer. The in situ gener-
ated thin layer diffusion layer was demonstrated to improve the interfacial bond and
thermal conductivity.

Gas/ Vacuum Pressure Infiltration

In this process, a pressurized inert gas or vacuum forces the molten metal/alloy
in to the preform [22,86,152]. A gas pressure liquid infiltration apparatus is shown in
Figure 13. The high-volume fraction reinforcement is tap packed in a steel cylinder, which
is placed in the upper chamber. Aluminum/Al-alloy is placed in the lower chamber. Before
melting it, the furnace chamber is evacuated to create vacuum pressure. The preform in
the evacuated upper chamber is simultaneously heated to temperatures of 700–750 ◦C.
Once the thermal equilibrium is attained, pressurized gas is allowed to enter the chambers,
which forces the melt into the preform. Finally, the infiltrated sample is furnace cooled to
room temperature. The preform and melt temperatures can be independently controlled
using this apparatus [116,123,142].

The gas pressure infiltration technique requires a longer processing time, which has been
exploited to improve the interfacial bonding between the reinforcement and metal matrix (i.e.,
copper or aluminum) along with matrix alloying and/or reinforcement coating with carbide-
forming elements. Mostly copper matrix composites [40–43,46,47,53,60,65,66,84,91,153,154]
and AMCs [118,119,134,139,155] reinforced with high-volume fraction of diamond were
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fabricated by this technique. Ruch et al. [102] obtained a higher thermal conductivity with
the composite fabricated by the gas pressure infiltration method compared to that fabricated
by squeeze casting. Formation of a thin carbide layer at the interface due to the longer
exposure time was credited for the higher thermal conductivity of the processed metal.
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The success of the liquid infiltration process (squeeze casting and gas pressure infiltra-
tion) depends on the porosity and the strength of the preform. The open pore structure
allows the metal or alloys to flow. The strength enables the preform to withstand pressures
applied during the infiltration process without becoming deformed [25,156]. Since the
binder provides strength to the preform, it should be restricted to an optimum amount so
that it does not block the pores.

3.2. Powder Metallurgy

The powder metallurgy process has emerged as an effective means for synthesizing
near net shape composite products. The process not only offers a homogeneous dispersion
of reinforcements in the matrix phase but can also prevent undesirable interaction between
them [101,108,157]. Powder metallurgy involves milling and blending of reinforcements
into metal matrix powders. The milled/blended powder mixture is further cold pressed to
form a compact, which is subjected to solid state sintering. During sintering, the compact is
heated to a temperature below its melting point but high enough to cause diffusion bonding.
The developed microstructure determines the thermo-mechanical properties of the com-
posite. The consolidated composite is available to be fabricated into final product through
secondary thermo-mechanical processing like rolling, forging, or extrusion [22,39,73,151].
Hot press sintering, pulsed electric current sintering (PECS), and microwave sintering were
reported to consolidate MMCs fabricated for heat sink applications.

3.2.1. Hot Press Sintering

Hot press sintering is the conventional sintering method for MMCs. The copper matrix
composites reinforced with carbon fibers (30–40 vol%) [39], SiC particles (40 vol%) [77],
graphite flakes (38–60%) [44], Cr-coated graphite fibers (35–50 vol%) [70], Ti- and Cu-
coated diamond particles (55 vol%) [64], and aluminum matrix composites containing
B4C (25 vol%) [105] and graphite flakes (10–90 vol%) [127] were consolidated by hot press
sintering. Besides CuCr alloy and Al containing 5–10 vol%, AlSi alloy reinforced with
diamond particles (50 vol%) [44] and carbon fibers (10–50 vol%) [39,131], respectively, were
also consolidated by hot press sintering. In this method, a uniaxial pressure is applied at
a high temperature below the melting point [39]. The external heaters are used to heat
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the die and the powder contained in it. The apparently slow heating rate induces grain
growth [57,108].

3.2.2. Pulsed Electric Current Sintering (PECS)

In this method, the sample is heated by the applied electric field. This process involves
simultaneous application of a pulsed direct current and uniaxial pressure on the powder
or the compact. The current passing through the die and the compact (if conductive) is
transformed into heat by a Joule heating mechanism [57,62,129,158]. A faster heating rate,
shorter holding time, finer microstructure, and higher densities at lower temperatures are
the advantages offered by this technique [51,57,61,129,158,159]. Spark plasma sintering
(SPS) and the pulse plasma sintering (PPS) are the types of PECs. Even though the existence
of plasma in SPS is contentious, it has been the most popular sintering method to consoli-
date MMCs. Copper matrix composites reinforced with (30–80 vol%) diamond particles
were preferentially consolidated by SPS [45,54,57,61–63,67,90,92]. It was also used in the
consolidation of CNT (0–15 vol%)-reinforced Cu [74], and Al [137] matrix composites and
in carbon fiber (30 vol%) [133] and graphite flakes (50 vol%) [129] reinforced AMCs as well.
The pulse plasma sintering (PPS) was used in the sintering of copper matrix composites
reinforced with 50 vol% diamond particles [50,56,58].

3.2.3. Microwave Sintering

This is a novel technique of sintering, which generates heat by transforming electro-
magnetic radiations into heat in the compact being sintered. Microwave sintering offers a
high volumetric heating rate, shorter processing time, finer homogenous microstructure,
improved mechanical properties, enhanced densification, reduced energy consumption,
and environment friendliness over other methods [101,108,157]. Moreover, microwave sin-
tering is cheaper and more productive than spark plasma sintering [160]. Despite all these
advantages, microwave sintering has rarely been employed in research investigations in-
volving the fabrication of MMCs intended for heat sink/thermal management application.
It was used in the consolidation of 1.5 vol% SiC nanoparticle-reinforced AMC [101].

4. Potential Heat Sink Materials

The heat sink materials should not only have high thermal conductivities above
300 Wm−1K−1 [6,12,22], but also have coefficients of thermal expansion matching those
of the semiconductor chips and ceramic substrate [6,7,11,21], typically in the range of
3 × 10−6 K−1 to 7 × 10−6 K−1 [7,11,22]. Therefore, these limits on the thermal conduc-
tivity and coefficient of thermal expansion may be referred to as an acceptable thermal
performance. For novel composites to be considered as potential heatsink materials, they
must demonstrate an acceptable thermal performance. Figure 14 illustrates a graphical
evaluation of the thermal performance of composites in terms of the thermal conductivity
and coefficient of thermal expansion. While the two vertical green lines represent the
acceptable range of the coefficient of thermal expansion, a horizontal gray line represents
the lower limit for the thermal conductivity.

The thermal performance of the composites can be observed to be affected not only by
the type of reinforcements, but also by the techniques to improve the interfacial bonding
and processing routes. The diamond particles are observed to be the most promising
reinforcement in copper matrix when the interfacial bonding was improved. Alloying
copper matrix by carbide-forming elements like zirconium [65] or boron [84], and surface
metallization of diamond particles by carbide-forming elements like W [59] or Mo2C [53]
are observed to be beneficial in improving interfacial bonding. Titanium-coated diamond
particle reinforcement in aluminum alloy is observed to demonstrate an acceptable thermal
performance [116]. Further, the gas/vacuum pressure infiltration techniques are noted to
be prominent in promoting interfacial bonding due to their longer processing time.
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Table 1. Metal matrix composite in Heat Sink Application: Reinforcement, Processing, and Properties.

Matrix

Reinforcement Composite Fabrication Thermo-Physical Properties

Ref
Type Size Vol% Pre-Treatment Process Parameters

Relative
Density

(%)

Thermal
Conductivity
(Wm−1K−1)

CTE
(×10−6K−1)

Cu-1 wt%Zr Diamond 220–245 µm 90 - HTHP 1500 ◦C under 5 GPa
for 5 min - 677 - [38]

Cu-0.5 wt%Zr Diamond 212–250 µm 61 - GPI 1423 K under 1 MPa
for 30 min - 930 5.2 [65]

Cu-0.5 wt%Zr Diamond 212–250 µm - - GPI 1423 K under 1 MPa
for 30 min - 930 - [46]

Cu-5 wt% B Diamond 177–210 µm 44 - SPS
1200 K under 30 MPa

for 6 min at
150 K/min

- 660 - [62]

Cu-0.26 wt%Cr
Diamond 200 µm 60 - GPI 1450 K under 0.6 MPa

for 30 min
- 600 10

[84]
Cu-0.17 wt%B - 700 6–7

Cu-2.88 wt% Ti Diamond 30–40 µm 45 - SPS
920–945 ◦C under

30–45 MPa for 10 min
at 100 ◦C/min

97 670 - [54]

Cu Diamond 178–200 µm 80 Cu-0.5B-coated SPS 1000 ◦C for 5 min 99.3 300 - [45]

Cu Diamond 150–180 µm 60 Ti-coated (220 nm) GPI 1423 K under 1 MPa
for 15 min - 811 5.55 [60]

Cu Diamond 75 µm 56 Ti-coated (t:285 nm) SPS 1243 K under 40 MPa
for 10 min - 493 - [67]

Cu Diamond 180 µm 63 W-coated
(t:220–230 nm) VPI 1130–1150 ◦C under

5 Pa for 5 min ~80.2 715 - [36]

Cu Diamond 180 µm 61–63 W-coated
(t:110–470 nm) VPI 1130–1150 ◦C under

10 Pa for 5 min ~77.5–83 910–480 6 [59]

Cu Diamond 200 µm 50 W-coated (t:260 nm) PPS 900 ◦C under 80 MPa
for 10 min 97 686 - [58]

Cu Diamond 70 µm 65 WC-coated
(t:1 µm) VPI 1150 ◦C under 20 Pa

for 5 min 99.5 658 - [40]

Cu Diamond 70 µm 65 Cr7C3-coated
(t:1 µm) VPI 1150 ◦C under 20 Pa

for 5 min 97 562 7.8 [41]

Cu Diamond 70 µm 60 Mo2C-coated VPI 1150 ◦C under 20 Pa
for 5 min 99.5 596 7.15 [53]

Cu Diamond 300 µm 50 Si coated
(0.3 µm) SPS 867–910 ◦C for 3 min

under 50 MPa 96.3 535 - [92]



Materials 2021, 14, 6257 20 of 32

Table 1. Cont.

Matrix

Reinforcement Composite Fabrication Thermo-Physical Properties

Ref
Type Size Vol% Pre-Treatment Process Parameters

Relative
Density

(%)

Thermal
Conductivity
(Wm−1K−1)

CTE
(×10−6K−1)

Cu Diamond 394 µm 34.7 TiC coated
(300 nm) Electrodeposition

Current: DC,
20 mA/cm2; pH:0.9;
150–250 rpm, 50 ◦C

- 557 - [93]

Cu-0.5 wt% Ti Diamond 180 µm 50 Ti-coated (t:0.5 µm) SPS 1000 ◦C for 10 min
under 50 MPa 99 630 8.4 [61]

Cu-0.5 wt%Cr Diamond 150–180 µm 60
-

GPI 1423 K under 1 MPa
for 30 min

- 617 -
[91]

Cr-Coated - 810 -

Cu Diamond 100 µm 60 Cu(outer)-W(inner)
Coated

Cold Pressing+ Furnace
sintering

1.2 GPa & 1100 ◦C for
1 h >99.5 661 - [48]

Cu Diamond 400 µm 55 Cu(outer)-W(inner)
Coated (310 nm)

Powder
Metallurgy—HPS

900 ◦C under 80 MPa
for 30 min - 721 - [64]

Cu Diamond 10 µm 60 Cu (outer)-Mo2C (inner)
Coated PAS 850 ◦C under 20 MPa

for 5 min 99.1 351 9.27 [63]

Cu Graphite
Fiber

d:10 µm;
l:100–200 µm 50 Cr-coated PM +Vacuum HPS

940 ◦C under 35 MPa
for 40 min in vacuum

(0.001 Pa)
98.04 412 ⊥, 182 // 6.1 ⊥, 9.9 // [70]

Cu Graphite
Flakes

d:115 µm;
t:10–20 µm 60 - Hot Pressing - - 560 ⊥, 70 // 7–8 ⊥ [44]

Cu Graphite
Particles 30–150 µm 70 W-coated Vacuum HPS 950 ◦C under 40 MPa

for 30 min ~62 158 - [69]

Cu Graphite
Foam Cell size:300 µm 36.9 Refractory metal coating Liquid Metal Infiltration NA 75.2 342 7.4 [94]

Cu Carbon-Fiber - 40 Cu-coated Diffusion Bonding 600 ◦C under 100 MPa
for 15 min in vacuum - 220 L, 120 T - [72]

Cu Carbon-Fiber d:9–10 µm;
l:100–300 µm 40 - HPS

650 ◦C under 50 MPa
for 20 min in vacuum

(0.66 Pa)
97 360 ⊥, 140 // 10 ⊥ [39]

Cu Carbon-Fiber - 60 Cu-coated Hot Pressing - ~69 150 ⊥, 50 // 8–9 ⊥ [95]

Cu Carbon-Fiber d:10 µm;
l:100–300 µm 40 - Hydrothermal Sintering 265 ◦C under 250 MPa

for 60 min 100 300 ⊥, 290 // 8.1 ⊥, 13.3// [73]

Cu CNTs d:3 nm; l:500 µm 45 - Electrodeposition - - 395 $, 317
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Cu Carbon-Fiber 
d:10 µm; 

l:100–300 µm 
40 - 

Hydrothermal 

Sintering 

265 °C under 250 MPa for 60 

min 
100 300 ꓕ, 290 // 

8.1 ꓕ, 

13.3// 
[73] 

Cu CNTs d:3 nm; l:500 µm 45 - 
Electrodeposi-

tion 
- - 395 $,󠄯 317 ₸ 5  [75] 

Cu GO - 1.18 - 
Hot Press Sin-

tering 

900 °C under 25 MPa for 60 

min 
- 395 - [98] 

Cu 
Graphene 

Nanosheets 

l:5–30 µm 

t:5–10 nm 
30 - 

Vacuum Filtra-

tion + SPS 

760 °C under 50 MPa for 5 

min 
- 458 L, 58 T 6.2 T [97] 

5 [75]

Cu GO - 1.18 - Hot Press Sintering 900 ◦C under 25 MPa
for 60 min - 395 - [98]

Cu Graphene
Nanosheets

l:5–30 µm
t:5–10 nm 30 - Vacuum Filtration + SPS 760 ◦C under 50 MPa

for 5 min - 458 L, 58 T 6.2 T [97]
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Table 1. Cont.

Matrix

Reinforcement Composite Fabrication Thermo-Physical Properties

Ref
Type Size Vol% Pre-Treatment Process Parameters

Relative
Density

(%)

Thermal
Conductivity
(Wm−1K−1)

CTE
(×10−6K−1)

Cu Graphene
Nanoplatelets

l:25 µm
t:12 nm 35 - Vacuum Filtration + SPS 750 ◦C under 50 MPa for

5 min - 525 L, 106 T - [96]

Cu

Graphene
Nanosheets t:2–10 nm 4 Cu-coated Compaction + Furnace

Sintering 900 MPa; 1000 ◦C, 140 min 89 350 - [99]
WC-TiC-Co d:0.5–1 µm 6.71 Cu-coated

Cu alloy
(C10200) SiC 710 µm 40 - Stir Casting 1090 ◦C - 400 - [37]

Cu SiC 150–210 µm 40 Mo Coated HPS - - 306 11.2 [77]

Cu W wire - 20 - Pressure Infiltration - - 300 - [71]

Cu W particles - 30 - Pressure Infiltration - - ~300 13.3–14.4 [71]

Cu W particles - 60 - Pressure Infiltration Infiltration of the preform at
1150 ◦C for 2 h - 260–240

(RT-800 ◦C) - [78]

Cu Mo 3.5 µm 55 - Squeeze Casting
Infiltration of Mo preform at

30 MPa at 900–1100 ◦C
for 5 min

- 276.2 9.7 [80]

Al-Si20 Alloy SiC 20 µm + 60 µm (4:1) 73 - Squeeze Casting Infiltration of SiC preform at
100 MPa - - 7.3 [112]

AA356 SiC 37 µm 45 - Compaction + Furnace
Sintering 450 MPa; 500 ◦C, 6 h - 235 - [110]

AA6061T6

Al2O3 - 5 -

Stir Casting

Stirring:500 rpm for 12 min
at 600 ◦C in Argon

atmosphere; Pouring
temperature: 900 ◦C

- 180 -

[107]SiC - 5 - - 179 -

CBN - 5 - - 186 -

Al B4C 50 µm 25 - Hot Pressing 450 ◦C under 400 MPa for 1 h - - 8 [105]

Al AlN 4 µm 50 Squeeze Casting - - 130 11.2 [115]

Al Si3N4 15–30 nm 1.5 - Mechanical Alloying
+Microwave Sintering 500 ◦C - - 19.3 [114]

Al SiC 15 nm 1.5 - PM +Microwave Sintering 550 ◦C - - 19.2 [101]

Al-Si7 Alloy Diamond 91–106 µm 60 - GPI 750 ◦C under 8 MPa
for 20 min - 375 7 [119]

A356 Diamond 91–106 µm 60 Ti coated GPI 4 KPa for 20 min - 365 5.69 [116]

Al-Si7 Alloy Diamond 54 µm 50 TiC coated GPI 700 ◦C under 1.2 MPa - - 5–8.29 [123]



Materials 2021, 14, 6257 22 of 32

Table 1. Cont.

Matrix

Reinforcement Composite Fabrication Thermo-Physical Properties

Ref
Type Size Vol% Pre-Treatment Process Parameters

Relative
Density

(%)

Thermal
Conductivity
(Wm−1K−1)

CTE
(×10−6K−1)

Al Diamond 150–180 µm - W coated (45 nm) GPI 800 ◦C under 1 MPa for 60 min - 620 - [124]

AlSi7 Alloy
Diamond 91–106 µm 60–65 - GPI 750 ◦C under 8 MPa for 20 min

- 375 -
[102]

Al - 670 -

Al Diamond 395 µm 62 - GPI
760 ◦C under 0.5 MPa for 15 min - 636 -

[125]
850 ◦C under 0.5 MPa for 1 min - 676 -

Al Diamond 150–178 µm 68 - GPI

750 ◦C under 1 MPa for 20 min 99.2 655 -

[126]800 ◦C under 0.8 MPa for 20 min 99.28 760 -

850 ◦C under 0.5 MPa for 20 min 99.35 738 -

Al Diamond 90–106 µm 58
Squeeze Casting 800 ◦C under 15 MPa for 15 min - 321 -

[106]
- Squeeze Casting

(Optimized) 850 ◦C under 15 MPa for 90 min - 606 -

Al Diamond 10–15 µm 4.6 - GPI 800 ◦C under 5 MPa for 10 min - 315.7 - [134]

Al2024 Graphite flakes d:500 µm;
t:10 µm 50 - SPS 600 ◦C for 10 min under 45 and

50 MPa - 390 L; 40 T −7.3 L; 16.3 T [129]

Al Graphite flakes d:550 µm;
t:10–30 µm 80 - Vacuum Hot

Pressing
913 K and 60 MPa for 1 h under

2.7 Pa vacuum - 783 Lˆ −2.5 Lˆ, 10.1 Tˆ [127]

Al Graphite flakes l:550 µm; t:30 µm 50 - HPS 600 ◦C under 60 MPa for 30 min 97.5 400 L, 45 T 21.8 L, −10.5 T [140]

Al Graphite flakes l:500 µm 50 - Powder
Metallurgy - 99.6 604 Lˆ - [128]

Al RGO - 3 - Compaction +
Sintering

200 MPa and 600 ◦C for 5 h
in Argon 42 260 - [138]

Al-3 wt%Mg Carbon-Fiber d:10 µm 57.6 - GPI 750 ◦C under 5 MPa for 2 min - 540 L −1 to −1.9 L [135]

Al Carbon-Fiber d:11 µm - - Pressure
Infiltration

1073 K under 0.8 MPa for 1 min;
cooling-10 min - 273.2 L - [136]

Al+ (5 Vol%)
Al-Si alloy Carbon-Fiber d:8 µm;

l:200 µm 50 - HPS 600 ◦C under 60 MPa for 30 min - 258 L 7.09 L [39]

Al+ (5 Vol%)
Al-Si alloy Carbon-Fiber d:8 µm;

l:200 µm 50 - Hot Pressing 600 ◦C under 60 MPa for 30 min 97 258 L 7 L [131]

Al+ (10 Vol%)
Al-Si alloy Carbon-Fiber d:10 µm;

l:270 µm 40 - SPS 873 K under 10 MPa for 60 min at
20 K/min 99.4 323 L - [133]

AA6063 Carbon-Fiber d:10 µm;
l:270 µm 67.9–70 - Pressure

Infiltration 900 ◦C under 5 MPa for 10 min - 407 L (−0.26 to +0.26) L [132]
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Table 1. Cont.

Matrix

Reinforcement Composite Fabrication Thermo-Physical Properties

RefType Size Vol% Pre-Treatment Process Parameters
Relative
Density

(%)

Thermal
Conductivity
(Wm−1K−1)

CTE
(×10−6K−1)

Al MWCNTs d:20–30 nm;
l:10–30 µm 0.8 - SPS 853 K under 40 MPa for

10 min at 50 K/min - 199 // - [137]

Al TiCx:TiB2 - 50 - Hot Pressing - - 160 9.3 [103]

Al-12Si Alloy
Graphite flakes d:400 µm; t:50 µm 69 -

GPI 700 ◦C under 2.5 MPa
for 2 min

- 390 L - [139]
SiCp 22.5 µm 16 -

Al
Graphite flakes l:550 µm; t:30 µm 48

- HPS 600 ◦C under 60 MPa
for 30 min

- 398 L, 44 T 17.8 L, 3.8 T [140]
Carbon-Fiber d:10 µm; l:250 µm 2

Al + (10 Vol%)
Al-12Si Alloy

Graphite flakes l:550 µm; t:30 µm 48
97.9 429 L, 44 T 15.7 L, 2.2 T [140]

Carbon-Fiber d:10 µm; l:250 µm 2

Al
Graphite flakes d:500 µm 80 Cu coated

Vacuum GPI 750 ◦C under 2 MPa
for 5 min 95.6 402 Lˆ 7 Lˆ [141]

Carbon Fibers d:14–16 µm;
l:80–100 µm - N doped

Al-7Si-0.3Mg
Alloy

Diamond d:350 µm 80
Ti coated k (2 µm) GPI 750 ◦C for 1 min - 400 7.8 [142]

SiCp d:45 µm -

Al
Graphite Flakes 270 µm 70 -

Hot Pressing 660 ◦C under 2.5 MPa
for 30 min

- 482.14 2.5 [143]
3D Cu network - - Graphene coated (5 Vol%)

Ag-11at%Si
Alloy Diamond 200 µm 60 - - - 782 - [144]

Ag CNT d:8 nm;
l:20 µm 6 Non-Covalently

Functionalized
Compaction and
Furnace Sintering 320 MPa; 800 ◦C 91.76 530 - [145]

Mg Diamond 400 µm + 58 µm
(70:30-Bimodal) 76 TiC coated GPI 740 ◦C under 1.5 MPa

for 2 min - 716 - [146]

E-20Be Alloy BeO - 20–60 - - - 215 8.7 [148]

l: Length; d: Diameter; t: Thickness; GPI: Gas Pressure Infiltration; VPI: Vacuum Pressure Infiltration; SPS: Spark Plasma Sintering; PPS: Pulse Plasma Sintering; PAS: Plasma Activated Sintering; HPS: Hot Press
Sintering, HTHP—High Temperature and High Pressure Sintering; //: Parallel to pressing Direction; L: Parallel to reinforcement alignment; Lˆ: Parallel to reinforcement basal plane; $: Parallel to sample
thickness; ⊥: Perpendicular to pressing Direction; T: Perpendicular to reinforcement alignment; Tˆ: Perpendicular to reinforcement basal plane;
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Cu Diamond 178–200 µm  80 
Cu-0.5B-

coated 
SPS  1000 °C for 5 min 99.3 300 - [45] 

Cu Diamond  150–180 µm 60 
Ti-coated 

(220 nm) 
GPI 

1423 K under 1 MPa for 15 

min 
- 811  5.55 [60] 

Cu Diamond  75 µm 56 
Ti-coated 

(t:285 nm) 
SPS  

1243 K under 40 MPa for 10 

min 
- 493 - [67] 

Cu Diamond  180 µm 63 

W-coated 

(t:220–230 

nm) 

VPI 
1130–1150 °C under 5 Pa for 

5 min 
~80.2 715 - [36] 

Cu Diamond  180 µm 61–63 

W-coated 

(t:110–470 

nm) 

VPI 
1130–1150 °C under 10 Pa 

for 5 min 
~77.5–83 910–480 6 [59] 

Cu Diamond  200 µm 50 
W-coated 

(t:260 nm) 
PPS 

900 °C under 80 MPa for 10 

min 
97 686 - [58] 

Cu Diamond 70 µm 65 
WC-coated 

(t:1 µm) 
VPI 

1150 °C under 20 Pa for 5 

min 
99.5 658 - [40] 

Cu Diamond 70 µm 65 

Cr7C3-

coated (t:1 

µm) 

VPI 
1150 °C under 20 Pa for 5 

min 
97 562 7.8 [41] 

Cu Diamond 70 µm 60 
Mo2C-

coated 
VPI 

1150 °C under 20 Pa for 5 

min 
99.5 596 7.15 [53] 

Cu Diamond 300 µm 50 
Si coated  

(0.3 µm) 
SPS  

867–910 °C for 3 min under 

50 MPa 
96.3 535 - [92] 

Cu Diamond 394 µm 34.7 
TiC coated 

(300 nm) 

Electrodeposi-

tion 

Current: DC, 20 

mA/cm2;pH:0.9; 150–250 

rpm, 50 °C 

- 557 - [93] 

Cu-0.5 wt% 

Ti 
Diamond 180 µm 50 

Ti-coated 

(t:0.5 µm) 
SPS  

1000 °C for 10 min under 50 

MPa  
99 630 8.4 [61] 

Cu-0.5 

wt%Cr 
Diamond 150–180 µm  60 

- 
GPI 

1423 K under 1 MPa for 30 

min 

- 617 - 
[91] 

Cr-Coated - 810 - 

Cu Diamond 100 µm 60 

Cu(outer)-

W(inner) 

Coated 

Cold Pressing+ 

Furnace sinter-

ing 

1.2 GPa & 1100 °C for 1 h > 99.5 661 - [48] 

Cu Diamond 400 µm 55 

Cu(outer)-

W(inner) 

Coated  

(310 nm) 

Powder 

Metallurgy—

HPS 

900 °C under 80 MPa for 30 

min 
- 721 - [64] 

Cu Diamond 10 µm 60 

Cu (outer)-

Mo2C (in-

ner) Coated 

PAS 
850 °C under 20 MPa for 5 

min 
99.1 351 9.27 [63] 

Cu 
Graphite Fi-

ber 

d:10 µm;  

l:100–200 µm 
50 Cr-coated 

PM +Vacuum 

HPS 

940 °C under 35 MPa for 40 

min in vacuum (0.001 Pa) 
98.04 412 ꓕ, 182 // 

6.1 ꓕ, 9.9 

// 
[70] 

Cu 
Graphite 

Flakes 

d:115 µm; 

t:10–20 µm 
60 - Hot Pressing - - 560 ꓕ, 70 // 7–8 ꓕ [44] 

Cu 
Graphite Par-

ticles 
30–150 µm 70 W-coated Vacuum HPS 

950 °C under 40 MPa for 30 

min 
~62 158 - [69] 

Cu 
Graphite 

Foam 
Cell size:300 µm 36.9 

Refractory 

metal coat-

ing 

Liquid Metal 

Infiltration 
NA 75.2 342 7.4 [94] 

Cu Carbon-Fiber - 40 Cu-coated 
Diffusion Bond-

ing 

600 °C under 100 MPa for 15 

min in vacuum  
- 220 L, 120 T - [72] 

Cu Carbon-Fiber 
d:9–10 µm; 

l:100–300 µm 
40 - HPS 

650 °C under 50 MPa for 20 

min in vacuum (0.66 Pa) 
97 360 ꓕ, 140 // 10 ꓕ [39] 

Cu Carbon-Fiber - 60 Cu-coated Hot Pressing - ~69 150 ꓕ, 50 // 8–9 ꓕ [95] 

Cu Carbon-Fiber 
d:10 µm; 

l:100–300 µm 
40 - 

Hydrothermal 

Sintering 

265 °C under 250 MPa for 60 

min 
100 300 ꓕ, 290 // 

8.1 ꓕ, 

13.3// 
[73] 

Cu CNTs d:3 nm; l:500 µm 45 - 
Electrodeposi-

tion 
- - 395 $,󠄯 317 ₸ 5  [75] 

Cu GO - 1.18 - 
Hot Press Sin-

tering 

900 °C under 25 MPa for 60 

min 
- 395 - [98] 

Cu 
Graphene 

Nanosheets 

l:5–30 µm 

t:5–10 nm 
30 - 

Vacuum Filtra-

tion + SPS 

760 °C under 50 MPa for 5 

min 
- 458 L, 58 T 6.2 T [97] 

: Perpendicular to sample thickness.
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Figure 14. Thermal performance evaluation of metal matrix composites for heat sink applications (see Table 1 for detailed
data). (Note: Color of marker outline represents a processing technique as follows: Blue- Gas Pressure Infiltration; Black-
Vacuum Pressure Infiltration; Olive Green-Pressure Infiltration; Red-Spark Plasma Sintering; Yellow-Plasma Activated
Sintering; Brown-Hot Press Sintering; Green-Hot Pressing; Orange-High-Temperature and High-Pressure Sintering; Purple-
Squeeze Casting; Maroon-Electro Deposition).

The other carbon-based reinforcements like graphite, carbon fiber, and CNTs are
also featured in Figure 14. Such reinforcements are incorporated into the matrix using
the powder metallurgy route including hot pressing, hot press sintering, spark plasma
sintering, high-temperature and high-pressure sintering, etc. Graphite as reinforcement
in copper presents acceptable thermal properties only in the direction perpendicular to
the pressing direction [44,70]. Graphite reinforcement induced a very large anisotropy
in the coefficient of thermal expansion of aluminum, ranging from negative [127,129]
to unacceptably high [129,140] values. An acceptable thermal performance is observed
by reinforcing CNTs in copper by electrodeposition [75]. Carbon fibers have also been
reinforced in copper [39,73] and aluminum [39,131,132] matrices, but the composites did
not demonstrate an acceptable thermal performance. Hybridizing composites can be an
effective alternative. When gas pressure infiltration was used to fabricate hybrid AMC
reinforced with graphite flakes and carbon fibers, an acceptable thermal performance was
demonstrated in the direction parallel to the reinforcement basal plane [141]. Graphite
flake- and graphene-coated copper network-reinforced hybrid composites also feature
acceptably high in-plane thermal conductivity and a coefficient of thermal expansion very
close to the acceptable range [143]. Such anisotropy may seem to hinder the application
of carbon-based reinforcements, although it could be successfully overcome by designing
heatsinks to allow heat flow preferentially in one direction. Alternatively, graphite foam
can be used to obtain isotropic properties. Graphite foam-reinforced composite is observed
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to demonstrate acceptable thermal conductivity and a coefficient of thermal expansion
very close to the acceptable range [94].

AMCs with acceptable [122,141] and/or close to acceptable [142,143] thermal perfor-
mances (see Figure 14) possess very high specific thermal conductivity in comparison to
copper matrix composites with similar thermal performances. The outstanding specific
thermal conductivity stems from the lower density of AMCs. This feature makes them
most attractive as heat sink composites in portable electronic devices. Additionally, the
AMCs containing cheaper reinforcements [141,143] offer an economical option than those
containing diamond as reinforcement [122,142].

The incorporation of metal particles like Mo [80] and W [71] in copper; ceramic
particles like AlN [115] and TiC [103] in aluminum; and BeO in beryllium [148] did not
demonstrate an acceptable thermal performance.

5. Conclusions

MMCs as heat sink materials were reviewed in this paper. The heat sink materials
should demonstrate an acceptable thermal performance, i.e., thermal conductivities above
300 Wm−1K−1 and coefficients of thermal expansion typically in the range of 3 × 10−6 K−1

to 7 × 10−6 K−1. The current review summarizes the efforts of different researchers in
enhancing the thermal performance of metal matrix using a combination of several types
of reinforcements to produce composites. Based upon this extensive literature review, the
main findings can be summarized as the following:

1. Copper and aluminum are the most commonly used matrix materials for heat sink
composites. Diamond particles were observed to be the most promising reinforcement
when the interfacial bonding was improved either by alloying matrix or by surface
metallization of diamond particles by a carbide-forming element.

2. Another important technique to improve interfacial bonding and thereby the thermal
properties in Al/diamond composites is to promote the formation of an Al-C diffu-
sion layer. The formation of a diffusion layer precedes the precipitation of a brittle,
hydrophilic interfacial phase of Al4C3 that serves as a thermal barrier.

3. The MMCs with other lone carbon-based reinforcements like graphite, carbon fiber,
CNTs, and graphene are generally reported to demonstrate unacceptable and anisotropic
thermal performances.

4. A trend setting approach was noticed when a diamond film was coated on another
reinforcement in the fabrication of AMCs. A significantly high ratio of thermal con-
ductivity to diamond loading was observed with merely a small volume percentage
of diamond. This technique needs to be further explored to establish the feasibility
of this technique in providing MMCs with an acceptable thermal performance. This
technique may not only reduce diamond loading but also reduce the overall cost.

5. Using graphite foam or metallic foam coated with carbon-based reinforcements is
another step towards obtaining MMCs with isotropic properties. Further, it can
provide an effective heat transfer path for better heat conduction.

6. The AMCs with acceptable and/or close to acceptable thermal performances possess
a very high specific thermal conductivity, which makes them more attractive for heat
sink applications in portable electronic devices.

7. Among the liquid state processing techniques, the gas pressure infiltration technique
has emerged as being effective. This technique offers control over the infiltration
temperature, pressure, and reinforcement-matrix melt contact time. This feature can
be exploited to improve the interfacial bonding between the reinforcement and the
matrix material.

8. The SPS and hot press sintering has emerged to be the most common sintering
methods when the powder metallurgy route is adopted for the fabrication of MMCs.
Though microwave sintering is hailed to offer significant advantages over other
methods, it has rarely been used, and it needs to be further explored.
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9. In view of the above findings, it can be concluded that the thermal performance of
the composites is affected not only by the type of reinforcements, but also by the
techniques to improve the interfacial bonding and processing routes. The novel
techniques should be further explored to meet the ever-increasing thermal manage-
ment challenges.
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