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Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such

as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an

ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have ex-

amined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze tran-

scriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize

molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis

and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are

apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that

form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss

of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contrib-

utes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of

post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein

homeostasis, suggesting that genetic variation can alter the molecular aging process.

[Supplemental material is available for this article.]

Cardiovascular (CV) diseases are the leading cause of death in el-
derly people. Improved understanding of mechanisms that under-
lie the changes that occur in the aging heart could open new
opportunities for prevention and treatment (Chiao and Rabino-
vitch 2015). As the heart ages, characteristic physiological changes
occur, including increased arterial thickening and stiffness, endo-
thelium dysfunction, valvular fibrosis and calcification, and a
switch from fatty acid to glucose metabolism (Stanley et al. 2005;
North and Sinclair 2012; Quarles et al. 2015). Compensatory
mechanisms may temporarily maintain heart function but can
also contribute to progressive deterioration and eventual heart fail-
ure (North and Sinclair 2012). For example, thickening of the left
ventricle and remodeling of the extracellular matrix may compen-
sate for loss of systolic function (North and Sinclair 2012; Quarles
et al. 2015). However, in the long term, the increased wall stress
causes the left ventricle to dilate, leading to a decline in systolic
function (Dai et al. 2012). Physiological measures of cardiac func-
tion that changewith agehavehighheritability suggesting that ge-
netic factors contribute to variability in cardiac aging in humans
(Melzer et al. 2007).

Despitewell-known physiological changes in the aging heart,
dissecting the cellular and molecular basis of age-related change is
challenging because of the complex dynamics and inter-individual
variability of the aging process (López-Otín et al. 2013; Singh et al.
2019). Age-related changes at the cellular levels have been associat-

ed with loss of protein homeostasis and increased inflammation
(López-Otín et al. 2013). Variability of transcript expression in-
creases with age in mammalian tissues, including the heart (Bahar
et al. 2006; Isı̧ldak et al. 2020). Age-related dysregulation of tran-
scripts is offset by selective translation, and post-transcriptional
mechanisms become crucial for achieving cellular homeostasis
(Gonskikh and Polacek 2017). The investigation of molecular
mechanisms involved in aging is further complicated by discord-
ant age-related changes between transcripts and their correspond-
ing proteins (Takemon et al. 2021). Waldera-Lupa et al. (2014)
found that 77% of the proteins that change with age in human fi-
broblasts showed no corresponding change in their transcripts
(Waldera-Lupa et al. 2014). Thus, investigating age-related changes
using only transcriptional profilingmay fail to reveal important in-
fluences on proteins and higher-order cellular processes.

Mouse models of aging can recapitulate many of the cardiac
aging phenotypes seen in humans, such as increased atrial and
ventricular dimensions and reduced diastolic function (Lakatta
and Levy 2003), and thus provide relevant models for investigat-
ing aging processes in the heart. However, most previous studies
have used mice descended from only a few isogenic strains that
may not reflect the diversity of cardiac phenotypes found in aging
human populations. Multiple studies report differences in mouse
cardiac phenotypes, under either physiological or pathological
conditions, associated with genetic background across inbred
strains (Barrick et al. 2007; Xing et al. 2009; Kiper et al. 2013; Avila
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et al. 2017; Forte et al. 2020), and inmul-
tiparent populations (Shorter et al. 2018;
Salimova et al. 2019), confirming the im-
portance of genetic diversity in shaping
the rate and course of cardiac aging.

In this study we use diversity out-
bred (DO)mice derived fromeight inbred
founder strains: A/J (AJ), C57BL/6J (B6),
129S1Sv/ImJ (129), NOD/ShiLtJ (NOD),
NZO/H1LtJ (NZO), CAST/EiJ (CAST),
PWK/PhJ (PWK), and WSB/EiJ (WSB),
to investigate cardiac aging in a geneti-
cally and phenotypically diverse model
(Svenson et al. 2012; Saul et al. 2019).
Aging studies with DO mice can reveal
broad patterns of age-related change
that occur across different genetic back-
grounds and can associate heterogeneity
in aging traits to genetic loci. We analyze
transcriptome data from RNA sequenc-
ing (RNA-seq) and proteome data from
mass spectrometry of heart tissues col-
lected from healthy DO mice at ages 6,
12, and 18 mo. At 6 mo of age, the mice
have reached full maturity. At 18 mo,
most mice are healthy and are only be-
ginning to show signs of age-related decline. Thus, we are looking
at changes in transcripts and proteins that are not influenced by
developmental programs and are also not reflecting late-stage dis-
ease progression (Cellerino and Ori 2017). To characterize molecu-
lar and cellular changes in the aging mouse heart, we first identify
the transcripts and proteins that change with age and characterize
these genes using gene-set enrichment analysis (Subramanian et
al. 2005; Yu et al. 2012). We then examine change with age in cor-
egulation of proteins that form multiprotein complexes. Finally,
we investigate how genetic variationmodulates age-related chang-
es in the heart. The molecular profiling data from this study are
freely available to support further investigations of the molecular
basis of aging in the mammalian heart (https://qtlviewer.jax.org/
viewer/agingheart).

Results

Transcripts and proteins reveal age-related changes

in immune response, intracellular transport,

and protein folding pathways

We analyzed heart tissue from 185 DO mice of both sexes (91 fe-
males and 94 males) aged to 6, 12, or 18 mo to identify transcripts
and proteins that change with age (Fig. 1). We quantified 21,016
unique transcripts after filtering out low expressed genes, and
4221 proteins corresponding to 4151 unique Ensembl gene IDs
(release 84). To compare age-related changes across transcripts
and proteins, we restricted our analysis to the transcripts for which
we have protein data and vice versa. These data consist of 4047
transcripts and 4117 proteins. Transcript expression was summed
across all isoforms for a given gene, and some transcripts corre-
spond to two ormore proteins. Transcripts and proteins that chan-
ge with age are referred to throughout as age-related transcripts/
proteins, and their magnitude and direction of change are referred
to as age effects, reported in units of log2 fold change per year, or as
standardized age effects (age effect/standard error).

To identify age-related transcripts, we used DESeq2 software
(Love et al. 2014) to compute the likelihood ratio test for a linear
trend with age, using sex as a covariate (Methods). We identified
206 transcripts with significant age-related changes (false discov-
ery rate [FDR] < 0.01) (Table 1; Supplemental Data S1). To evaluate
age-related changes in proteins, we fit a linear regression model to
log-scale protein abundance with age as a linear term and sex as a
covariate (Methods). We identified 2084 age-related proteins (FDR
<0.01) (Table 1; Supplemental Data S2). We note that 1691 of the
age-related proteins are increasing and 393 are decreasingwith age.
The proportion of proteins that are increasing with age holds
across different significance thresholds at about 4:1. For tran-
scripts, the direction of change is roughly balanced, with 122 in-
creasing and 84 decreasing with age (FDR<0.01). We provide
results for the full sets of transcripts and proteins in Supplemental
Data S3 and S4.

Transcripts and proteins are quantified with different tech-
nologies and different measurement scales. To understand how
age-related changes compare between transcripts and proteins, it
is helpful to use sex differences as a point of reference.
Histograms of P-values for tests of age effects and sex differences
(Fig. 2A) show that the smaller number of age-related transcripts
compared to proteins is not a result of a difference in statistical
power. The shapes of the P-value distributions and proportions
of significant transcripts are unchanged when we look at the full
data (Supplemental Data S3, S4). For transcripts, sex is a stronger
driver of differential expression compared to age (887 genes com-
pared to 206 genes at FDR<0.01). For proteins, age is a stronger
driver compared to sex (2084 genes compared to 408 genes at
FDR<0.01). Thus the number of proteins showing significant
changewith age is greater that the number of transcripts changing
with age. The reverse is true for sex differences, which have a great-
er impact on transcripts. Only three transcripts (Hspa1b, Gm4841,
Smpx, FDR<0.01) display significant sex-by-age interactions, and a
larger number of proteins show significant interactions (144
genes, FDR<0.01).

Figure 1. Transcriptome and proteome profiling of the aging heart in genetically diverse mice. DO
mice are descended from eight inbred founder strains. Each DO mouse is genetically unique. We ob-
tained cross-sectional samples of tissues from approximately equal numbers of mice aged to 6, 12, or
18 mo. Bulk heart tissue was collected for RNA-seq and mass spectrometry protein analysis. We per-
formed analyses to detect and characterize age-related changes in transcript and protein abundance.
We performed functional enrichment of gene sets with age effects, characterized changes in correlation
of subunits within protein complexes, andmapped genetic variation that influences age-related changes
in transcripts and proteins (age-QTL).
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The most statistically significant age-related transcript is Ryr1
(Fig. 2B), a calcium release channel found in the sarcoplasmic retic-
ulum of skeletal muscle (Conti et al. 1996). The top 50 age-related
transcripts (by absolute value of age effect) include genes related
to mitochondrial metabolism (Ucp1, Cyp2b10), cholesterol trans-
port (Apoa1, Apoa2, Apoc1), immunoglobulin chain components
(Ighg1, Igha, Ighg2b, Igkc, Ighg3, Ighg2c, Igkv1-135), coagulation
(F9, F10, and F2), and extracellular matrix remodeling (Serpina3k,
Fgg, Fga, Serpina1a, S100a9, Serpina1d, Serpina1e, Serpina1b, Serpi-
na3m, Fetub) (Supplemental Data S1). Box plots of selected tran-
scripts illustrate the magnitude of these changes relative to
individual variation across the DO mice (Supplemental Fig. S1).

The most statistically significant age-related protein is SEP-
SECS (Fig. 2C), Sep (O-phosphoserine) tRNA:Sec (selenocysteine)
tRNA synthase, which has been associated with aging and cardiac
oxidative stress (Rizvi et al. 2021). Among the top 50 age-related
proteins are genes in the mitochondrial respiratory complex I
(NDUFA1), complex III (MT-CYTB, UQCRH), complex IV
(COX7B), complex V (MT-ATP6), and other mitochondrial func-
tions (OPA3, MRS2, CHCHD4, POLG); proteins involved in im-
mune response (CD81, CD47); extracellular matrix remodeling
(FERMT2, COL1A1, COL1A2); immunoglobulin chain compo-
nents (IGHG2C, IGHA); protein–protein interaction (WDR65,
ARVCF); actin cytoskeleton (ACTN3); autophagy and mitophagy
(FAM134C, RABGEF1); and regulation of transcription and chro-
matin remodeling (ZFP947, HOPX, MED23, TRRAP) (Supplemen-
tal Data S2). Box plots of selected proteins illustrate these effects
(Supplemental Fig. S1).

Age-related changes in bulk tissue analysis can reflect changes
in cell composition. Comparing our age-related transcripts with
published single-cell RNA-seq data from the heart (Forte et al.
2020), we observe an increase in the myofibroblast marker Postn
(age effect = 0.58) (Supplemental Data S1). We also observe indica-
tions of immune cell infiltration but only for transcripts in the full
set for which we do not have protein data. These include markers
for B cells (Cd79a, age effect = 0.85), macrophages (Cd68, age effect
= 0.43), and monocytes (Plac8, age effect = 1.58) (Supplemental
Data S3). Comparing the age-related proteins reported here, we
see an increase in markers of smooth muscle (VTN, age effect =
0.58), epicardium (CLU, age effect = 0.38), and endothelium cells
(FABP4, age effect = 0.40 and PECAM1, age effect = 0.33). These
changes are consistent with the inflammatory and proliferative
stages of cardiac healing after injury (Forte et al. 2018).

To further investigate the biological functions of transcripts
andproteins that changewithage,we rangene-set enrichment anal-
ysis using FGSEA (Korotkevich et al. 2016) based onGeneOntology
(GO) categories (The Gene Ontology Consortium et al. 2000; The
GeneOntology Consortium 2021) for biological process, molecular
function, and cellular compartment (Methods). FGSEA is a score-
based enrichment approach that does not rely on arbitrarily thresh-
olded gene lists. This proved helpful owing to the substantial differ-
ence in the numbers of statistically significant transcripts and

proteins. Using the standardized age effect (age effect/SE) as a score,
we found 83 significant (FDR<0.05) enriched categories for tran-
scripts and 26 categories for proteins (Supplemental Data S5, S6).
The top five categories for age-related transcripts that increase
with age are associated with exocytosis and immune response
(Fig. 2B). The top five categories for age-related transcripts that
decrease with age are involved in protein modification and folding
(Fig. 2B). The top five categories for proteins that increase with age
relate toprotein transport and autophagy (Fig. 2C). Proteins decreas-
ing inabundancewith age are related to fatty acid oxidation, glucose
catabolism, muscle structure, and protein folding (Fig. 2C).
Enrichment results for the full sets of transcripts and proteins are
similar (Supplemental Data S7, S8).

We found enriched categories (FDR<0.05) for sex and age-by-
sex interaction effects. For sex effects, the most significant catego-
ries for both transcripts and proteins relate to mRNA metabolism
and gene expression regulation. Age-by-sex interaction effects for
proteins and transcripts relate to mitochondrial matrix, cellular
respiration, mitochondrial gene expression, and mRNA metabo-
lism. Enrichment categories for sex and age-by-sex interaction ef-
fects are reported in Supplemental Data S5 and S6.

Comparison of functional enrichment categories for the age-
related transcripts and proteins identifies only one category in
common (GOMF_UNFOLDED_PROTEIN_BINDING). However,
by merging the enrichment tables based on gene IDs instead of
GO categories, we find 245 genes in common that are annotated
to different (but related) categories in each set of enrichment re-
sults (Fig. 3A; Supplemental Data S9). For example, some of the
genes annotated as immune response and exocytosis for proteins
are annotated as vacuolar membrane and organelle subcompartment
for transcripts (Fig. 3A). These genes include S100a9, Cd63 and
the genes encoding subunits of the immunoproteasome (Psmb8
and Psmb9), all of which increase with age for both transcripts
and proteins (Fig. 3A; Supplemental Data S1, S2). Transcripts anno-
tated to response to incorrect protein correspond to proteins that are
annotated to unfolded protein binding (Fig. 3A). These genes include
heat-shock proteins coding, such asHsp90ab1,Hspd1, andDnajb5,
and they all decrease with age for both transcripts and proteins
(Fig. 3A; Supplemental Data S1, S2). Thus, transcripts and proteins
provide consistent indicators for increase in immune response and
for decrease in protein folding with age.

A number of transcripts and proteins that share functional an-
notations change inopposite directionswith age. The genesCyb5r3,
Cct8, andMical1 are annotated in the secretory granule, leukocyte-me-
diated immunity, and exocytosis categories for transcripts, but for pro-
teins, they fall into the oxidoreductase activity (Cyb5r3 and Mical1)
and unfolded protein binding (Cct8) categories (Fig. 3A). All three
genes show increase transcript abundance but decrease protein
abundance with age (Fig. 3A; Supplemental Data S1, S2). Some of
the genes annotated in categories related to endoplasmic reticulum
membrane and response to incorrect protein for transcripts are annotat-
ed as organelle subcompartment and vacuolar membrane for proteins

Table 1. Numbers of significant transcripts and proteins

Age effect Sex effect Age-by-sex interaction

Transcript Protein Transcript Protein Transcript Protein

FDR<0.1 772 2764 1668 980 7 834
FDR<0.01 206 2084 887 408 3 144
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(Fig. 3A). These include the genes Rab14, Rab21, and Akt2 that
decrease for the transcript data but increase for the proteins with
age (Fig. 3A; Supplemental Data S1, S2), suggesting that the age-re-
lated up-regulation of genes involved in intracellular protein trans-
port and vesicle formation is seen only for proteins.

Transcripts and proteins that change
in opposite directions with age are often
positively correlated within age groups.
For example, the transcript of Akt2 de-
creases with age, whereas the protein
AKT2 increases with age (Fig. 3B), and
yet they are positively correlated across
all age groups (6 mo, r =0.411, P=
0.00091; 12 mo, r =0.375, P=0.0027; 18
mo, r =0.216, P=0.095) (Fig. 3C). We ob-
served many examples of genes for which
the transcript and protein abundances
change in opposite directions despite sig-
nificant positive correlation within age
groups, such as Cyb5r3 (Supplemental
Fig. S2). A global comparison of the stan-
dardized age effects for transcripts and
proteins reveals that the age effects are
positively correlated (r =0.128, P<2.2×
10−16) (Fig. 3D) but less so in comparison
to the correlation of sex differences (r=
0.379, P<2.2×10−16) (Fig. 3E). We ob-
serve that the within-gene variances of
transcripts increase continuously with
age, and that the within-gene variances
of proteins increase but with an inflection
between12and18moofage (Supplemen-
tal Fig. S3A,B). For the majority of genes,
there is positive correlation between the
transcript and protein abundances within
age groups and a reduction in average cor-
relation for the 18-mo age group (6 mo,
median r=0.175; 12 mo, median r=
0.171; 18 mo, median r =0.148) (Supple-
mental Fig. S3C). Thus, we see an increase
in variability and a corresponding reduc-
tion in correlation between transcript
and proteins with age, but the reduction
in correlation is small. For most genes,
transcript and protein are positively corre-
lated across all ages. This persistence of
positivecorrelationsuggests thatage-relat-
ed changes in post-transcriptional regula-
tion of proteins can shift the balance
between transcript and protein abun-
dances as animals age and can lead to dis-
cordant (or concordant) age effects
between a transcript and its protein prod-
uct without uncoupling of the positive
correlation between them.

Loss of stoichiometry occurs across

multiple protein complexes

in the aging heart

Loss of stoichiometry in protein com-
plexes has been shown to occur with

age in a number of tissues and organisms (Ori et al. 2015;
Anisimova et al. 2018; Kelmer Sacramento et al. 2020; Taggart
et al. 2020). We examined protein complexes defined in Ori
et al. (2016) (Methods). We considered only complexes for which
we have both transcript and protein data for four ormore subunits,

B

A

C

Figure 2. Age-related changes in transcripts and proteins. (A) Distribution of P-values for tests of (left to
right) age, sex, and age-by-sex interaction effects for transcripts (top) and proteins (bottom). Volcano
plots show the age effects (x-axis) and the −log10(P-values) (y-axis) of all the transcripts (B, left) and all
the proteins (C, left) in the common set. Horizontal red line indicates the significance cutoff of FDR<
0.01. Vertical black line is at 0 and included for reference. Age effects are reported as log2 fold change
in abundance per year. The colored points on the volcano plots represent the five most significant
(FDR <0.05) up-regulated enrichment categories and the five most significant down-regulated catego-
ries from the gene-set enrichment analysis. Gray points represent transcripts or proteins that were not
annotated to the highlighted categories. Top enrichment categories are shown in B (right) and C (right),
with the enrichment score plotted on the x-axis and category on the y-axis, point color indicates the ad-
justed P-value, and point size indicates the size of the category. Vertical red line at 0 is included for
reference.
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a total of 123 out of the 279 annotated complexes. We computed
Pearson’s correlations between all pairs of proteins and between all
pairs of transcripts within each protein complex. To assess overall
change with age for an entire complex, we fit a joint regression
model to thewithin-complex correlationswith a random intercept
term for each gene pair and a common slope to capture the average
change in correlation per year across all pairs of subunits in the
complex (Methods). We evaluated the significance of these effects
using a permutation procedure (McKenzie et al. 2016).

Although we did not observe any significant changes in
overall correlation among transcripts, we identified multiple com-
plexes that change in overall correlation among proteins. We
found that for 107 out of the 123 protein complexes, the average
correlation between protein pairs decreases with age (Fig. 4A; Sup-
plemental Data S10). Of these, 40 reached statistical significance
(FDR<0.1). The complexes with the largest standardized
age effects (shown here as change in average correlation per
year ± SE) include the nuclear pore complex (NPC) (protein age
effect =−0.25±0.02), chaperonin-containing T complex (TRiC)
(protein age effect =−0.28±0.03), cytoplasmic ribosomal large
subunit (protein age effect =−0.13± 0.01), large DROSHA complex

(protein age effect =−0.29± 0.02), and the 26S proteasome com-
plex (protein age effect =−0.20±0.006) (Fig. 4A). There is no obvi-
ous relationship between change in correlation and change in
protein abundance with age. For the proteasome complex,
we see that most of the subunits increase in abundance with age
(Supplemental Fig. S4). For example, proteins PSMB3 and
PSMD7 both increase in abundance with age but decrease in their
correlationwith age (Supplemental Fig. S4).We examined age-spe-
cific correlation within complexes separately for each sex. There
appears to be a tendency for transcripts to increase in correlation
with agemore for females, but none of the overall changes are stat-
istically significant (Supplemental Fig. S5). For proteins, we ob-
served consistent decreases in correlation for both females and
males across most of the complexes (Supplemental Fig. S6).

To determine if the change in correlation of proteins with age
is specific to the heart we repeated this analysis on data from kid-
ney of the sameDOmice (Takemon et al. 2021). In kidney, there is
a modest trend of increased correlation with age for proteins
(Supplemental Fig. S7A), suggesting that these age-related declines
in protein complex correlations are tissue specific. The protein
complexes with the largest age effects in the kidney are the

EB

A

C D

Figure 3. Comparisons of age effects on transcripts and proteins reveal similarities and differences. (A) Standardized age effects for transcripts (x-axis)
and proteins (y-axis) with genes highlighted based on enrichment analysis results from the transcriptome (left) and proteome (right). Colored points rep-
resent enrichment categories of genes based on enrichment sets defined by transcripts (left) and by proteins (right). Gray points represent genes that were
not annotated to one of the highlighted sets. Horizontal and vertical lines at 0 included for reference. (B) Change in transcript (top) and protein (bottom)
abundance (y-axis) of the gene Akt2with age (x-axis), stratified by sex (with females on left and males on right). Best fit lines included to emphasize trends.
(C ) Protein abundance by transcript expression for the gene Akt2. Points are colored based on age group. Best fit lines for each age group included to
illustrate correlation. (D) Standardized age effects for all the proteins (y-axis) plotted against the effect for their corresponding transcripts (x-axis). Blue
points represent genes that have concordant increases with age for both transcripts and proteins. Green points represent genes that have discordant de-
creases with age for transcripts but increases for proteins. Purple points represent genes that have discordant increases with age for transcripts but decreas-
es for proteins. Red points represent genes that have concordant decreases with age for both transcripts and proteins. Gray points represent genes that do
not have a significant age effect (FDR >0.1) for both transcript and protein. The number in each quadrant corresponds to the number of total genes in each
group. Horizontal and vertical lines at 0 included for reference. (E) Standardized sex effects for all the proteins (y-axis) plotted against the effect for their
corresponding transcripts (x-axis). Points colored as in D with the corresponding number of total genes in each group.
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NURD complex (protein age effect = 0.40±0.04), emerin C32 (pro-
tein age effect = 0.19± 0.02), spliceosome A (protein age effect =
0.19±0.02), spliceosomeU2 (protein age effect = 0.24±0.02), large
DROSHA complex (protein age effect = 0.19±0.03), and mito-
chondrial pyruvate dehydrogenase complex (protein age effect =
0.31±0.05) (Supplemental Fig. S7A; Supplemental Data S10).
These differences between heart and kidney can be explained by
looking at the correlation between transcript/protein age effects
in the kidney and transcript/protein age effects in the heart.
Transcript changeswith age in the heart and kidney are highly cor-
related (r = 0.45); however, this is not true for proteins (r = 0.027)

(Supplemental Fig. S7B). This observation suggests that the post-
transcriptional regulation of protein complex stoichiometry is tis-
sue specific, but it could also reflect different rates of change with
age across tissues.

To take a closer look at how correlation changes between spe-
cific protein pairs within a complex, independent of complex size,
we applied the same permutation test to evaluate individual gene
pairs (Methods).

Among transcripts, 60 pairs (out of 4396) had significant age-
related changes in correlation (FDR<0.1), representing 22 differ-
ent protein complexes (Supplemental Data S11). The complexes

E

BA

C

D

Figure 4. Correlations between protein complex members change with age. (A) Standardized age effects on correlation for 123 protein complexes are
shown for transcripts (x-axis) and proteins (y-axis). Point size represents the number of proteins observed for each complex. Blue points represent protein
complexes with a significant age effect (FDR<0.1) for proteins. Gray points represent protein complexes without a significant age effect for transcript or
protein. Age effects are estimated by linear regression and reported as change in the correlation coefficient per year. Horizontal and vertical lines at 0 in-
cluded for reference. Heatmaps represent the age-related change in correlations between gene pair members of the 26S proteasome complex for protein
abundance (B) and transcript expression (C). Dots indicate significant pairwise changes in correlations with age (FDR <0.1). Black and gray bars on the y-
axis indicate subcomplexes of the 26S proteasome. Heatmaps represent the Pearson’s correlation matrices for 26S proteasome complex for transcripts (D)
and for proteins (E) at 6 mo, 12 mo, and 18 mo (left to right).

Molecular analysis of the aging heart

Genome Research 843
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275672.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275672.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275672.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275672.121/-/DC1


with the highest proportion of significant transcript pairs with sig-
nificant changes are the ubiquilin-proteasome complex (60%), the
TNF/NFKB1 signaling complex (33%), the SMG-1-Upf1-eRF1-eRF3
(SURF) complex (33%), the mitochondrial complex V (23%), and
the COP9 signalosome complex (18%) (Supplemental Fig. S8).
The majority (53 out of 60) of significant transcript pairs with sig-
nificant age-related changes to correlation increases with age.

We identified 351 protein pairs (out of 4396) with significant
age-related changes in correlation with age (FDR<0.1) (Supple-
mental Data S11). These pairs span 50 protein complexes, and
the complexes with the largest proportion of significant pairs (sig-
nificant number pairs/total number of pairs) are the TRiC (69%),
Suv39h1 histone complex (67%), dynactin complex (40%), mul-
ti-eIF complex (39%), and the large DROSHA complex (39%) (Sup-
plemental Fig. S8). Although not among the top protein
complexes in terms of proportion of significant pairs, we found
that many protein pairs changing within the 26S proteasome
decrease in correlation with age (Fig. 4B,C), consistent with our
evaluation of overall changes within the proteasome complex
(above). The protein PSMD14 was the most common (part of 16
pairs), followed by proteins PSMD13 and PSME3 (11 pairs) (Fig.
4C). Proteins from the PSMC and PSMD families constitute the
19S particle of the proteasome, but the PSME family is part of
the 11S particle. Both of these particles are regulators of the 26S
proteasome complex, suggesting that the age-related changes in
correlation is affecting the regulatory subunits of the proteasome.
The correlation patterns for the inducible immunoproteasome
subunits (PSMB8, PSMB9, and PSMB10) are consistent across age
groups for both transcripts and proteins (Fig. 4D,E). Overall, the
majority (319 out of 351) of the significant protein pairs showed
reduced correlation with age, consistent with a global loss of stoi-
chiometric balance in these protein complexes.

Genetic variants alter the age trajectory of proteins that are

associated with proteostasis

We performed genetic mapping for the full sets of transcripts and
proteins to identify quantitative trait loci (eQTL and pQTL, respec-
tively). The additive effects of genetic variation on transcripts and
proteins have been widely documented (Hause et al. 2014; Battle
et al. 2015; Chick et al. 2016; Albert et al. 2018; Yao et al. 2018)
and are not discussed here, but we have made the mapping results
available for others to explore. Here, we focus on how genetic
variants influence the rate or direction of change with age of
transcripts and proteins. To identify these age-interactive QTL
(age-QTL), we tested for an age-by-genotype interaction term in
a linear mixed model for each transcript and protein (Methods).
We computed a significance threshold for age-interaction LOD
score that controls the genome-wide false positive rate at 0.05
(LODint > 7.75). The data, along with the additive and age-interac-
tive QTL results, can be explored interactively or downloaded at
our QTL Viewer website (https://qtlviewer.jax.org/agingheart). A
user’s guide for the QTL Viewer is available at https://qtlviewer
.jax.org/userguide.

We identified 1035 transcript age-QTL (age-eQTL) (Supple-
mental Data S12).Most age-eQTLmapped to locations that are dis-
tant from their coding genes, suggesting that the effect of genetics
on age-related changes is not mediated directly through the
coding gene but rather occurs in response to other factors that
change with age. There are, however, six local age-eQTL for the
genes Rin3, Spryd7, Rhbdl3, Gm9925, Sstr3, and Ttyh1. The
local age-eQTL with the highest LOD score is for the gene Rin3

(LODint = 9.06), located on Chromosome 12. Rin3 is a guanidine
nucleotide exchange factor and functions as a stabilizer for pro-
teins of the RAB5 family, which regulates endocytosis and intracel-
lular vesicular trafficking (Bucci et al. 1992; Kajiho et al. 2011).

We identified 603 protein age-QTL (age-pQTL) (Supplemen-
tal Data S12) and, similar to the age-eQTLs, most of the age-
pQTL are distal. The only local age-pQTL is for FN3KRP, located
onChromosome 11, a fructosamine 3 kinase involved in the rever-
sal of the nonenzymatic glycation of proteins (Collard et al. 2003).
Glycation is a process of protein oxidation thatmakes proteins less
functional and active (Szwergold et al. 2011). We note that Fn3krp
was recently associated with longevity in humans (Torres et al.
2021).

Many of the significant age-pQTL colocate to the genome in
hotspots on Chromosomes 3 (270 proteins) and 12 (224 proteins)
(Fig. 5A). To consider weaker associations but potentially biologi-
cally relevant proteins, we expanded the proteins in each hotspot
to include suggestive age-pQTL (LODint > 6). We then filtered the
candidate proteins by retaining only those with absolute mean
correlation greater than 0.3 with other members of the hotspot.
This filter removed genes with age-pQTL that are not tightly
correlated with other genes at the hotspot and thus less likely to
share a common genetic regulator. After filtering, the age-pQTL
hotspot on Chromosome 3 includes 208 proteins, and the
Chromosome 12 hotspot includes 194 proteins (Supplemental
Fig. S9; Supplemental Data S12).

To determine if proteins that map to the age-pQTL hotspots
share common biological functions, we performed enrichment
analysis using clusterProfiler (Yu et al. 2012). The Chromosome
3 hotspot has a total of 12 enriched gene sets (FDR<0.05) (Supple-
mental Data S13). From these, 10 relate to protein modification
processes, including ubiquitination and proteolysis (Fig. 5B; Sup-
plemental Data S13), including proteins from the proteasome
20S catalytic core (PSMA3 and PSMB6) and the regulatory particle
(such as PSDM11 and PSMD14). TheChromosome 12 hotspot, has
six enriched categories (FDR<0.05) with functions related to
transcription regulation and chromatin organization, including
histone H2 family members (such as MACROH2A1 and MAC-
ROH2A2) and histone chaperones (NPM1) (Fig. 5B; Supplemental
Data S13). It also includes proteins related to proteasomal degrada-
tion, such as DNAJB2 and RAD23B. We note that RAD23B and 32
other proteins are found in both hotspots, including proteins asso-
ciated with muscle cell structure (MYH3, MYH6, AND MYH7B),
vesicle formation and transport (SNAP29, DCTN2, CLTA, and
CHMP4B), and proteins related to proteinmodification and degra-
dation pathways (PSMD4, NSFL1C, and UBXN1). Although these
age-pQTL loci should be considered as tentative until they can
be independently validated, the predominance of proteins that
are constituents of heart muscle and/or play a role in protein qual-
ity control suggest that these functions are genetically malleable
and could contribute to individual variability in heart aging.

Discussion

In this study, we examine the changes that occur with aging in the
transcriptome and proteome of heart tissue from 185 genetically
diverse mice. Most mice in this study are still healthy at 18 mo
of age, and thus the age-related changes reflect normal aging,
free of major pathologies. We analyze functional annotations of
age-related transcripts and proteins and identify biological pro-
cesses that are altered through the course of natural aging. We
identify changes in transcript and protein abundance in bulk heart
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tissue, however, we are unable to identify compartmentalized
changes that could be achieved with single-cell studies.

A dominant feature of transcriptal change is an increase in the
expression of genes associated with immune response—some of
these changes are also seen in proteins. Increase in immune cell
composition across multiple tissues (Müller-Werdan 2007; Moro-
García et al. 2013) and up-regulation of immune response genes
in the aging murine heart are well documented (Bartling et al.
2019; Greenig et al. 2020). We observe a marked increase in com-
plement factor genes that is also seen in our previous study of ag-
ing kidney on the same mice (Takemon et al. 2021) and in the
proteome of human plasma (Johnson et al. 2020). Complement
component 4B (Chido blood group) (C4b) is one of the transcripts
with the highest change with age in our data. In addition, we see
an increase in marker genes for leukocytes, which play an impor-
tant role in the adaptive immune response. In the aging heart, leu-
kocytes mediate early stage physiological changes (Ramosa et al.
2017), and the increased leukocyte signature seen here in healthy
aging mice corroborates their role early in the aging process.

Genes associated with vesicle membranes and exocytosis,
responsible for secretion and cross-talk between cells, are up-

regulated with age (mostly for proteins). Some of these changes re-
flect immune cell signaling, but we also see changes in extracellu-
lar matrix remodeling that are typical in age-related hypertrophy
(Chiao and Rabinovitch 2015). These genes include Ahsg, Serpinf2,
and Serpina3n (Kang et al. 2017; Santos-Lozano et al. 2020). The
gene Serpinf2 plays a role in fibrinolysis protecting against blood
clotting, and SERPINF2 protein is found in higher levels in the
plasma of healthy centenarians and is associated with healthy ag-
ing (Santos-Lozano et al. 2020). The serine/threonine kinases
AKT1 and AKT2 are also involved in cellular transport processes
(Greenig et al. 2020) and both increase with age. These proteins
are highly abundant in cardiomyocytes where they are involved
in the regulation of cardiac hypertrophy in aging through interac-
tion with sirtuins (Pillai et al. 2014). We see changes across pro-
teins from the RAB family, Ras-like GTPases that regulate protein
trafficking by vesicle formation and fusion throughout the cell
(Martinez andGoud 1998;Wu et al. 2001). Among the 39 RAB pro-
teins that significantly change with age, 32 increase (Supplemen-
tal Data S2), indicating the activation of cellular secretion and
transport pathways with age, which is commonly observed in hy-
pertrophic hearts (Chiao and Rabinovitch 2015).

B

A

Figure 5. Genetic mapping reveals genomic hotspots of age-interactive QTL. (A) Age-interactive QTL (age-QTL) were identified by testing for an age-by-
genotype interaction effect and are plotted for transcripts (age-eQTL, left) and protein (age-pQTL, right). Significant age-QTL (genome-wide error rate <
0.05) are plotted (top) based on the location of their peak association (x-axis) and the position of the coding gene (y-axis). Point size is proportional to LOD
score. The lower panels show the density of distal age-QTL detected at positions spanning the genome based on 4-Mb windows. Two hotspots for distal
age-pQTLs were identified on Chromosomes 3 and 12. (B) Functional enrichment results for proteins that map age-pQTL to the hotspots on Chromosome
3 (left) and Chromosome 12 (right). Enrichment categories are plotted by with their gene ratio—the number of genes in hotspot-defined sets in category
divided by the number of all the genes in the category—with point size indicating the number of genes and point color indicating the adjusted P-value.
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Transcripts and proteins related to protein folding decrease
with age (Figs. 2A,B, 3A). These include heat-shock proteins
(HSPs), molecular chaperones that inhibit unfolding or denatura-
tion of proteins in response to stress. HSPs act to limit the accumu-
lation of damaged proteins and subsequent proteotoxicity in aging
cells (Murshid et al. 2013). Some proteins, including HSPA5,
HSP90B1, and PDIA4 decrease with age with no corresponding
change in their transcripts. These are downstream targets of the
ATF6 branch of the endoplasmic reticulum stress response
(Higuchi-Sanabria et al. 2018). The activation of this pathway in
the heart increases responses that correct misfolded proteins and
avoid apoptosis (Toko et al. 2010; Higuchi-Sanabria et al. 2018).
Their age-related decline suggests the disruption of early steps
within the protein quality control system that can lead to a path-
ological instead of an adaptive response to unfolded proteins
(Szegezdi et al. 2006; Toko et al. 2010).

Enrichment analysis of proteins that change with age high-
lights additional biological functions that are not seen for the tran-
scriptome. Proteins associated with fatty acid oxidation and
glucose catabolism decrease with age (Fig. 2C). Themetabolic shift
from fatty acid to glucose is known to occur in the aging heart
(Strait and Lakatta 2012), however, here, we show a decline in gly-
colysis-related proteins as well. We note that decreased glycolysis
has been reported in hypertrophied hearts (Tran and Wang
2019). In addition, the proteome data show activation of auto-
phagy pathways with age (Fig. 2C). This may be compensatory
for the decrease in protein folding pathways. Autophagy increases
when the cellular protein quality control system is overwhelmed
(Nakai et al. 2007) and it is crucial formaintaining cardiac function
(Taneike et al. 2010).

We confirm previous studies showing that age-related tran-
scriptional changes are not necessarily mirrored in their protein
products, and likewise, age-related changes in proteins are not nec-
essarily preceded by transcriptional changes (Waldera-Lupa et al.
2014; Wei et al. 2015; Kelmer Sacramento et al. 2020; Takemon
et al. 2021). In many cases, transcripts and their corresponding
proteins change in opposite directions with age (Fig. 3D). These
discordant age-related changes occur evenwhen there is persistent
positive correlation of transcript and protein abundances within
age groups. This points to a shift in the balance between transcript
and protein because of changes in the post-transcriptional mech-
anisms that regulate protein abundance. This is supported by our
observation that functional categories of age-related change, espe-
cially for proteins, are enriched across post-transcriptional and
post-translational protein regulatory processes.

In addition to age-related changes in protein abundance, we
observe a widespread decrease with age in the correlation between
proteinswithin complexes, suggesting loss of stoichiometry. These
changes are most pronounced for complexes involved in different
steps of proteinhomeostasis, including theTRiC, cytoplasmic ribo-
somal large subunit, NPC, large DROSHA complex, and the 26S
proteasome. After transcription, messenger-RNAs are transported
into the cytoplasmthrough theNCPcomplex (Strambio-De-Castil-
lia et al. 2010). TheNPC is an aqueous channel that regulates nucle-
ar permeability and deterioration with age leads to leakage of
cytoplasmic proteins into the nucleus (D’Angelo et al. 2009). Tran-
scripts in the cytoplasm can be modified post-transcriptionally by
micro-RNAs (miRNAs), which are primarily processed by the
DROSHA complex, a RNase that cleaves primarymiRNAs releasing
hairpin-shaped ones (Han et al. 2004). Following translation of
mRNA by the ribosome complex, proteins are folded into three-di-
mensional structures assisted by the TRiC. Although TRiC is re-

sponsible for folding only 5%–10% of the mammalian proteome,
it plays a special role inmuscleswhere it regulates sarcomere assem-
bly (Berger et al. 2018). Defects in TRiC proteins have been associ-
atedwith skeletalmuscle defects andmyocardial infarction (Berger
et al. 2018).Misfolded proteins that cannot be fixedby TRiC are de-
graded by the 26S proteasome, autophagy, and lysosomes. Our
findings highlight the impacts of aging onmultiple complexes in-
volved in protein homeostasis (synthesis, transport, folding, and
degradation) in the murine heart.

The 26S proteasome complex showed the most significant
decline in correlation with age (Fig. 4A). This complex has 43
protein subunits, which gives us enough power to detect subtle
changes. However, other large protein complexes (e.g., the mito-
chondrial ribosomal large subunit) did not show the same level
of correlation loss. The 26S proteasome plays essential roles in
the heart, including the turnover of gap-junction and contractile
proteins (Li and Wang 2011), and NFKB1 and CTNNB1 signal
transduction in cardiac remodeling (Palombella et al. 1994). The
26S proteasome subunits related to the 19S and 11S regulatory par-
ticles (PSMD and PSME families) show the steepest decline in cor-
relation among individual gene pairs (Fig. 4C). These “gates” of
the proteasome regulate binding to either ubiquitinated (19S) or
non-ubiquitinated (11S) proteins and control entrance to the deg-
radation cascade (Coux et al. 1996). It is described that proteasome
activity declines with age in many tissues (Carrard et al. 2002;
Predmore et al. 2010). One hypothesis is that reduced expression
of proteasome subunits leads to the decline of proteasome activity,
however, disruption in protein degradation can occur without re-
duction in proteasome abundance (Predmore et al. 2010). We did
not observe a reduction in the abundance of subunits from the
proteasome complex in heart, in fact, most of them increase
with age (Supplemental Fig. S4A). An alternative hypothesis is
that post-translational modifications and an excess of oxidized
proteins contribute to the decline in proteasome activity in the
heart (Predmore et al. 2010). Here, supported by previous findings
(Ori et al. 2015; Kelmer Sacramento et al. 2020), we propose that
age disrupts the balance of proteasome subunits in the heart,
which contributes to a cycle of progressive breakdown of protein
homeostasis during the aging process. In contrast to the rest of
the 26S proteasome, the immunoproteasome-specific subunits
PSMB8, PSMB9, and PSMB10, maintain positive correlation across
all ages for both transcripts and proteins (Fig. 4D,E). On the other
hand, the immonoproteasome becomesmore anti-correlated with
their constitutive partners (PSMB5-7) with age. The anti-correla-
tion between immunoproteasome and the constitutive subunits
was also observed in the liver tissue from DO, Collaborative
Cross, and foundermice, and it was shown to be partiallymodulat-
ed by genetic factors (Keele et al. 2021). The immunoproteasome
supports the generation of peptides for antigen presentation by
MHC class I molecules (Basler et al. 2013) and plays a role in the
activation of adaptive immune pathways (Basler et al. 2013). The
age-related maintenance of the correlation within the immuno-
proteasome and the increase in the anti-correlation between their
subunits and their constitutive parners may reflect the increase in
immune cells in the heart of older mice.

The production of protein complex subunits is not always
perfectly stoichiometric, and post-translational mechanisms play
an essential role in removing extra subunits, promoting balance
of the components of complexes (Taggart et al. 2020). The age-re-
lated loss of stoichiometry thatwe showhere aremediated by post-
transcriptional mechanisms supported by the very same protein
complexes that are affected. This suggests a feedback loop that

Gerdes Gyuricza et al.

846 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275672.121/-/DC1


could accelerate decline. We did not observe loss of stoichiometry
in these complexes in kidney tissue from the same mice (Supple-
mental Fig. S7A). The heart, unlike any other tissue in the body,
is under constant mechanical load, which challenges the large
structural proteins to maintain their proper conformation and
may require more replenishment of proteins (Li and Wang
2011). For this reason, the heart may be more susceptible to pro-
teotoxic stresswhen the protein quality control system is function-
ing less than optimally. Age-related molecular changes have
different onsets across tissues (Schaum et al. 2020), and these
changes may occur later in kidney. Others have also described tis-
sue-specific loss of stoichiometry of protein complexes with age
(Ori et al. 2015; Kelmer Sacramento et al. 2020).

A unique advantage of molecular aging studies using geneti-
cally diverse mice is the opportunity to map loci that modify the
age trajectory of transcripts and proteins. The majority of age-
interactive quantitative trait loci (age-QTL) that we identified are
distant from the coding genes of the affected transcripts and pro-
teins. Thus, the underlying genetic variants are not acting on the
proximal genes but instead exert influence on changes in the cel-
lular environment that occur with aging. We identified two dense
clusters of age-pQTL on Chromosomes 3 and 12. The proteins that
map to the Chromosome 3 hotspot are enriched for functions in
the proteasome complex and protein ubiquitination (Fig. 5B),
whereas proteins that map to the Chromosome 12 hotspot are as-
sociated with chromatin structure, transcriptional regulation, and
ribosome biosynthesis (Fig. 5B). Although the age-QTL reported
here should be considered tentative until they can be replicated
in other studies, the prevalence of age-pQTL for proteins involved
in protein quality control suggests that the post-transcriptional
mechanisms regulating protein homeostasis during aging are
modulated by genetic variants that could contribute to individual
variation in the rate of cardiac aging.

In summary, we observe changes associated with healthy ag-
ing in the murine heart that suggest a scenario of activation of im-
mune response, hypertrophy, and dysregulation of protein
homeostasis. We show that the transcriptome alone is not able
to reveal the full spectrumof changes in the aging heart, which un-
derscores the importance of post-transcriptional regulation of pro-
teins in aging. The proteome data uniquely reveal features
including metabolism changes and the activation of autophagy
pathways with age.We observe a loss of stoichiometry among pro-
tein complexes, especially those that are involved in protein ho-
meostasis. We see many indications that the protein quality
control system becomes disrupted with age, starting from the re-
duced expression of proteins involved in handling misfolded pro-
teins to the loss of stoichiometry of the proteasome complex. We
find evidence that genetic variation can influence the age-related
dynamics of protein homeostasis. Our findings illustrate how tran-
scriptome and proteome profiling of genetically diverse mice can
reveal broad patterns of change in the molecular dynamics of
the aging heart. The data generated by this study and our previous
study of the aging kidney (Takemon et al. 2021) provide resources
that can bemined to obtain additional insights into tissue-specific
molecular processes associated with aging.

Methods

Study cohort and tissue collection

A cross-sectional aging study was performed with 600 DO mice
(300 of each sex) bred at the Jackson Laboratory (stock no.

009376) across breeding generations 8–12 of the DO stock. Mice
were maintained on a standard rodent chow (LabDiet 5K52) in
an animal room that was free of pathogens, had a set temperature
ranging from 20°C to 22°C, and a 12-h light/dark cycle. Animals
were housed four to a pen and pens were randomly assigned to
6-, 12-, and 18-mo age groups. Whole hearts were dissected,
flash-frozen, pulverized, and aliquoted. A subset of 192 samples,
balanced across age groups and sexes, were selected for RNA-seq
and shotgun mass spectrometry. The mass spectrometry was per-
formed for 190 of the 192 mice. The Jackson Laboratory
Institutional Animal Care and Use Committee approved all proce-
dures used in the study. The mice were selected by requiring that
all had genotype, transcript, and protein data, leaving a total of
185 animals for analysis.

Power to detect age effects and QTL in study

The sample size required to detect a significant age effect is deter-
mined by the size of the effect (difference in means between the
6- and 18-mo age groups) relative to the variance within age
groups. Therefore, we define the strength of an effect in units of
SD of the within group variance. Based on standard power calcula-
tions (Wilson Van Voorhis and Morgan 2007), with a sample size
of about 64 animals per age group we can expect 0.80 power to
detect an age effect of 0.5SD at an unadjusted type I error of
0.05. In practice, because of the sample size and the high precision
of the RNA and protein quantification, we were able to detect age
effects in a large proportion of genes even after applying a false dis-
covery rate correction for multiple testing (Holm 1979). To evalu-
ate the power for genetic mapping, we referred to simulations
conducted byGatti et al. (2014). After applying genome-wide error
rate correction to account for the multiple testing burden incurred
from genome-wide scans, our sample of 185 animals has expected
power of 0.80 to detect a QTL that explain 0.20 of the total varia-
tion in RNA or protein expression.

Bulk RNA extraction

Frozen and pulverized heart tissue was lysed in Ambion TRIzol re-
agent (Thermo Fisher Scientific 15596026). Bulk RNAwas isolated
using the miRNeasy Mini kit (Qiagen 217004), according to the
manufacturer’s protocols with the DNase digest step. RNA concen-
tration and quality ratios were assessed using the NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific) and RNA 600 Nano
LabChip assay (Aligent Technologies).

RNA sequencing and quantification

Poly(A) RNA-seq libraries were generated using the TruSeq
Stranded mRNA Library Prep Kit (Illumina). Libraries were pooled
and 100-bp single-end reads were sequenced on the HiSeq 2500
(Illumina) using TruSeq SBS Kit v4 reagents (Illumina). The RNA-
seq experiment was performed in two replicates for each sample
distributed across eight lanes. The replicates of each sample were
performed in different lanes to avoid lane effects.

We used the Genotype by RNA-seq (GBRS) software package
(https://gbrs.readthedocs.io/en/latest/) to generate both total
gene counts and genotype probabilities. The process involved
combining single-end FASTQ files per sample and aligning to a hy-
bridized (eight-way) transcriptome generated for the eight DO
founder strains. The mouse genotype probabilities were recon-
structed along approximately 69,000 GigaMUGA markers and
used to confirm genotypes and identify mislabeled samples in
the quality control process (described in detail below). Gene ex-
pression quantification used the Expectation-Maximization algo-
rithm for Allele Specific Expression (EMASE) (Raghupathy et al.
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2018), which was then used to quantify allele-specific and total
gene counts from RNA-seq data. Transcripts were removed from
further analysis if they did not have at least one read in at least
half of the samples, resulting in a total of 21,016 transcripts being
analyzed. Total gene counts were normalized relative to total read
counts using the variance stabilizing transform (VST) as imple-
mented in DESeq2 (Love et al. 2014). For the genetic mapping
analysis only, to minimize the impact of outliers, we transformed
theVST normalized data to rank normal scores (Conover and Iman
1981).

Identification of sample mixups

We identified samples that were likely mislabeled by comparing
the genotypes (in the form of founder haplotype reconstructions)
from GigaMUGA (https://dodb.jax.org/) to reconstructions de-
rived from the gene expression data using GBRS. Founder haplo-
types were reconstructed from GigaMUGA using a hidden
Markov model implemented in the R/qtl2 package (Broman
et al. 2019). Samples could only be compared that had data from
both GigaMUGA and RNA-seq, resulting in 189 samples. We first
interpolated haplotype reconstructions to the same genomic coor-
dinates. The haplotype reconstructions represent additive founder
allele probabilities at positions spanning the genome. For each in-
dividual mouse, we averaged across Euclidian distances between
the array-based and expression-based reconstructions at loci span-
ning the genome:

�di = 1
M

∑
m

∑8
a=1

(pm,i,a − qm,i,a)
2

( )1/2
∀ i,

where pm, i,a is the probability estimated from GigaMUGA for
marker m= 1, …, M of founder allele a for mouse i, and qm,i,a is
the corresponding probability estimated from gene expression.
We flagged animals with �di . 0.8 as having haplotype reconstruc-
tions that differed greatly between the two sources of genetic data
and thus potentially represent mislabeling in one of the sources.
We identified two mice that upon closer examination likely had
swapped IDs in the gene expression data, which we excluded, re-
sulting in 187 mice. Before processing the data for downstream
analysis, we also filtered samples to the common set between the
transcriptome and proteome data, resulting in a total of 185
mice. This final set included 33 females and 29 males at age 6
mo, 31 females and 31 males at age 12 mo, and 27 females and
34 males at age 18 mo. DO generation 8 was represented by 42
mice, generation 9 by 33 mice, generation 10 by 36 mice, genera-
tion 11 by 38 mice, and generation 12 by 36 mice.

Mass spectrometry and protein quantification

The mass spectrometry (MS) procedure for protein quantification
was performed as described in Chick et al. (2016). Briefly, tissue
from total heart samples were homogenized in 1 mL lysis buffer,
which consisted of 1% SDS, 50 mM Tris, pH 8.8, and Roche com-
plete protease inhibitor cocktail (Roche 11697498001). Peptides
weremeasured using TandemMass Tags (TMT), which allowsmul-
tiple samples to be quantified in a single MS run. Anaysis of all
samples was performed in 19 batches with 10 individuals each.
Samples were assigned to batches in randomized order to avoid
confounding the batch with factors like age and sex. Sample labels
were not masked, and no technical replicates were included. MS
spectra assignments were made using the Sequest algorithm (Eng
et al. 1994) with the Ensembl database (mouse: Mus_musculus
NCBIM37.61).

Before protein abundance estimation from their component
peptides, we filtered out peptides that contained polymorphic sites
across the eight founder strains of the DO. Polymorphisms can in-
duce false pQTL signals because theMS quantification is relative to
the B6mouse reference, resulting in non-B6 alleles being undetect-
ed and artificially set to 0 (Zhang et al. 2021). Tomaximize usage of
the data, we first refined the set of polymorphic peptides to be fil-
tered out by confirming that data frompolymorphic peptides from
the heart clearly matched our expectations based on the founder
strain genomes. We used our previous approach of correlating al-
lele effects at putative local QTL for each peptide in the polymor-
phic set with the B6 allele’s distribution pattern among the
eight founder strains (Keele et al. 2021). Peptides with a correla-
tion≥0.7, thus matching the expected polymorphism signal,
were filtered from the data. For this refinement step, we used heart
peptide data from the related inbred Collaborative Cross popula-
tion, which possesses the same genetic variation as the DO. To
estimate and normalize protein abundance from component
peptides, we followed Huttlin et al. (2010) and calculated:

Proteinij = log2

∑
K
Peptideik

si
+ 1

⎛
⎝

⎞
⎠ (1)

whereK represents the set of observed peptides thatmap to protein
j for mouse i, and si is a scaling factor used to standardize samples
within a batch.

si =
∑
L
Peptideil

max
∑
L
Peptideql : Q [ b[i]

( ) ,

where L is the set of all peptides observed for a sample, b[i] denotes

the batch of sample i, andmax
∑
L
Peptideql : Q [ b[i]

( )
is themax-

imum sum of peptide intensities for all the samples in batch b[i].
Protein abundance levels that were missing (NA) for more than
half the samples were excluded, resulting in a total of 4221 pro-
teins for further analysis.

As we did previously (Keele et al. 2021), batch effects were re-
moved using a linear mixed effect model (LMM) fit with the lme4
package (Bates et al. 2015). The batch effect, estimated as a best lin-
ear unbiased predictor (BLUP), was subtracted from each protein
abundance, and age (as a categorical variable with three levels)
and sex were included as fixed effect covariates in the model. For
genetic mapping analysis, protein abundances were transformed
to rank normal scores to minimize the effect of outliers (Conover
and Iman 1981).

Age effects on transcript expression

We used the DESeq2 package (Love et al. 2014) to test for tran-
scripts whose expression changed with age. Briefly, we fit the fol-
lowing generalized linear model (GLM) using the link function
for the negative binomial distribution in DESeq2:

Transcripti = Sex[i]+Gen[i]+ Age[i] (2)

where Transcripti is the total count for each transcript frommouse
i, Sex[i] is the effect corresponding to the sex of mouse i, Gen[i] is
the effect corresponding to the generation ofmouse i, and Age[i] is
the effect corresponding to the age of mouse i, fit as a continuous
variable at the year scale (0.5, 1, 1.5 yr) obtained by dividing the
age groups by 12. The age effect represents an estimate of the
log2 fold change per year of life and was tested using a likelihood
ratio test. Transcripts with a significant age effect on expression
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were determined after FDR adjustment to account for multiple
testing across all transcripts (FDR<0.01).

Age effects on protein abundance

To detect proteins that change in abundance with age, we fit a log-
normal linear model with predictors similar to Equation 2:

Proteini = Sex[i]+Gen[i]+ Age[i]+ 1i (3)

where Proteini is the log-scale abundance of each protein from
mouse i, as defined in Equation 1, ɛi is the residual, and all other
terms as previously defined. The age effect corresponds to the slope
of the regression model and is an estimate of the log2 fold change
per year of life, whichwe tested throughANOVA. Proteinswith sig-
nificant age effects were identified after FDR adjustment (FDR<
0.01).

Age effects on the correlation among protein complex members

To investigate coregulatory patterns of protein complexes (Giurgiu
et al. 2019) (CORUM database) and their implications on stoichi-
ometry, we adapted a method described in McKenzie et al.
(2016). We filtered the data to only include proteins from only
complexes represented by at least four members in our data. We
computed Pearson’s correlations between all observed gene pairs
in the protein complexes at both transcript and protein levels,
stratified by age group. Then for each protein complex and data
type (transcript and protein), we regressed the correlation coeffi-
cients of each gene pair on age and recorded the slope, which rep-
resents the change in units of correlation per year:

Correlationi,j
k = m+ Age[k]+ 1k (4)

where Correlationi,j
k is the correlation between transcripts or pro-

teins i and j at age k; μ is the overall intercept; Age is the age effect,
fit from a continuous encoding of age at the year scale;
Age[k] = bAge∗k; and ɛk is the residual at age k. To determine signifi-
cance, we shuffled the mouse IDs and repeated the slope estima-
tion 1000 times and obtained FDR estimates using the DGCA
package (McKenzie et al. 2016). Significant age effects were de-
clared at FDR<0.1.

We also jointly modeled all gene pairs for each protein com-
plex to estimate an overall age effect instead of fitting separate
models per gene pair. We did this by fitting a LMM using the
lme4 package to model gene pairs with a random effect, allowing
the intercept and age slope to vary with gene pair:

Correlationijk = m+ u[ij]+ (bAge + vAge[ij])xk + 1ijk (5)

where Correlationijk is the correlation between proteins i and j at
age k, μ is the overall intercept, u[ij] is the random deviation
on the intercept specific to the pairing of transcripts or proteins
i and j, βAge is the overall age effect, vAge[ij] is the random deviation
on the age effect specific to the paring of transcripts or proteins
i and j, xk is the age (6, 12, or 18 mo), and ɛijk is random noise
on the correlation for proteins i and j at age xk. The gene pair–
specific random terms are modeled as u� N(0, It2) and
vAge � N(0, It2Age), and the error as 1ijk � N(0, Is2). We used the
permutations procedure fromMcKenzie et al. (2016) to determine
significance, using a P-value cutoff of 0.05, for each protein
complex.

Additive QTL mapping

Although the results of additive QTL mapping are not reported
here, we domake them available along with the data, and it is use-
ful to describe their method, which acts as foundation for the age-

interactive QTL analysis. For each transcript or protein, we trans-
formed the data to rank normal scores (Conover and Iman 1981)
and fit the following model at approximately 64,000 equally
spaced loci across the genome:

yi = QTLm[i]+ Sex[i]+ Age[i]+ u[mi]+ 1 i (6)

where yi is the transcript expression or protein abundance (for the
gene being analyzed) for mouse i, QTLm[i] is the effect of the foun-
der haplotype at locus m (based on expected additive dosages) for
mouse i, and u[mi] is a random kinship effect that accounts for the
correlation between individual DO mice owing to shared genetic
effects excluding the chromosome of locus m (leave-one-chromo-
some-out, i.e., LOCO method). The kinship effect is modeled as
u[m] � N(0, Kc[m]K

2), whereKc[m] is the realized genomic relation-
ship matrix excluding markers from chromosome c of marker m,
and t2K is the variance component underlying the kinship effect
(Yang et al. 2014). The log10 likelihood ratio (LOD score) was deter-
mined by comparing theQTLmodel (Equation 6) to the null mod-
el without the QTL term.

Age-interactive QTL mapping

We performed a second set of genome scans to identify age-inter-
active QTLwhere the rate of changewith age of a transcript or pro-
tein is dependent on genotype. Genome scans for age-QTL are
based on the following model:

yi = QTLm[i]×Age[i] +QTLm[i]+ Sex[i]+ Age[i]+ u[mi]+ 1i (7)

where QTLm[i] ×Age[i] is the interaction effect between the QTL ge-
notype and age of mouse i. All other terms are as previously de-
fined. The null model for the age-interactive genome scans is the
additive QTL model from Equation 6, thus only the interaction
term is being tested. To determine significance thresholds for
age-QTL, we performed a more elaborate permutation procedure
than the standard used for additive QTL (Churchill and Doerge
1994). For each transcript or protein, we fit the following model:

yi = Sex[i]+ Age[i]+ ui + 1i. (8)

where the kinship term ui includes effects of all loci, including the
additive effect of the locus under evaluation (non-LOCO). We
then computed the residuals by subtracting the fitted values of
model predictors:

ei = yi − ̂Sex[i]+ ̂Age[i]+ ûi (9)

To construct a permutation test for the age-by-QTL effect, we
generate null data by summing the fitted effect values with permu-
tations of the residuals estimated in Equation 7. We repeated the
age-interactive scans on the residual-permuted phenotypes 1000
times to obtain a null distribution of the LODint statistic.
Significance thresholds to control the genome-wide error rate at
<0.05 for the maximum LODint scores were based on the 95th per-
centile of this distribution, resulting in a threshold of LODint >
7.75. We also defined suggestive age-QTL for transcripts and pro-
teins based on LODint > 6.0, corresponding to the 37th percentile
of the permutation distribution. All QTL analyses were performed
with the R/qtl2 package (Broman et al. 2019).

Distal QTL hotspot analysis

Using a sliding window of 4 Mb, we estimated the density of sug-
gestive age-QTL at positions spanning the genome (LODint > 6) for
transcripts and proteins (Fig. 5A). We defined a genomic region as
a hotspot based on mapping more than 30 age-QTL. We used the
hotspots to defines sets of transcripts and proteins for functional
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enrichment analysis. We further refined the hotspot sets by filter-
ing out transcripts or proteins with a mean Pearson correlation co-
efficient < 0.3 with the other hotspot members, because these
genes are less likely to share genetic drivers.

Functional enrichment analysis

We performed functional enrichment analysis for gene sets de-
fined by differential expression analysis based on age for tran-
scripts and proteins as well as sets defined by the refined age-
QTL hotspots. For the sets defined by age effects, we used the R
package FGSEA (Korotkevich et al. 2016), whose input is not
based on sets defined by significance cutoffs and instead incorpo-
rates information from a specified score. We used the standardized
age effects from transcripts and proteins as the score, thus up-
weighting the influence of genes with more extreme age effects
on the enrichment analysis. We considered enrichment categories
representing biological process, cellular compartment, and
molecular function. We filtered out enrichment results based on
a FDR<0.05 and used a built in function from FGSEA to collapse
redundant categories. For the enrichment analysis of gene sets de-
fined by distal age-pQTLs hotspots, we used the clusterProfiler
package (Yu et al. 2012), because there is no clear score to incorpo-
rate into the analysis. Similarly to the enrichment analysis for age
effects, we also consideredGO terms for biological processes, cellu-
lar compartments, and molecular function for each set and used
FDR<0.05 cutoff to define enriched categories.

Software

All data analyses and figures were generated using R v4.1.0 (R Core
Team 2021) based on the main packages tidyverse v1.3.1, DESeq2
v1.32.0, fgsea v1.18.0, msigdbr v7.4.1, qtl2 v0.24, ensimplR
v0.3.0, corrplot 0.90, DGCA v1.0.2, grid v4.1.0, gridExtra v2.3,
and stringr v1.4.0. The R Scripts used for all the data processing
and analysis can be found on Figshare (https://doi.org/10.6084/
m9.figshare.12378077.v6) and as Supplemental Code along with
a PDF file describing the workflow.

Data access

All raw sequencing data generated in this study have been submit-
ted to the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number PRJNA510989. All the
mass spectrometry data generated here have been submitted to
the ProteomeXchange database (http://www.proteomexchange
.org/) under accession number PXD023724. Both raw and normal-
ized expression and abundance matrices data have been sub-
mitted to Figshare database (https://doi.org/10.6084/m9.figshare
.12378077.v6). All genotype data for the mice used in this study
have been submitted to the DOdb database (https://dodb.jax
.org/) under “Shock Center Longitudinal Study” project. All
the analyses were performed using as input a compressed
RData object containing the processed data and QTL mapping
results (JAC_DO_heart_v9.gz), which can be found on Figshare
(10.6084/m9.figshare.12378077). These data are also available
on QTL Viewer (https://qtlviewer.jax.org/viewer/agingheart) for
both interactive analysis and download. If using the download
option, users will have access to the same data in the RData
object when loading all files (core.JAC_DO_heart.v9.Rdata,
dataset.mrna.JAC_DO_heart.v9.Rds, and dataset.protein.JAC_
DO_heart.v9.Rds) into R.
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