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As a heterogeneous and aggressive disease, osteosarcoma (OS) faces great challenges to
prognosis and individualized treatment. Hence, we explore the role of immune-related
genes in predicting prognosis and responsiveness to immunotherapy and targeted
therapies in patients with OS based on the immunological landscape of osteosarcoma.
Based on the database of the Therapeutical Applicable Research to Generate Effective
Treatments (TARGET), single-sample gene set enrichment analysis (ssGSEA) was used to
obtain the enrichment scores of 29 immune characteristics. A series of bioinformatics
methods were performed to construct the immune-related prognostic signature (IRPS).
Gene set enrichment analysis and gene set variation analysis were used to explore the
biological functions of IRPS. We also analyzed the relationship between IRPS and tumor
microenvironment. Lastly, the reactivity of IRPS to immune checkpoint therapy and
targeted drugs was explored. The ssGSEA algorithm was used to define two immune
subtypes, namely Immunity_High and Immunity_Low. Immunity_High was associated with
a good prognosis and was an independent prognostic factor of OS. The IRPS containing 7
genes was constructed by the least absolute shrinkage and selection operator Cox
regression. The IRPS can divide patients into low- and high-risk patients. Compared
with high-risk patients, low-risk patients had a better prognosis and were positively
correlated with immune cell infiltration and immune function. Low-risk patients
benefited more from immunotherapy, and the sensitivity of targeted drugs in high- and
low-risk groups was determined. IRPS can be used to predict the prognosis of OS
patients, and provide therapeutic responsiveness to immunotherapy and targeted therapy.
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INTRODUCTION

Osteosarcoma (OS) is the most common primary malignant bone tumor, which mostly occurs in
children and young people (Gill and Gorlick, 2021). The standard treatment of OS, involving
surgery and chemotherapy, extended survival for more than 60% of patients with localized
disease (Bernthal et al., 2012; Isakoff et al., 2015). Although this has made a significant
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contribution to improving the prognosis of OS patients,
clinical outcomes have hardly made significant progress
over the past decades (Smeland et al., 2019). For patients
with recurrence and metastasis, the overall 5 years survival
rate is even less than 25% due to the development of resistance
to radiation or chemotherapy (Zhao et al., 2020). To date, the
main therapies for OS have remained largely unchanged, so
there is an urgent need to understand the molecular
mechanisms of OS occurrence and progression to identify
more effective therapeutic targets.

The intrinsic genetic heterogeneity and dynamic
immunogenicity characteristics significantly would influence
the outcome of treatment (Suehara et al., 2019; Wang et al.,
2019). In recent years, immunotherapy has made important
breakthroughs in a variety of solid tumors (Hellmann et al.,
2018; Forschner et al., 2019). Sarcoma is the first tumor model
in which immunotherapy has been suggested as a therapeutic
strategy (Coley, 1891). The immune microenvironment of OS
is mainly composed of tumor-associated macrophages,
lymphocytes, dendritic cells, and myeloid cells (Inagaki
et al., 2016). Studies have shown that increased TAM
infiltration is associated with decreased metastasis and
increased survival rate of high-grade OS (Buddingh et al.,
2011; Gomez-Brouchet et al., 2017). In addition, the
number of CD8+ T cell infiltrates into OS was positively
correlated with overall survival (Wang et al., 2016). Several
clinical studies and trials have demonstrated the potential of
immunotherapy to enhance the outcome of patients with OS.
The use of the macrophage activator Mifamurtide in
combination with standard chemotherapy significantly
improved 6 years overall survival in an OS randomized
clinical trial (Johal et al., 2013). New immune-based
treatments, such as immune checkpoint inhibitors, may
considerably improve the outcome of the disease (Kansara
et al., 2014). However, the efficacy of anti-PD-L1 therapy for
OS is limited (Tawbi et al., 2017; D’Angelo et al., 2018; Le
Cesne et al., 2019). The heterogeneity of OS immune
microenvironment may be the reason for the poor efficacy
of immunotherapy. Therefore, the individualized evaluation of
OS immune microenvironment is extremely critical to
improve the therapeutic effect. For better prognosis and
effective treatment, it is necessary to identify key genes
from tumor-specific immunophenotypes and explore the
underlying mechanisms involved.

In this study, we aimed to construct a personalized immune-
related prognostic signature (IRPS) to predict the prognosis of OS
patients. We also explored its relationship between the immune
microenvironment and its sensitivity to immune checkpoint
therapy and targeted drugs, which provides reliable guidance
of clinical precision medicine.

METHODS

Data Sources and Clustering
Download gene expression data and clinical information of OS
patients from the Therapeutical Applicable Research to Generate

Effective Treatments (TARGET) database. Download the
corresponding data of the GSE21257 chip from the Gene
Expression Omnibus (GEO) database for an independent
external verification set. The single-sample gene set
enrichment analysis (ssGSEA) was used to obtain the
enrichment fractions of 29 immune characteristics in each
osteosarcoma sample (Hänzelmann et al., 2013), and
hierarchical clustering was performed using the
ConsensusClusterPlus package (Wilkerson and Hayes, 2010).

Assessment of Immune Cell Infiltration
Level, Tumor Purity, and Stromal Content
in OS
The stromal score, ESTIMATE score, immune cell infiltration
level (immune score), and tumor purity level in a single sample
were assessed by ESTIMATE (Yoshihara et al., 2013).

Construction of Co-Expression Network
and IRPS
TheWGCNA package was used to perform the weighted gene co-
expression network (WGCNA) of genes with a variation rate
greater than 0.5 to obtain modules related to Immunity_H
(Langfelder and Horvath, 2008). Univariate Cox regression
analysis was performed using genes contained in the module
most associated with Immunity_H to obtain prognostic genes.
Then, the least absolute shrinkage and selection operator
(LASSO) regression was performed using the “glmnet” R
package to build the IRPS. Patients in the TARGET and
GSE21257 cohorts were divided into high- and low-risk
patients using the median risk score in the TARGET cohort as
the threshold.

Verification of IRPS
In the TARGET and GSE21257 cohorts, the “survival” R package
was used to establish the survival curve of the high- and low-risk
patients through the Kaplan-Meier diagram, and the difference in
survival curve was analyzed by the log-rank test. Cox regression
analysis was used for univariate and multivariate analyses to
evaluate the impact of IRPS and other clinical factors on
prognosis. The time-dependent receiver operating
characteristic curve (ROC) was performed using the
“timeROC” R package.

Gene Set Enrichment Analysis and Gene Set
Variation Analysis
GSEA and GSVA were used to investigate the biological function
and pathway enrichment in different risk patients. With
“c5.go.bp.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt”
as reference gene sets, the analyses were carried out by GSEA
software (version 4.1.0). The “gsva” R package was used for GSVA
with the “h.all.v7.4.symbols.gmt” gene set as a reference
(Hänzelmann et al., 2013).
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FIGURE 1 | Determine the two subtypes and prognostic analysis. (A) The heat map showing samples clustering results, with consensus k identified as 2. (B) The
heat map showing the immune landscape of the two subtypes. (C–F) Comparison of (C) stromal score, (D) immune score, (E) ESTIMATE score, and (F) tumor purity
between the two subtypes in the TCGA cohort (ppp, p < 0.001). (G) Comparison of survival prognosis between OS subtypes. (H) Univariate and multivariate Cox
regression analysis.
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Explore the Reactivity of IRPS to Immune
Checkpoint Therapy and the Sensitivity of
Targeted Drugs
We explored the expression and correlation between current
common immune checkpoints in high- and low-risk patients
in the TARGET and GSE21257 cohorts. In addition, the
“pRRophetic” R package were used to analyze the sensitivity
of targeted drugs in high- and low-risk patients (Geeleher et al.,
2014).

Statistical Analysis
Kaplan-Meier curve and log-rank test were used to analyze
overall survival. Independent prognostic factors of OS were
determined by univariate and multivariate COX regression.
The Wilcoxon rank-sum test was used to compare the
distribution of any continuous variables between the two
groups. Pearson correlation coefficient was used to assess
correlation. The above analyses were carried out in R software
(version 4.1.0). For all statistical results, p < 0.05 was considered
statistically significant.

RESULTS

Immunogenomic Analysis to Identify Two
OS Immune Subtypes
In the TARGET cohort, ssGSEA was used to quantify each
sample with 29 immune-related gene sets as a reference and
then hierarchical clustering was performed (Figure 1A). We have

defined two immune subtypes, namely Immunity_high
(Immunity_H) and Immunity_low (Immunity_L). In the heat
map, the Immunity_H subtype has higher immunological
activity, and the Immunity_L subtype has lower
immunological activity (Figure 1B). To ensure the
effectiveness of clustering, we compared the stromal score,
immune score, ESTIMATE score, and tumor purity between
the two subtypes. Compared with the Immunity_L subtype,
the Immunity_H subtype had higher stromal score (p <
0.001), immune score (p < 0.001) and ESTIMATE score (p <
0.001), while tumor purity (p < 0.001) is lower (Figures 1C–F).
These results showed that this grouping method is reasonable and
can be used for follow-up research. Survival analysis showed that
the Immunity_H subtype had a better prognostic outcome than
the Immunity_L subtype (p < 0.05) (Figure 1G). After
adjustment for age, sex, and metastasis, it was determined that
the Immunity_H subtype was an independent prognostic factor
(p < 0.05, Figure 1H).

WGCNA Identifies Key Modules and Builds
IRPS
A co-expression network was constructed for genes with a
variation rate greater than 0.5. When the optimal soft
threshold is 3, the scale-free R2 can reach 0.9 (Figure 2A).
WGCNA merged similar modules to generate 11 modules
with different colors, among which Immunity_H has the
highest correlation with the yellow module (Figure 2B, r �
0.6, p < 0.001). The genes contained in the yellow module
were analyzed by univariate COX regression. 16 genes with

FIGURE 2 | Identification of key modules by WGCNA in the TARGET cohort and establishment of IRPS by LASSO regression analysis. (A) Identification of power
value. When the power value is 3, the red line represents R2 > 0.9. (B) Heat map of the correlation between gene modules and immune subtypes. The value of each cell
represents the correlation coefficient. The value of parentheses is the p value. The figure on the right shows a scatter plot of the relationship between gene significance
and module membership in the yellow module. (C) Univariate Cox regression analysis of prognostic genes in TARGET and GSE21257 cohorts. (D,E) Lasso Cox
regression analysis identified 7 genes as candidates for IRPS construction.
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HR < 1 and p < 0.05 were obtained in the TARGET and
GSE21257 cohorts (Figure 2C). LASSO Cox regression
analysis was performed to construct personalized IRPS
(Figures 2D,E), which included 7 genes. The median risk
score, which divided patients into high- or low-risk patients,
was calculated as follows: Risk score � (−0.051) *WAS + (−0.482)
* IFNGR1 + (−0.150) * PILRA + (−0.110) * TMEM86A+ (−0.051)
*CXCL16 +(−0.852) * CTNNBIP1 + (−0.333) * APOL6.

Verification of IRPS
To determine the prognostic value of IRPS, patients in the
TARGET cohort were divided into high- or low-risk patients
based on the above risk score. High-risk patients had a lower
overall survival rate than low-risk patients (Log-rank p < 0.001,
Figure 3A). The ROC curve showed 0.845 at 3 years, 0.855 at
5 years, and 0.864 at 8 years (Figure 3B). In addition, the
calibration chart showed that IRPS had good accuracy in
predicting the prognosis (Figure 3C). We applied IRPS to the
GSE21257 cohort as an independent external verification set. The
Kaplan-Meier survival curve showed that the overall survival of
high-risk patients was significantly shorter than that of low-risk
patients (Log-rank p � 0.023, Figure 3D). The ROC curve showed
0.771 at 3 years, 0.758 at 5 years, and 0.711 at 8 years (Figure 3E).
The calibration chart also indicated that IRPS was effective for
predicting prognosis (Figure 3F). These results suggest that IRPS
can also accurately predict survival in OS patients in other
independent cohorts.

Evaluation of IRPS as an Independent
Prognostic Factor
According to different clinicopathological characteristics (age,
gender, and metastasis), OS patients were stratified, and Kaplan-
Meier survival analysis was performed to evaluate the prognostic
value of IRPS. We found that low-risk patients had better
prognostic outcomes than high-risk patients regardless of age,
sex, and metastasis (Figure 4A). In univariate Cox regression
analysis, high-risk patients showed poor overall survival in both
the TARGET cohort and GSE21257 cohort (HR � 4.412, 95% CI
� 2.590–7.513, p < 0.001; HR � 2.040, 95% CI � 1.336–3.115, p �
0.001) (Figures 4B,C). In multivariate Cox regression analysis,
high-risk patients also showed poor overall survival in the two
cohorts (HR � 4.344, 95% CI � 2.531–7.456, p < 0.001; HR �
2.050, 95% CI � 1.312–3.204, p � 0.002) (Figures 4B,C).
Therefore, IRPS is an independent prognostic factor of OS.

GSEA and GSVA
GSEA and GSVA were performed to determine important
functional phenotypes between high- and low-risk patients.
GSEA results showed that significant immune-related
functions are enriched in low-risk patients, such as response
to interferon-gamma, positive regulation of phagocytosis, T cell
receptor signaling pathway and dendritic cell differentiation, etc.
(Figures 5A,B). GSVA results showed that allograft rejection,
IL6/JAK/STAT3 signaling, interferon-gamma response,

FIGURE 3 | Prognostic analysis of IRPS. Kaplan-Meier analysis of IRPS in the (A) TARGET cohort and (D)GSE21257 cohort. Time-dependent ROC curves of IRPS
in the (B) TARGET cohort and (E) GSE21257 cohort at 3-, 5-, and 8-years. Calibration chart analysis suggested a high accuracy of 3-, 5-, and 8-years OS prediction in
the (C) TARGET cohort and (F) GSE21257 cohort.
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interferon-alpha response, complement, coagulation, and
inflammatory response were activated in the low-risk group
(Figure 5C). The immune activity is higher in low-risk
patients, which may be related to the prolonged survival time.
These results are consistent with the good survival of the above-
mentioned Immunity_H patients.

The Correlation Between IRPS and Tumor
Microenvironment
In order to better characterize the immune function of IRPS in
TME, we evaluated the relationship between high-risk and low-risk
patients and the level of immune cell infiltration (immune score),
ESTIMATE score, stroma score, and tumor purity. The results
showed that in the TARGET and GSE21257 cohorts, low-risk
patients had the higher immune score, ESTIMATE score, and

stromal score (Figures 6A–C), and tumor purity was lower in
low-risk patients (Figure 6D). The IRPS was significantly negatively
correlated with the immune score, ESTIMATE score, and stromal
score (Figures 6E–G), but positively correlated with tumor purity
(Figure 6H). Secondly, the correlation between the IRPS with
immune cell infiltration and immune cell function was
evaluated. Immune cell infiltration analysis showed that in the
TARGET cohort, CD8+ T cells, DCs, Macrophages, and
Neutrophils were higher in low-risk patients than in high-risk
patients (Figure 7A). The same results were observed in the
GSE21257 cohort (Figure 7B). Immune cell functions analysis
showed that in the TARGET cohort, APC_co_inhibition, Check
point, HLA, andMHC_class_I weremore active in low-risk patients
compared with high-risk patients (Figure 7C). Similar results were
observed in the GSE21257 cohort (Figure 7D). Finally, in the
TARGET and GSE21257 cohorts, we found that the IRPS was

FIGURE 4 | Survival analysis of IRPS with different clinical characteristics and evaluation of independent prognostic factors. (A) Stratified analysis to investigate the
prognostic value of IRPS in the TARGET cohort. Univariate and multivariate Cox regression analysis in the (B) TARGET cohort and (C) GSE21257 cohort.
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negatively correlated with the above-mentioned immune cell
infiltration and immune cell function (Figure 7E). Above all,
these evidences are also consistent with the above results, which
further proves the accuracy and robustness of our results.

Reactivity of Immune Checkpoint Therapy
and Sensitivity of Targeted Drugs
In the TARGET and GSE21257 cohorts, immune checkpoint
markers (CD48, HAVCR2, LAIR1, LGALS9, TNFRSF14) were
expressed higher in low-risk patients, and there was a significant
negative correlation between IRPS and these markers (r < −0.5,
p < 0.05, Figures 8A–E). We estimated the IC50 of each sample
and observed that the IC50 of six drugs had significant differences
between the two groups. The results showed that Axitinib,
Cyclopamine, and Vorinostat were highly sensitive in high-risk
patients (Figures 9A–C). MG.132, Shikonin, and Luminespib
were more sensitive in low-risk patients (Figures 9D–F). These
results may provide accurate and personalized treatment
strategies for OS patients.

DISCUSSION

OS is a very aggressive bone malignant tumor with a poor
prognosis, and it is commonly characterized by early distant

metastasis and recurrence. Therefore, improving the prognosis of
OS patients remains a huge challenge. Immunotherapy is
accelerating the pace of cancer treatment, and using
immunotherapy in a personalized way will help improve the
prognosis of cancer patients. A comprehensive analysis of the OS
immune landscape determined that immunophenotypes play a
key role in immunotherapeutic response and prognosis (Wu
et al., 2020). Therefore, we aim to identify OS immune
subtypes and construct a model system with the immune
capability to predict patient prognosis and response to
immunotherapy.

In our study, we used the TARGET cohort to present the
immune landscape of OS. Cluster analysis showed that OS could
be divided into two subtypes: Immunity_H and Immunity_L. The
prognostic outcome of Immunity_H patients was significantly
better than that of Immunity_L patients, and Immunity_H was
an independent prognostic factor. The genes associated with
Immunity_H were identified by WGCNA to ensure the
specificity of the prognostic signature. We then used
univariate Cox regression and LASSO Cox regression models
to determine a robust IRPS. Survival analyses showed that low-
risk patients had a better prognosis than high-risk patients.
Univariate and multivariate COX regression showed that IRPS
is an independent prognostic factor in OS patients. Stratify
analysis showed that IRPS remained effective in predicting the
prognosis of patients with different clinical characteristics. We

FIGURE 5 | Analysis of GSEA and GSVA in high- and low-risk patients. (A) GSEA with “c5.go.bp.v7.4.symbols.gmt” as a reference gene set. (B) GSEA with
“c2.cp.kegg.v7.4.symbols.gmt” as a reference gene set. (C) GSVA with “h.all.v7.4.symbols.gmt” as the reference gene set.
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also used the GSE21257 cohort as the independent external
validation set to verify IRPS, and the results showed that IRPS
also has a good predictive ability for other independent cohorts.

There have been some studies as predictive prognosis and
biomarkers of OS, which provide certain insights for the
prognosis and treatment of OS patients (Liu et al., 2021; Yang
et al., 2021; Wang et al., 2021). Therefore, we comprehensively
analyzed the OS immune landscape to construct IRPS, including
7 genes (WAS, IFNGR1, PILRA, TMEM86A, CXCL16,
CTNNBIP1, and APOL6). Interestingly, all of these genes are

associated with immunity. The WAS encodes WISkott-Aldrich
syndrome protein (WASp), which belongs to the actin nucleation
promoting factor family. WASP is expressed only in
hematopoietic cells, including dendritic cells, macrophages,
T cells, B cells, macrophages, and natural killer cells (Matalon
et al., 2013). WASP deficiency will lead to functional defects of
adaptive immunity and innate immunity (Thrasher and Burns,
2010). The deficiency of IFNGR1 causes tumor cells to be
unresponsive to IFNγ and promotes tumor growth (Dunn
et al., 2005). The degradation of IFNGR1 results in impaired

FIGURE 6 | Correlation between IRPS and TME in OS. (A–D) In the TARGET and GSE21257 cohorts, box plots of IRPS and (A) immune cell infiltration level, (B)
ESTIMATE score, (C) stromal score, and (D) tumor purity. (E–H) Correlation between IRPS and (E) immune cell infiltration level, (F) ESTIMATE score, (G) stromal score,
and (H) tumor purity.
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FIGURE 7 | The relationship between IRPS and immune cell infiltration and immune function. (A,B) Box plots of IRPS and immune cell infiltration in the TARGET (A)
and GSE21257 (B) cohorts. (C,D) Box plots of IRPS and immune function are in the TARGET (C) and GSE21257 (D) cohorts. (E) Heat map of the correlation between
IRPS and immune cells and immune function.
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FIGURE 8 | The expression and correlation between immune checkpoints in high- and low-risk patients in the TARGET and GSE21257 cohorts. (A) CD48 (B)
HAVCR2 (C) LAIR1 (D) LGALS9 (E) TNFRSF14.
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IFNγ signaling, decreased MHC-I expression, and enhanced
immune evasion ability, and stabilization of IFNGR1
expression enhances the sensitivity of checkpoint therapy (Du
et al., 2021). In contrast, the loss of IFNGR1 counteracts the
reactivity of immune checkpoint inhibitors (Gao et al., 2016).
PILRA is widely expressed in immune-related cells, including
macrophages, dendritic cells, B cells, natural killer cells, and
neutrophils (Shiratori et al., 2004). PILRA may play an
important role in the regulation of immune cells (Wilson
et al., 2006). We found in THE HUMAN PROTEIN ATLAS
(www.proteinatlas.org) that transmembrane protein 86A
(TMEM86A) is highly expressed in dendritic cells, T cells, and
B cells, which may play a role in immune regulation. CXCL16 is
the ligand of CXCL6, and CXCR6 upregulation is critical for

continuous tumor control mediated by CD8+ cytotoxic T cells (Di
Pilato et al., 2021). CXCL16 controls the accumulation of natural
killer T cells and inhibits tumor growth (Ma et al., 2018).
CTNNBIP1 is a β-catenin interacting protein, which is
considered to be a tumor suppressor gene (Bi et al., 2018;
Chang et al., 2019). APOL6 is a lipid-binding protein with the
BH3 domain. It mediates apoptosis through interaction with
members of the Bcl-2 family and affects the innate immunity
of different microbial pathogens (Liu et al., 2005; Pant et al.,
2021).

Given that the role of TME in OS cannot be underestimated,
we explored the relationship between IRPS and immune
infiltrating cells. The results showed there were significantly
higher immune scores, ESTIMATE scores, stroma scores, and

FIGURE 9 | In the TARGET and GSE21257 cohorts, high- and low-risk patients and targeted drug sensitivity. (A) Axitinib (B) Cyclopamine (C) Vorinostat (D)
MG.132 (E) Shikonin (F) Luminespib.
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lower tumor purity in low-risk patients. We found that
compared with high-risk patients, CD8+ T cells, DCs,
Macrophages, and tumor-infiltrating lymphocytes (TIL)
cells in the low-risk patients were abundant in infiltration
and functionally active, suggesting that high tumor
immunological infiltration has a better prognosis. CD8+

T cells can directly kill tumor cells and improve the survival
rate of cancer (Galon et al., 2006; Ogura et al., 2018). A
multicenter retrospective study has shown that patients with
high CD8+/FOXP3+ rates have improved survival rates
(Fritzsching et al., 2015). DCs are key coordinators of the
immune response, which can activate specific immune systems
to accelerate anti-tumor immunity, and the total number of
DCs is associated with a good prognosis (Böttcher and Reis e
Sousa, 2018). A recent study showed that dendritic cells can
effectively inhibit tumor growth and metastasis in OS mouse
models (Zhou et al., 2020). The direct or indirect anti-tumor
effect of macrophages in OS is greater than their supportive
effect on the tumor (Buddingh et al., 2011), and the total
number of macrophages is associated with better overall
survival of OS patients (Heymann et al., 2019). TIL cells are
consumed in the OS environment and accelerate tumor
recurrence, and adjuvant therapy plus TIL cells can prolong
survival (Shi et al., 2020). These results are consistent with our
findings.

Among the immune checkpoint markers, CD48, HAVCR2,
LAIR1, LGALS9, and TNFRSF14 were lower expressed in high-
risk patients, suggesting that high-risk patients have limited
benefit from immune checkpoint therapy. In addition, we
investigated the responsiveness of high- and low-risk patients
to targeted drugs. We found that low-risk patients were more
sensitive to MG.132, Shikonin, and Luminespib, while high-risk
patients were more sensitive to Axitinib, Cyclopamine, and
Vorinostat. These findings provide an effective strategy for the
stratified treatment of IRPS.

Although our research has important clinical significance for
OS, there are inevitably some limitations. First of all, this is a

retrospective study and it is necessary to further verify it in
prospective trials. Secondly, our prognostic signature is
established by several genes, and the biological function of OS
should be further examined. Third, the epigenetic and intra-
tumor genetic heterogeneity may lead to sampling bias.

Our study provided a comprehensive assessment of the
immune landscape of OS and developed a novel IRPS that has
been well validated in an independent cohort. We also revealed
the biological mechanism of IRPS. IRPS is closely linked to the
infiltration of a variety of immune cell types, and the immune
checkpoint response and drug sensitivity were explored, which
may have guiding significance for the prognosis and treatment of
OS patients. In the future, large-scale, multi-center, and
prospective studies are required to verify the effectiveness of
the IRPS we proposed.
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