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Background: Immunization programs have leveraged decades of research to maximize oral polio vaccine
(OPV) response. Moving toward global poliovirus eradication, the WHO recommended phased OPV-to-IPV
replacement on schedules in 2012. Using the MAL-ED prospective birth cohort data, we evaluated the influ-
ence of early life exposures impacting OPV immunization by measuring OPV response for serotypes 1 and 3.
Methods: Polio neutralizing antibody assays were conducted at 7 and 15months of age for serotypes 1 and 3.
Analyses were conducted on children receiving�3 OPV doses (n = 1449). History of vaccination, feeding pat-
terns, physical growth, home environment, diarrhea, enteropathogen detection, and gut inflammation were
examined as risk factors for non-response [Log2(titer) < 3] and Log2(titer) by serotype using multivariate
regression.
Findings: Serotype 1 seroconversion was significantly higher than serotype 3 (96.6% vs. 89.6%, 15months).
Model results indicate serotypes 1 and 3 failure was minimized following four and six OPV doses, respec-
tively; however, enteropathogen detection and poor socioeconomic conditions attenuated response in both
serotypes. At three months of age, bacterial detection in stool reduced serotype 1 and 3 Log2 titers by 0.34
(95% CI 0.14–0.54) and 0.53 (95% CI 0.29–0.77), respectively, and increased odds of serotype 3 failure by 3.0
(95% CI 1.6–5.8). Our socioeconomic index, consisting of Water, Assets, Maternal education, and Income
(WAMI), was associated with a 0.79 (95% CI 0.15–1.43) and 1.23 (95% CI 0.34–2.12) higher serotype 1
and 3 Log2 titer, respectively, and a 0.04 (95% CI 0.002–0.40) lower odds of serotype 3 failure.
Introduction of solids, transferrin receptor, and underweight were differentially associated with serotype
response. Other factors, including diarrheal frequency and breastfeeding practices, were not associated with
OPV response.
Interpretation: Under real-world conditions, improved vaccination coverage and socio-environmental condi-
tions, and reducing early life bacterial exposures are key to improving OPV response and should inform polio
eradication strategies.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Background

Poliomyelitis, caused by infection with poliovirus serotypes 1, 2,
or 3, can cause severe paralysis and death. Humans are the only
known host for poliovirus and transmission is primarily fecal-
oral. Two vaccines can prevent polio: (live attenuated) oral polio-
virus vaccine (OPV) and parenteral inactivated poliovirus vaccine
(IPV). Until 2016, OPV was the primary vaccine recommended by
the World Health Organization (WHO) and its use contributed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2018.05.080&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.vaccine.2018.05.080
http://creativecommons.org/licenses/by/4.0/
mailto:william.pan@duke.edu
https://doi.org/10.1016/j.vaccine.2018.05.080
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine


W.K. Pan et al. / Vaccine 37 (2019) 352–365 353
significantly to the near elimination of paralytic polio. Currently,
wild poliovirus (WPV) is endemic in just Nigeria, Pakistan and
Afghanistan. Global eradication of WPV serotype 2 was certified
in 2015 and the last reported WPV serotype 3 case in 2012 leaving
serotype 1 as the primary concern [1,2].

Global eradication of poliomyelitis is feasible. Confirmed WPV
cases fell from 416 in 2013 to 22 in 2017, with just 8 cases as of
May 2018 [1]. Circulating vaccine-derived poliomyelitis (cVDPV)
cases have also declined, from 66 cases in 2013 (65 due to cVDPV
type 2) to 5 in 2016 (three type 1 and two type 2). Although cVDPV
cases spiked in 2017 (96 cases, all cVDPV type 2), only four cases
(all type 2) have been identified throughMay 2018 [3]. These decli-
nes follow WHO recommendations to modify routine immuniza-
tion strategies by: including at least one IPV dose; shifting from
trivalent OPV (tOPV) to monovalent or bivalent OPV serotypes 1
and 3 with IPV; and eventual OPV cessation to eliminate cVDPV
[4,5]. Despite improved serum response with IPV [6–8], some
question its effectiveness against transmission in regions with poor
sanitation due to limited induction of mucosal immunity [9,10].
Strong humoral and secretory immunity are needed to prevent
poliomyelitis and poliovirus transmission.

The Etiology, Risk Factors and Interactions of Enteric Infections
and Malnutrition and the Consequences for Child Health and
Development (MAL-ED) prospective birth cohort study was initi-
ated in eight diverse low and middle-income populations [Dhaka,
Bangladesh (BGD); Fortaleza, Brazil (BRF); Vellore, India (INV);
Bhaktapur, Nepal (NEB); Loreto, Peru (PEL); Naushero Feroze, Pak-
istan (PKN); Venda, South Africa (SAV); and Haydom, Tanzania
(TZH)] to evaluate the impact of enteropathogen infection and
undernutrition on child development, growth, and vaccine
response [11]. MAL-ED sites employ varying polio vaccination
schedules [12]; all sites administered tOPV and one site (SAV)
administered tOPV with IPV. MAL-ED offers a unique opportunity
to evaluate OPV programs at a time when their effectiveness is
believed to have peaked.

We evaluated factors influencing OPV response following at
least three doses in MAL-ED sites exclusively using tOPV between
2009 and 2013. Polio vaccine response has been extensively stud-
ied since the 1950s, including antibody inhibition (i.e., serotype 2
placental antibody interference with other serotypes, and/or
breastfeeding intensity) [13–20], OPV administration timing and
formulation (i.e., higher quantities of serotype3 in tOPV) [21–24],
and nutritional status (e.g., [25,26]). Past research has highlighted
the relationship between diarrhea and OPV response [27,28], while
recent studies focused on the nutrition-diarrhea cycle and associ-
ated environmental enteropathy impacting OPV response [29–
31]. Suboptimal seroconversion rates following three-dose tOPV
regimens have been observed in many low-income countries
[20,32,33]. We aimed to identify factors across multiple contexts
contributing to reduced OPV response at the apex of OPV global
use. We focus on the following issues believed to impact OPV
response: (1) variations in vaccine timing; (2) enteric infection,
diarrhea and malnutrition; and (3) socioeconomic status and qual-
ity of the home environment.
2. Methods

2.1. Study design and participants

The MAL-ED study, described elsewhere [11,34], differs from
much of the polio vaccine response literature that primarily
describes controlled, clinical trials; in contrast, MAL-ED was an
observational study that evaluated vaccine response under real-
world conditions, which include supplemental immunization to
maximize OPV response. MAL-ED enrolled participants within 17
days of birth and followed them intensively for the first two years
of life. Children were included in this analysis if they received at
least three doses of OPV before the protocol blood draws; those
receiving IPV were excluded. The study was conducted under
human use research protocols approved by local and/or national
ethical review committees at each site. Signed consent was
obtained for participation.

2.2. Assessment of OPV response

Blood collection was scheduled at 7 and 15 months of age ±14
days to accommodate participant availability and illness. Polio-
virus serum neutralizing antibody titers were measured using
WHO-standardized microneutralization assays [12,35]. The
primary outcomes were serotype-specific non-response, defined
as Log2 (titer) < 3 (hereafter called seroconversion failure), and
Log2(titer). Exposures of interest are briefly defined below and in
Supplemental Table 1.

2.3. Vaccination history

Children were vaccinated at local health facilities and during
vaccine campaigns; not by the MAL-ED study. Structured monthly
questionnaires were administered to record dates of vaccination,
along with a quarterly assessment of confirmed dates and receipt
of vaccination [12,36]. Locally-defined rainy seasons were also
identified to classify OPV timing.

2.4. Enteropathogen detection, diarrhea, and nutrient status

Twice-weekly household surveillance captured the occurrence
of diarrheal symptoms (�3 loose stools in 24 h) [34]. Diarrheal
stools collected during household visits and non-diarrheal stools
(separated by �2 diarrhea-free days) collected monthly in the first
year and quarterly in the second year, were tested for �40 entero-
pathogens [37]. Frequency of diarrhea episodes and enteropatho-
gen detection scores were computed at early ages (4, 8, 12 and
16 weeks) and at the time of blood draw (7 and 15 months). Diar-
rhea frequency was additionally assessed 1, 3, and 5 days before
and after an OPV dose. Enteropathogen scores were computed as
the cumulative number of pathogen detections divided by the total
stools collected up to a specified age. Scores were computed sepa-
rately by stool type (diarrhea vs. non) and for all stools combined.
We evaluated scores for individual ((Campylobacter, Cryptosporid-
ium, enteroaggregative Escherichia coli (EAEC), Giardia) and patho-
gen categories (bacteria, viruses, parasites, all combined). Finally,
gut inflammation and permeability were measured using fecal a-
1 antitrypsin, neopterin, myeloperoxidase, and urinary lactulose:-
mannitol ratio [38].

Nutritional status was measured using monthly anthropometry
and serum biomarkers at 7 and 15 months. Monthly anthropome-
try (length (cm), weight (kg)) was converted to length-for-age
(LAZ), weight-for-age (WAZ), weight-for-length (WFL) Z-scores
and categorized (stunted LAZ < �2, wasted WAZ < �2, under-
weight WFL < �2) based on WHO standards [39]; quality control
procedures revealed bias in length measures from Naushero Feroze
(Pakistan) thus children from this site were excluded in analyses
involving length. Growth velocity during the first three months
of life was also computed. Biomarkers of nutrient status (retinol,
ferritin, transferrin receptor, hemoglobin, zinc, alpha-1-acid glyco-
protein) were measured from the same blood samples as OPV titers
[40].

Infant feeding patterns, including, frequency of breastfeeding
and age at introduction of non-breastmilk liquids and solids, were
recorded during household surveillance visits [40]. Breastfeeding
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status was characterized as exclusive, partial, or predominant
(Supplemental Table 1 for definitions).
2.5. Socioeconomic status and HOME environment

A socioeconomic status index was developed for the MAL-ED

study [41]. The index is a composite of: Water/sanitation, house-

hold Assets, Maternal education, and household Income (WAMI,
components range from 0 to 8; components are summed and
divided by 32; WAMI ranges from 0 to 1). WAMI components were
measured at 6, 12 and 18 months; however, little variation existed
over time, so mean scores for these time points were used.

A modified version of the Home Observation for the Measure-
ment of the Environment (HOME [42,43]) was administered by
the MAL-ED study at 6, 24, and 36 months of age [44]. Two HOME
Fig. 1. Child samples selected for OPV response study. Blood sample collection from
sufficient volume were tested for poliovirus serotype 1, 2, and 3 serum neutralizing antib
of whomwere from the MAL-ED cohort study site in South Africa. Blood samples collected
prior to the date of blood collection were also excluded. The 2541 samples included in th
1449 children (75%) contributed samples at both time points.

Table 1
OPV schedule and percent of children enrolled who received at least 3 OPV doses by 7, 15
weeks by multiplying by 4. e.g., Bangladesh has a 4th dose at 9 months (36 weeks); India
months (8, 16, 24 weeks), with Brazil administering another dose at 15 months (60 weeks

Site Na OPV schedule (we

Dhaka, Bangladesh (BGD) 223 6, 10, 14, 36
Bhaktapur, Nepal (NEB) 232 6, 10, 14
Vellore, India (INV) 233 0, 6, 10, 14, 64–9
Naushero Feroze, Pakistan (PKN) 260 0, 6, 10, 14
Fortaleza, Brazil (BRF) 186 8, 16, 24, 60
Loreto, Peru (PEL) 259 8, 16, 24
Haydom, Tanzania (TZH) 210 0, 4, 8, 12

Total 1603

a Sample sizes include all children enrolled in the study who provided a blood sampl
b Total doses are computed to the exact monthly age and not the age of the blood draw

from analysis.
factor scores (range 0–4) were computed: Clean and Safe Environ-
ment, which reflects (permanent) environments conducive to the
safety and health of the child; and Child Cleanliness, which reflects
cleanliness of the child [45]. This analysis uses the 6 month scores
and change from 6 to 24 months.
2.6. Statistical analysis

Analyses focused on response to serotypes 1 and 3. Univariate
analyses were used to compare characteristics across sites and to
assess differences in response (seroconversion failure and Log2
titers) across factors using the Cochrane-Armitage Trend test (for
continuous factors divided into ordered categories) and t-tests
(for factors consisting of two groups). Two multivariate models
were fit for serotypes 1 and 3 with random effects to adjust for
each child was scheduled at seven and 15 months of age. All blood samples with
ody assays. Children administered inactivated poliovirus vaccines were excluded, all
from children receiving less than three documented doses of oral poliovirus vaccine
is analysis represent 1449 children from seven MAL-ED cohort study sites. 1092 of

, and 24 months of age by site. Schedules indicating monthly doses are converted to
has a 5th dose between 16 and 24 months; Brazil and Peru have doses at 2, 4 and 6
); and Tanzania administered OPV at 1, 2, and 3 months (4, 8, 12 weeks).

eks) Percent (%) of all children enrolledwho received�3doses by ageb

7 months 15 months 24 months

95.5 97.8 98.7
100 100 100

6 92.7 97.0 100
100 100 100
61.3 87.1 90.3
83.0 95.4 95.8
61.4 66.7 67.6

86.0 92.6 93.8

e.
; children with fewer than three doses at the time of the blood draw were excluded
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correlation within site and a fixed effect for age at sample collec-
tion (in months): a logistic model for serotype failure and linear
mixed model for Log2 titer (See supplementary material). Model
selection was guided using AIC statistics. Significance was inter-
preted at the 0.05 level; however, with five thematic areas evalu-
ated (vaccination history, infant feeding practices, nutritional
status, enteric infection, home environment), a Bonferonni cor-
Fig. 2a. Poliovirus serotype 1 neutralization titer distributions by site and schedule
Brazil (BRF); Vellore, India (INV); Bhaktapur, Nepal (NEB); Loreto, Peru (PEL); Naushero

Fig. 2b. Poliovirus serotype 3 neutralization titer distributions by site and schedule
Brazil (BRF); Vellore, India (INV); Bhaktapur, Nepal (NEB); Loreto, Peru (PEL); Naushero
rected alpha-level of 0.01 is also provided. All analyses were con-
ducted using SAS 9.4 (SAS Institute Inc., Cary, NC, USA) [46].

2.7. Role of the funding sources

The Bill & Melinda Gates Foundation did not play any role in the
writing of the manuscript nor in the study design, data collection,
d month of blood collection. Site locations; Dhaka, Bangladesh (BGD), Foratleza,
Feroze, Pakistan (PKN); Haydom, Tanzania (TZH).

d month of blood collection. Site locations; Dhaka, Bangladesh (BGD), Foratleza,
Feroze, Pakistan (PKN); Haydom, Tanzania (TZH).
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data analysis, or interpretation of results. The corresponding
author had full access to all the data in the study and final respon-
sibility for the decision to submit for publication.
3. Results

In total, 1862 children provided blood samples and poliovirus
titers for serotypes 1–3 were obtained from 1853 children
(Fig. 1). South Africa uses a combined OPV-IPV schedule, thus
250 children from Venda received IPV and were excluded from this
analysis. Vaccine schedules were comparable across the remaining
sites (Table 1), with all children scheduled to receive a minimum of
three OPV doses by six months of age [47]. Among the eligible
1603 children, 224 (14.0%) and 118 (7.4%) did not receive three
OPV doses by seven and 15 months of age, respectively (Table 1).
However, due to some delayed blood draws, 133 children were
excluded from this analysis who had not received sufficient OPV
doses prior to actual time of sampling.

Seroconversion rates (and geometric mean titers [GMT]) for ser-
otypes 1 and 3 were 1227/1294 (95%; 9.47) and 1130/1294 (87%;
8.30), respectively at 7 months, and 1205/1247 (97%; 9.39) and
1118/1247 (90%; 8.15) at 15 months (Figs. 2a and 2b). Titers were
highest in Fortaleza and Bhaktapur (Figs. 2a and 2b); however, titer
distributions varied: at 15 months, serotype 1 seroconversion ran-
Table 2a
Final multivariate models for serotype 1 failure and serotype 1 Log2 titer among children re
of the final multivariate model (e.g., diarrheal bacterial score at 3 months was not part of t
Supplemental.

Site (REF = BRF) BGD
INV
NEB
PEL
PKN
TZH

Age at blood draw (in months)1

OPV doses (REF = 3) 4
5+

Enteropathogen scores, diarrheal stools
All pathogens At blood draw
Bacteria at 3 months

Enteropathogen scores, diarrheal & non-diarrheal stools
Bacteria At blood draw

Nutritional variables
Age solids introduced (REF � 4 m) 2–4 m

<2 m
Plasma transferritin receptor (lg/mL, REF � 8.9) 2.9–8.3

<2.9

Socioeconomic status & home environment
WAMI, assets component1

WAMI (overall index)1

Child cleanliness (6–24 m change, REF: no change)1 Worse
Better

Age * child cleanliness (6–24 m change) Worse
Better

yyy p < 0.001.
yy p < 0.01.
y p < 0.05.

* p < 0.10.
1 Age was centered at 7 months, WAMI (range 0–1) was centered at 0.5, WAMI-Assets
2 The intercept for Serotype 1 failure was �6.448; the intercept for Log2 (Serotype 1 tite

observations; the serotype 1 titer model used 2378. Missing data were primarily due to
environment measures.

3 For seroconversion failure, we can replace the diarrhea-associated pathogen score a
provide approximately the same model, with a slightly higher AIC. The odds ratio for a on
correlation between the diarrheal pathogen and bacteria score was high (rho = 0.90), in
ged from 153/172–131/132 (89–99%), and for serotype 3, response
ranged from 46/64–128/132 (72–97% in Haydom and Fortaleza).

Several factors were identified as influencing OPV response in
univariate and multivariate analyses; these are presented by
groups (vaccine history, enteropathy and nutrition, home environ-
ment). Model results (Tables 2a and 2b) are described by group
(aspects of model fit are presented in Supplemental). Importantly,
children in Loreto and Vellore had the highest adjusted odds of fail-
ure and the lowest predicted serotype 1 Log2 titers. In contrast,
children in Fortaleza and Bhaktapur had the lowest odds of failure,
with children in Fortaleza and Haydom having the highest titers.
For serotype 3, children in Loreto and Haydom had the highest
adjusted odds of failure, and children in Vellore had significantly
lower titers compared to all other sites (p < 0.0001). Children in
Fortaleza had significantly lower odds of serotype 3 failure com-
pared to children in Vellore, Bhaktapur, Loreto and Haydom and
significantly higher titers than children in Dhaka, Vellore, Bhakta-
pur and Haydom. Tables 2a and 2b have very poor alignment in
the PDF Proof - the 95% CI wraps into a second line and it makes
it very hard to read the tables. Can this be corrected?

3.1. Vaccine history

By 15 months of age, 99/1603 enrolled children (6.2%) had not
received three OPV doses (Table 1). Children in Naushero Feroze
ceiving a minimum of 3 OPV doses. Variables with no estimate indicated were not part
he final model for serotype 1 failure). Effect sizes for these and other covariates are in

Serotype 1 failure2,3 Serotype 1 Log2 titer2

Odds ratio (95% CI) Beta (95% CI)

5.6 (0.49–63.5) �0.46y (�0.89 to 0.03)
7.8* (0.69–87.1) �0.92yyy (�1.39 to 0.46)
1.5 (0.15–16.2) �0.24 (�0.63 to 0.15)
15.2y (1.55–149) �0.46y (�0.9 to 0.02)
6.6 (0.47–92.8) �0.13 (�0.58 to 0.33)
4.8 (0.38–59.6) 0.14 (�0.49 to 0.76)

1.02 (0.92–1.10) �0.03yy (�0.04 to 0.01)

0.24y (0.08–0.70) 0.33yy (0.11–0.56)
0.07yyy (0.02–0.30) 0.55yyy (0.31–0.8)

1.89yy (1.23–2.90)
�0.34yyy (�0.54 to 0.14)

�0.33yy (�0.57 to 0.08)

4.2yy (1.59–11.0) �0.29yy (�0.5 to 0.07)
2.5 (0.83–7.50) �0.26y (�0.52 to 0)

�0.16* (�0.32 to 0.01)
�0.33y (�0.6 to 0.06)

0.83 (0.66–1.05)
0.79y (0.15–1.43)

3.4y (1.16–10.2)
3.1 (0.8–12.0)
0.95 (0.82–1.10)
0.66y (0.45–0.90)

(range 0–8) was centered at 4, and change in Child Cleanliness ranges from �4 to 4.
r) is 9.73. The serotype 1 failure model used a final sample size of 2316 non-missing
missing enteropathogen data at 3 months, plasma transferritin receptor, and HOME

t the blood draw with the diarrhea-associated bacteria score at the blood draw to
e-unit change in the diarrheal bacteria score was 1.84, with a p-value of 0.0254. The
dicating that both variables could not be included in the model.



Table 2b
Multivariate model results for serotype 3 failure and serotype 3 Log2 titer among children receiving a minimum of 3 OPV doses. Variables with no estimate indicated were not
part of the final multivariate model. Effect sizes for these and other covariates are in Supplemental.

Serotype 3 failure2,4 Serotype 3 Log2 titer2

OR (95% CI) Beta (95% CI)

Site (REF = BRF) BGD 7.12* (0.96–52.6) �0.58y (�1.16 to 0)
INV 13.2* (1.61–108.3) �1.76yyy (�2.39 to 1.14)
NEB 7.45* (1.06–52.3) �0.56y (�1.08 to 0.04)
PEL 16.6yy (2.26–122.4) �0.42 (�1.01 to 0.16)
PKN 8.59* (0.99–74.8) �0.41 (�1.02 to 0.21)
TZH 16.1y (1.45–178.8) �1.08y (�1.93 to 0.24)

Age at blood draw (in months)1 0.98 (0.93–1.04) �0.06yyy (�0.08 to 0.03)

OPV doses (REF = 3) 4 0.37y (0.17–0.81) 0.42yy (0.14–0.7)
5+ 0.11yyy (0.04–0.28) 0.85yyy (0.54–1.15)

Enteropathogen scores, non-diarrheal stools
Parasites At blood draw �0.41 (�0.77 to 0.04)

Enteropathogen scores, diarrhea & non-diarrhea stools
Bacteria At 3 months 3.01yyy (1.56–5.78) �0.53yyy (�0.77 to 0.29)
Parasites At blood draw 7.56y (1.51–37.95)

Nutritional variables
% days underweight (REF � 50%)3 10–49% 0.34y (0.12–0.93) 0.3 (�0.08 to 0.69)

<10% 0.27yy (0.1–0.68) 0.41y (0.05–0.77)
Plasma transferretin receptor (lg/mL, REF � 8.9) 2.9–8.3 �0.18* (�0.39 to 0.02)

<2.9 �0.41y (�0.74 to 0.07)

Socioeconomic status & home environment
WAMI (overall index)1 0.04y (0–0.47) 1.23yy (0.34–2.12)

yyy p < 0.001.
yy p < 0.01.
y p < 0.05.

* p < 0.10.
1 Age was centered at 7 months, WAMI is centered at 0.5 (range 0–1).
2 The intercept for Serotype 3 failure was �5.9861; the intercept for Log2 (Serotype 3 titer) is 8.54. The sample size for the serotype 3 failure model is 2302, for the Log2

(Serotype 3) model 2378.
3 10% or fewer days underweight is approximately equal to one month of seven months measured as underweight at the 7 m blood draw compared to 50% corresponding to

approximately four of seven months.
4 Replacing WAMI with WAMI-Sanitation (range 0–8) results in an identical model fit. A one-unit change in WAMI Sanitation resulted in a 0.74 (95% CI 0.60–0.92, p =

0.0073) lower odds of serotype 3 failure. In addition, adding Urinary Mannitol z-score at 6 months of age provided slightly improved fit to the original model (with both
WAMI and WAMI-Sanitation); however, it resulted in a loss of 200 observations (�9% of the data). This second model did not alter odds ratio estimates for any covariates
listed above for the final serotype 3 failure model and indicated that a one-unit increase in the 6-months Mannitol z-score would reduce the odds of serotype 3 failure by 0.67
(95% CI 0.47–0.94, p = 0.0227).

Table 3a
Vaccine history & OPV response.

Results at 7 months followed the same trends as those observed at 15 months.
y p < 0.05 from Cochrane-Armitage Trend test.
yy p < 0.01 from Cochrane-Armitage Trend test.
yyy p < 0.0001 from Cochrane-Armitage Trend test.

W.K. Pan et al. / Vaccine 37 (2019) 352–365 357
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received the highest mean number of OPV doses (8.2 by 12
months), while children in Loreto and Fortaleza received the few-
est (3.0 and 3.7, respectively). Among the three sites with a birth
dose, delays were observed where the average age of the first
dose was 14 (Vellore), 16 (Naushero Feroze), and 40 (Haydom)
days.

OPV response was strongly associated with the number of doses
received in univariate analyses (Table 3a). Children receiving more
OPV doses had significantly improved responses for serotypes 1
and 3 at 7 and 15 months; however, the effect was attenuated if
doses were administered during the rainy season. Children with
a delayed first dose of OPV had poorer response to each serotype
(Table 3a).

Serotype 1 response was strongly associated with the number
of OPV doses received in the multivariate model; however,
improvements were minimal above 5 doses (Table 2a). When com-
Table 3b
Enteropathogens, diarrhea and nutrient status compared to

diarrhea

diarrhea

Diarrhea,

Results at 7 months followed the same trends as those ob
1 Cutpoints used represent tertiles for the specific variabl
diarrhoea frequency up to the 15 month blood draw.
2 Growth velocity tertiles were computed as the difference
divided by the difference in days between the two meas
>0.124 (T3).
y p < 0.05 from Cochrane-Armitage Trend test.
yy p < 0.01 from Cochrane-Armitage Trend test.
yyy p < 0.0001 from Cochrane-Armitage Trend test. Same ge
the categories and the notches in the box plot. The PDFpr
paring children who received 3, 4, 5, 6 and 7+ doses, there were no
significant differences in failure, except a borderline significant dif-
ference for 4 vs. 6 doses (OR = 1.37, 95%CI �0.09 to 2.83). Similarly,
in the serotype Log2 1 titer model no differences were observed for
receiving 5, 6 or 7+ doses; however, a higher titer was achieved for
4 vs. 3 doses (0.41, 95% CI 0.19–0.64) and 5 vs 4 doses (0.24, 95% CI
0.013–0.466).

Serotype 3 responses improved with more OPV doses in the
multivariate model (Table 2b). Odds of serotype 3 failure declined
up to 7+ OPV doses, and Log2 titers significantly improved up to 5
doses. Only children in Naushero Feroze received 8+ doses; there-
fore, a second serotype 3 evaluation was conducted excluding
Naushero Feroze: no change was indicated in the Log2 model; how-
ever, odds of failure did not significantly improve beyond 5 doses;
therefore, the final multivariate model reports effects up to 5 or
more OPV doses (Table 2b).
OPV response.

served at 15 months.
e. For example, <10, 10–50, and >50 days are tertiles for

in length at 3 months and the earliest measure of length
ures. Tertiles were 0–0.105 (T1), 0.105–0.124 (T2); and

neral comments as Table3a, particularly the alignment of
oof has the alignment even further off.



Table 4
Enteropathogen burden scores in diarrheal and non-diarrheal stools, mean total diarrhea episodes and nutritional status at the time of the 7 month blood draw, by site.

Site N Enteropathogen scores in diarrheal and non-diarrheal stools and cumulative days with diarrhea
[mean (95% CI)]

Nutritional status

All pathogens Bacteria Parasite Cumulative days of diarrhea % Stunted1 % Anemic2

BGD 200 0.76 (0.70–0.82) 0.64 (0.59–0.7) 0.03 (0.02–0.04) 8.2 (6.9–9.5) 20.0% 47.2%
NEB 221 0.58 (0.54–0.63) 0.49 (0.44–0.53) 0.03 (0.02–0.04) 9.4 (8.0–11) 6.3% 79.2%
INV 216 0.74 (0.69–0.8) 0.63 (0.59–0.68) 0.05 (0.04–0.07) 5.2 (4.2–6.1) 20.4% 51.4%
PKN 258 1.34 (1.27–1.41) 1.01 (0.95–1.06) 0.25 (0.22–0.28) 29.2 (26–33) NA 71.3%
BRF 100 0.95 (0.83–1.07) 0.88 (0.77–1.00) 0.05 (0.03–0.07) 0.3 (0.1–0.5) 2.0% 45.0%
PEL 213 0.53 (0.48–0.57) 0.36 (0.32–0.40) 0.12 (0.09–0.14) 10.2 (8.6–12) 21.6% 63.4%
TZH 94 1.02 (0.92–1.12) 0.84 (0.75–0.93) 0.10 (0.07–0.13) 3.1 (2.3–4.0) 28.0% 61.7%

NA = Not available for PKN due to biases detected in length measurements during data collection.
1 Stunting defined as LAZ < �2.0.
2 Anemia defined as hemoglobin (adjusted for altitude) <11.0 g/dL.

Fig. 3a. Polio serotype 1 titers by enteropathogen detection scores (bacteria, parasites, viruses, all combined) computed for diarrheal, non-diarrheal and all stools
combined among children receiving at least 3 OPV doses at the scheduled 7 month blood draw. Scatter plots include penalized B-splines (10 knots) and 95% confidence
intervals. A chi-square test was evaluated for each scatter plot comparing the percent of children who failed to seroconvert in a high vs. low enteropathogen score group
where high was defined as the approximate 75th percentile of the enteropathogen score (i.e., 1.0, 0.33, 0.15, and 1.25 for Bacteria, Parasite, Virus and All Pathogens Scores,
respectively); y indicates p < 0.05; yy indicates p < 0.01.
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3.2. Enteropathogen detection, diarrhea, and nutritional status

Enteropathogen detection and nutritional status varied by site
(Table 4), as previously reported [48–50]. Enteropathogen burden
was highest in Naushero Feroze and Haydom (Table 4), and the
average total days of diarrhea at 7 m ranged from 0.3 (Fortaleza)
to 29.2 (Naushero Feroze). All sites reported at least 20% stunting
prevalence at 7 m, except Fortaleza (2/100, 2%) and Bhaktapur
(14/221, 6%).

We evaluated the effect of enteropathogen infection with and
without diarrhea on OPV response. Univariate analyses revealed
that higher enteropathogen detection scores for all pathogens
combined were associated with lower response for both serotypes,
while higher parasite detection scores in diarrheal and non-
Fig. 3b. Polio serotype 3 titers by enteropathogen detection scores (bacteria, parasi
combined among children receiving at least 3 OPV doses at the scheduled 7 month b
intervals. A chi-square test was evaluated for each scatter plot comparing the percent o
where high was defined as the approximate 75th percentile of the enteropathogen score
respectively); y indicates p < 0.05; yy indicates p < 0.01.
diarrheal stools were associated with lower serotype 3 response
(Table 3b, Figs. 3a and 3b). In addition, the bacterial detection score
in diarrheal and non-diarrheal stools at 3 months of age was asso-
ciated with lower Log2 titers and greater risk of failure for both ser-
otypes (not shown). No other enteropathogen scores measured
during the neonatal period were associated with serotype 1 or 3
response.

The final multivariate models indicate that enteropathogen
detection in diarrheal, non-diarrheal and both stool types com-
bined were differentially associated with OPV seroconversion fail-
ure and titer (Tables 2a and 2b). Initial model selection
(Supplemental Table 3d) identified the importance of non-
diarrheal enteropathogen scores primarily associated with sero-
type 3 response, while diarrheal enteropathogen scores associated
tes, viruses, all combined) computed for diarrheal, non-diarrheal and all stools
lood draw. Scatter plots include penalized B-splines (10 knots) and 95% confidence
f children who failed to seroconvert in a high vs. low enteropathogen score group
(i.e., 1.0, 0.33, 0.15, and 1.25 for Bacteria, Parasite, Virus and All Pathogens Scores,
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with serotype 1. For serotype 1, a one-unit increase in the diarrhea-
associated all-pathogen score at the time of blood draw increased
the odds failure by 1.9 (95% CI 1.23–2.90; no other enteropathogen
scores were associated with serotype 1 failure once this variable
was included in the model). In contrast, serotype 1 titer was nega-
tively associated with the combined stool type bacteria score at the
blood draw and the diarrhea-associated bacteria score at 3 months
of age. For serotype 3, parasite and bacterial scores were predictive
of response: a one-unit increase in the three-month bacteria score
in combined stool types was associated with a 3.0 (95% CI 1.56–
5.78) higher odds of failure and a 0.53 (95% CI 0.29–0.77) lower
Log2 titer. The non-diarrheal parasite score was associated with a
0.41 (95% CI 0.04–0.77) lower Log2 titer, while the combined stool
type parasite score increased odds of failure by 7.6 (95% CI 1.51–
37.9). As with serotype 1, other enteropathogen scores were
related to serotype 3 response, but were not important after
adjusting for parasite and bacterial scores.

In contrast to enteropathogen detection scores, diarrhea inci-
dence most individual enteropathogens (Giardia, EAEC, Cryp-
tosporidium), and most biomarkers of gut inflammation (a-1
antitryptin, neopterin, myeloperoxidase, lactulose) were not asso-
ciated with serotype 1 or 3 response (Supplemental Tables 3d
and 3e). Campylobacter detection in either diarrheal or non-
diarrheal stools was associated with increased failure and lower
r=0.12 r=0.12

r=0.09 r=0.18

Fig. 4. Serotype 1 and 3 titer distributions and confidence intervals for WAMI comp
correlation coefficients (denoted r) are reported in the lower right corner of each scatter
correlations with Maternal Education, which were not significant)
titers for both serotypes; however, it did enter the final models.
Adding urinary mannitol z-score at 6 months of age did slightly
improve model fit for serotype 3 failure based on AIC; however it
also resulted in a loss of 200 observations due to missing data. A
one-unit increase in the mannitol z-score was associated with a
0.67 (95% CI 0.41–0.94) lower odds of serotype 3 failure.

Infant feeding practices had a larger influence on serotype 1
response vs. serotype 3. Nearly one fifth (19%) of children were
introduced to solid foods before 2 months of age, corresponding
with 2.5 higher odds of serotype 1 failure (95% CI 0.83–7.5) and
0.26 lower Log2 titer (95% CI 0.01–0.52) compared to introduction
after 4 months (Table 2a). Introduction of solids between 2 and 4
months of age increased odds of serotype 1 failure by 4.2 (95% CI
1.6–11.0) and lowered Log2 titer by 0.29 (95% CI 0.07–0.50) com-
pared to introduction after 4 months of age. For serotype 3, no
infant feeding practices were associated with response in the final
multivariate models or in model selection (Supplemental
Table 3b). Duration of breastfeeding (exclusive or partial) was
not predictive of response to either serotype.

Measures of nutritional status were not strongly associated
with OPV response. Growth velocity, LAZ and WLZ were not asso-
ciated with response to either serotype (Table 3b, Supplementary
Table 3c). Underweight (WAZ < �2) was not associated with sero-
type 1 response, nor with serotype Log2 3 titer; however, less time
r=0.01 r=0.17  

r=0.04 r=0.23  

onent scores at 15 months. Penalized B-splines were fit using 10 knots. Pearson
plot (all correlations have p < 0.0001 for the test of r being different from 0, except



Fig. 5. Distribution of WAMI component and HOME Cleanliness scores by site. Sites are sorted by highest to lowest overall WAMI score. Symbol descriptions: the box
represents the Interquartile Range (25th to 75th percentile); the black plus (+) is the mean; the median is indicated by the box notch; lines extending from the box with hash
marks are 1.5 times the interquartile values; and circles represent potential outliers.
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considered underweight was related to lower odds of serotype 3
failure (Table 2b). The only nutritional biomarker associated with
OPV response was transferrin receptor (TfR). Overall, 58% of chil-
dren with TfR < 8.3 were anemic compared to 73% of children with
TfR > 8.3, which is considered iron-deficiency anemia. Lower TfR
concentrations (<2.9 lg/mL) reduced serotype 1 Log2 titer by
0.33 (95% CI 0.06–0.60), and reduced serotype 3 Log2 titer by
0.41 (95% CI 0.07–0.74) compared to TfR above 8.3 lg/mL (Tables
2a and 2b).

3.3. Socioeconomic status and HOME environment

WAMI components were strongly predictive of OPV response.
Higher serotype 1 titers were associated with higher WAMI com-
ponent scores in the penalized B-spline models (Fig. 4), but there
was no relationship between titers and HOME environment
scores (not shown). WAMI and HOME score relationships with
serotype 3 were similar to serotype 1. Although WAMI and
HOME scores were moderately correlated (Pearson correlation
>0.4 for most combinations), differences between WAMI and
HOME scores with OPV response are partially explained by their
variability across sites (Fig. 4). WAMI components were hetero-
geneous: Fortaleza and Bhaktapur WAMI scores were signifi-
cantly higher than in Haydom and Vellore. In contrast, Child
Cleanliness scores were homogenous, with some declines
observed by 24 months (see Fig. 5).

Multivariate models confirmed strong relationships between
WAMI and OPV response, and moderate relationships with HOME
scores. Initial model selection identified all WAMI components as
significantly related to serotype 3 response, while assets and sani-
tation were significantly related to serotype 1 (Supplemental
Table 3a). AIC differentiated the best fitting models.

For serotype 1, the assets component and overall WAMI index
were most predictive of the final failure and Log2 titer models,
respectively. A higher Assets score was associated with lower odds
of failure, but was not significant. A 0.1 unit increase in WAMI was
associated with a 0.08 (95% CI 0.077–0.081) Log2 titer increase
(Table 2a). For serotype 1 titer, Assets and Sanitation were the
most predictive components associated with response; however,
the WAMI index provided the best model fit. Improved home envi-
ronment as measured by the Child Cleanliness score (change from
6 to 24 months) and an interaction with age were predictive of ser-
otype 1 failure. In addition, an interaction between age and change
in Child Cleanliness Collectively, improving Child Cleanliness was
associated with lower odds of serotype 1 failure.

Serotype 3 response was predicted by the WAMI index, but not
HOME scores. A 0.1 unit increase in WAMI was associated with
0.72 (95% CI 0.70–0.75) lower odds of failure and 0.123 (95% CI
0.119–0.127) increase in Log2 titer (Table 2b). Replacing WAMI
with sanitation in the final failure model resulted in similar AIC,
with a one-unit change in sanitation resulting in a 0.74 (95% CI
0.60–0.92) lower odds of serotype 3 failure.

4. Discussion

The MAL-ED study allowed for the evaluation of factors influ-
encing OPV seroconversion under real-world conditions at a time
when strategies and interventions had been implemented to max-
imize OPV response. Our unique study design differs from most
OPV studies particularly in the intensively recorded vaccine
administration, child health (enteropathogen and diarrheal
surveillance, nutrition, feeding practices), and indicators of home
environment and poverty. The design allowed us to test—across
multiple sites with varying health systems and socioenvironmental
contexts—how OPV immunization programs were performing just
prior to the global shift to IPV. In the MAL-ED cohort, six OPV doses
maximized response for both serotypes (four minimized serotype
1 serofailure, five minimized serotype 1 serofailure when Naushero
Feroze excluded, and five maximized serotype 1 and 3 titers), and
OPV response was attenuated by high enteropathogen infection,
early introduction of solids, and poor socioeconomic environment.

Both enteropathogen detection and diarrhea occurrence were
intensely measured in MAL-ED. Neither diarrhea occurrence, diar-
rhea at the time of OPV administration, nor individual entero-
pathogen infections during a diarrhea episode were found to be
associated with either polio serotype response. Although diarrhea
has been historically identified as a predictor of OPV response
(e.g., [28,29,51]), the majority of diarrhea experienced by MAL-
ED children was of short duration and mild severity. Enteropatho-
gen category scores (bacteria, parasites, all pathogens combined)
for each stool type did have differential serotype response relation-
ships with diarrheal-associated scores predictive of serotype 1 and
non-diarrheal (and combined stool types) associated with serotype
3. The surprising lack of a dominant signal between diarrhea and
OPV response suggests that severe clinical manifestations of infec-
tion are not required to exert pernicious influence. This association
was particularly found for bacteria and parasites; viral pathogens
were not associated with response, possibly due to the limited
number of viruses screened.

Increased enteropathogen detection has been correlated with
several biomarkers indicating gut inflammation or permeability
in this cohort [52,53]. However, with the exception of mannitol
predicting serotype 3 failure, these biomarkers were not associ-
ated with OPV response. Biomarkers indicative of gut function
show some promise for measuring normal mucosal immune
response [54]; however, this is an area of on-going research
and other markers may better reflect immune response in
children.
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During the early years of OPV implementation, transplacental
antibody transfer and the intensity of early, exclusive breastfeed-
ing were hypothesized to promote non-responsiveness to OPV
[13,14,16]. Recent research has indicated that longer breastfeeding
duration and improved nutritional status may enhance OPV
response [29,30]. We did not find strong associations between
breastfeeding (exclusive or partial) or growth measures and OPV
failure. The effect of breastfeeding was likely attenuated given that
the median duration of exclusive breastfeeding was under 35 days
in Bhaktapur, Loreto, Naushero Feroze, and Haydom, with only
children in Dhaka exclusively breastfed for more than 90 days.
The heterogeneous feeding practices and growth rates of the
MAL-ED cohort potentially improved testing of these factors com-
pared to more homogeneous, single cohort/population studies.
Although growth velocity and stunting prevalence were not pre-
dictive of OPV response in our cohort, chronic underweight was
predictive of serotype 3 response, consistent with previous
research [29]. TfR was predictive of serotype 1 and 3 titer; how-
ever, further analyses did not identify anemia or iron-deficiency
anemia as predictors.

Our findings strongly support ancillary benefits of poverty
reduction. Our measure of socioeconomic status (WAMI) was con-
sistently a strong predictor of OPV response. In sites that shared
similar vaccine schedules, OPV response tended to be significantly
higher in those with better WAMI scores. Conceptually, socioeco-
nomic status is predictive of quality of the HOME environment,
enteropathogen detection and incidence of diarrhea [55,56]; yet
only enteropathogen detection was predictive of OPV response.
However, it is enlightening that improved child cleanliness was
associated with lower serotype 1 failure, which was indicative of
both overall home cleanliness and positive home hygienic
behaviour.

Our results highlight a key challenge for the WHO Polio End-
game Strategy of achieving >80% vaccine coverage with full
immunogenicity. Seroconversion rates in the MAL-ED cohort were
similar to previous reports from low- and middle-income countries
[19,57,58], with approximately 10% non-response following three
OPV doses. However, at 7 months of age, 14% of children did not
receive three OPV doses, making the 80% threshold goal tenuous.
Even in SAV, where both OPV and IPV are administered, only 70%
of children were fully vaccinated by 7 months (MAL-ED OPV-IPV
companion paper). A key factor in improved coverage is socioeco-
nomic status. It is imperative to recognize that the increased cost
of IPV may result in unintended lower coverage. Although supple-
mental dosing of IPV with OPVmay overcome challenges regarding
coverage and improved immunogenicity [33,59], our findings sug-
gest that responses to OPV-IPV schedules may improve as more
children rise out of poverty. Improved protection against polio
could be factored into cost-effectiveness evaluations of interven-
tions aimed at eradicating poverty. Conditional cash-transfer pro-
grams provide some evidence of this, with many of these poverty
reduction programs impacting household consumption, labor deci-
sions and child health [60–62]. Whether OPV, IPV or other vaccine
responses improve as an externality to poverty reduction interven-
tions is an important area for further research.

Study limitations include the inability to evaluate serotype 2
interference (likely minimal due to current trivalent OPV formula-
tion) [19,20], the inability to assess mucosal immune responses
preventing transmission, and the lack of data on maternal antibod-
ies. Although the neutralizing antibodies measured in this study
reflect individual protection against poliomyelitis, the prevalence
of lack of seroconversion combined with inadequate coverage sug-
gest there is substantial risk for transmission [63,64]. Most impor-
tantly, the observational nature of the study led to limitations (and
strengths) arising from variation in OPV dosing and timing of blood
collection. Since MAL-ED was designed to test multiple hypotheses
that required repeated collection of data from children on a bi-
weekly basis, blood collection for vaccine response was limited
to two time points.

MAL-ED is one of themost comprehensivemulti-site enteric dis-
ease birth cohort studies conducted. Sites exhibited heterogeneity
in several respects, most notably that OPV non-response was
greater at the lower SES sites. However, no site-level or age-
period differences were detected in the associations between the
factors of greatest importance for OPV failure. This consistency pro-
vides clear guidance for improving response to serotypes 1 and 3,
which can inform implementation of the WHO’s Global Polio Erad-
ication Initiative Plan. Our results suggest that the most important
pathways to achieve OPV seroprotection in impoverished settings
include administering the minimally optimal number of vaccine
doses and improving socio-environmental conditions and sanita-
tion to reduce early enteropathogen exposure.
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