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Abstract

Background: Coniophora olivacea is a basidiomycete fungus belonging to the order Boletales that produces
brown-rot decay on dead wood of conifers. The Boletales order comprises a diverse group of species including
saprotrophs and ectomycorrhizal fungi that show important differences in genome size.

Results: In this study we report the 39.07-megabase (Mb) draft genome assembly and annotation of C. olivacea. A
total of 14,928 genes were annotated, including 470 putatively secreted proteins enriched in functions involved in
lignocellulose degradation. Using similarity clustering and protein structure prediction we identified a new family of
10 putative lytic polysaccharide monooxygenase genes. This family is conserved in basidiomycota and lacks of previous
functional annotation. Further analyses showed that C. olivacea has a low repetitive genome, with 2.91% of repeats and a
restrained content of transposable elements (TEs). The annotation of TEs in four related Boletales yielded important
differences in repeat content, ranging from 3.94 to 41.17% of the genome size. The distribution of insertion ages of LTR-
retrotransposons showed that differential expansions of these repetitive elements have shaped the genome architecture of
Boletales over the last 60 million years.

Conclusions: Coniophora olivacea has a small, compact genome that shows macrosynteny with Coniophora puteana. The
functional annotation revealed the enzymatic signature of a canonical brown-rot. The annotation and comparative
genomics of transposable elements uncovered their particular contraction in the Coniophora genera, highlighting their
role in the differential genome expansions found in Boletales species.
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Background
Coniophora olivacea is a basidiomycete fungus belonging
to the order Boletales. C. olivacea produces brown-rot
decay on dead wood of conifers (softwood) and, less fre-
quently, on hardwood species. In addition, C. olivacea
also damages wood buildings or construction materials.
The genome sequence of its sister species C. puteana was
made public in 2012 [1] and contributed to the under-
standing of genomic differences between brown and
white-rot fungi. White-rot fungi are efficient lignin de-
graders, whereas brown-rot fungi attack cell wall

carbohydrates leaving lignin undigested. The main respon-
sible of this behavior are lignin-degrader peroxidases,
which are abundant in white-rot species and particularly
contracted in brown-rot and mycorrhizal fungi [2]. The
Boletales order comprises a diverse group of species in-
cluding saprotrophs and ectomycorrhizal species such as
Suillus sp. or Pisolithus sp. During the last 6 years, up to
12 Boletales genomes have been sequenced and annotated
[1, 3, 4]. Information that emerged from these studies
showed important differences in genomic characteristics
between the species belonging to this group, whose pre-
dicted common ancestor was dated 84 million years ago.
Evolution from this boletales ancestor (supposed to be a
brown-rot saprotroph) lead to the diversification and the
appearance of ectomycorrhizae, which shows a particular
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contraction of the number of plant cell wall-degrading en-
zymes coding genes (PCWDE) [4, 5]. In addition, Boletales
show important differences in their genome size and gene
content. For example, the smallest assembled Boletales
genome spans 38.2 Mb and has 13,270 annotated genes
(Hydnomerulius pinastri), but the largest (Pisolithus tinc-
torius) spans 71.0 Mb and has 22,701 genes [4]. Previous
studies in saprophytic basidiomycetes have shown that
species with higher genome sizes tend to have more trans-
posable elements [6]. Also, it has been described that spe-
cies associated with plants (pathogenic and symbiotic)
have genomes with expanded TE families [1, 7], although
this trend varies between the three basidiomycete phyla
[8]. In this paper, we describe the draft genome sequence
and annotation of the brown-rot C. olivacea, and we com-
pare it with the genomes of C. puteana as well as with that
of three other Boletales showing important differences in
genome sizes (Serpula lacrymans, Pisolithus tinctorius
and Hydnomerulius pinastri). The results show that C. oli-
vacea displays enzymatic machinery characteristic of
brown-rot fungi encoded in a compact genome, carrying a
small number of repetitive sequences. The comparative
analysis with other Boletales shows that both ancient and
modern LTR-retrotransposon amplification events have
greatly contributed to the genome expansion along
the evolution of Boletales.

Methods
Fungal strains and culture conditions
Coniophora olivacea MUCL 20566 was obtained from
the Spanish Type Culture Collection and was cultured in
SMY submerged fermentation (10 g of sucrose, 10 g of
malt extract and 4 g of yeast extract per litre).

Nucleic acid extraction
Mycelia were harvested, frozen, and ground in a sterile
mortar in the presence of liquid nitrogen. High molecular
weight DNA was extracted using the phenol-chloroform
protocol described previously [9]. DNA sample concentra-
tions were measured using a Qubit® 2.0 Fluorometer (Life
Technologies, Madrid, Spain), and DNA purity was mea-
sured using a NanoDrop™ 2000 (Thermo-Scientific, Wil-
mington, DE, USA). DNA quality was verified by
electrophoresis in 0.7% agarose gels. Total RNA was ex-
tracted from 200 mg of deep-frozen tissue using Fungal
RNA E.Z.N.A Kit (Omega Bio-Tek, Norcross, GA, USA),
and its integrity was verified using the Agilent 2100 Bioana-
lyzer system (Agilent Technologies, Santa Clara, CA, USA).

Genome and transcriptome sequencing and assembly
A detailed description is provided in Additional file 1:
Text S1. Briefly, the C. olivacea MUCL 20566 genome
was sequenced using Illumina HiSeq-1 TB Regular
2 × 151 bp 0.309 kb. Sequenced reads were QC filtered

for artifact contamination using BBDuk from the BBMap
package (https://sourceforge.net/projects/bbmap/) and
subsequently assembled with Velvet 1.2.07 [10]. The
result -pair library with an insert size of 3000 +/−
300 bp in silico that was then assembled together with
the original Illumina library with AllPathsLG [11]. Raw
sequences were deposited in SRA (Sequence Read Arch-
ive) NCBI database under accession number SRP086489.
Strand-specific RNASeq libraries were created and
quantified by qPCR. Sequencing was performed using an
Illumina HiSeq-2500 instrument. Reads were filtered
and trimmed to remove artifacts and low quality regions
using BBDuk. Transcriptome was de novo assembled
using Trinity [12] and used to assist annotation and
assess the completeness of the corresponding genome
assembly using alignments of at least 90% identity and
85% coverage.

Whole-genome alignment
The genome assemblies of C. olivacea MUCL 20566 and
C. puteana (http://genome.jgi.doe.gov/Conpu1/Conpu1.-
home.html) were aligned using the Promer tool from the
MUMmer 3.0 package [13]. Genome rearrangements
were identified in the alignment with dnadiff tool from
the same package.

Genome annotation
The annotation of the C. olivacea MUCL 20566 assem-
bly was performed using the Joint Genome Institute
pipeline [14] to predict and functionally annotate
protein-coding genes and other features such as tRNAs
or putative microRNA precursors. The SECRETOOL
pipeline [15] was used to identify putatively secreted
proteins, considering the presence of signal peptides, cleav-
age sites, transmembrane domains and the GPI (glycosyl-
phosphatidylinositol) membrane anchor. Carbohydrate-
active enzymes (CAZys) were annotated based on BLAST
[16] and HMMER [17] searches against sequence libraries
and HMM (Hidden Markov Models) profiles of the CAZy
database [18] functional modules. Protein structure predic-
tions were carried out with Phyre2 [19]. Raw sequencing
reads, genome assembly, transcriptome assembly, gene pre-
dictions and functional annotations are publicly available in
the C. olivacea genome portal of Mycocosm database
(http://genome.jgi.doe.gov/Conol1/Conol1.home.html).

Annotation of transposable elements
Transposable elements (TEs) were identified and anno-
tated in the C. olivacea assembly using REPET package
[20, 21], as well as in the following boletales assemblies
available in Mycocosm database (http://genome.jgi.doe.-
gov/programs/fungi/index.jsf ): Coniophora puteana v1.0
(ID: Conpu1), Hydnomerulius pinastri v2.0 (ID: Hydpi2),
Serpula lacrymans S7.3 v2.0 (ID: SerlaS7_3_2), Pisolithus
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tinctorius Marx 270 v1.0 (ID: Pisti1). Briefly, de novo TE
detection was carried out with the TEdenovo pipeline
[21] and the elements were classified with PASTEC [22].
The resulting TE library was fed into TEannot pipeline
[20] in two consecutive iterations: the first one with the
full library, and the second with an improved library
consisting on consensus elements carrying at least one
full-length copy after manually discarding false positives
(i.e., C. olivacea genes).

Insertion age of LTR-retrotransposons
Full-length LTR-retrotransposons were identified using
LTRharvest [23] followed by BLASTX against Repbase
[24]. Long Terminal Repeats were extracted and aligned
with MUSCLE [25]. Alignments were trimmed using tri-
mAl [26] and used to calculate Kimura’s 2P distances.
The insertion age was calculated following the approach
described in [27] using the fungal substitution rate of
1.05 × 10−9 nucleotides per site per year [6, 28].

Identification of gene families
All-by-all BLASTP followed by MCL (Markov Cluster
Algorithm) clustering [29] was carried out with C. oliva-
cea protein models using a threshold value of e−5 and an
inflation value of 2. We considered gene families carry-
ing four or more genes for further analyses.

Phylogenetic analyses
The predicted proteomes of the following species were
downloaded from Mycocosm database (Mycocosm ID in
parenthesis):
Agaricus bisporus var. bisporus H97 v2.0 (Agabi_varb-

isH97_2), Boletus edulis v1.0 (Boled1), Coniophora oliva-
cea MUCL 20566 v1.0 (Conol1), Coniophora puteana
v1.0 (Conpu1), Cryptococcus neoformans var. grubii H99
(Cryne_H99_1), Fomitopsis pinicola FP-58527 SS1 v3.0
(Fompi3), Gyrodon lividus BX v1.0 (Gyrli1), Hydnomeru-
lius pinastri v2.0 (Hydpi2), Leucogyrophana mollusca
KUC20120723A-06 v1.0 (Leumo1), Paxillus involutus
ATCC 200175 v1.0 (Paxin1), Phanerochaete chrysospor-
ium RP-78 v2.2 (Phchr2), Pisolithus tinctorius Marx 270
v1.0 (Pisti1), Pleurotus ostreatus PC15 v2.0
(PleosPC15_2), Rhizopogon vinicolor AM-OR11–026
v1.0 (Rhivi1), Scleroderma citrinum Foug A v1.0 (Sclci1),
Serpula lacrymans S7.3 v2.0 (SerlaS7_3_2), Suillus luteus
UH-Slu-Lm8-n1 v2.0 (Suilu3), Trametes versicolor v1.0
(Trave1). Species phylogeny was constructed as follows:
all-by-all BLASTP followed by MCL clustering was car-
ried out with a dataset containing the proteomes of all
the species. The clusters carrying only one protein per
species were identified, and the proteins were aligned
using MAFFT [30]. The alignments were concatenated
after discarding poorly aligned positions with Gblocks
[31]. The phylogeny was constructed using RaxML [32]

with 100 rapid bootstraps under PROTGAMMAWAGF
substitution model. Phylogenetic reconstruction of Gypsy
reverse-transcriptases was carried out as follows: Reverse
transcriptase RV1 domains were extracted from LTR-
retrotransposons of the TE consensus library using Exon-
erate [33] and aligned with MUSCLE. The alignments
were trimmed using trimAl with the default parameters,
and an approximate maximum likelihood tree was con-
structed using FastTree [34].

Results
C. olivacea assembly and annotation
The nuclear genome of C. olivacea was sequenced with
137 X coverage and assembled into 863 scaffolds account-
ing for 39.07 Mb, 90.3% of the genome size estimation
based on k-mer spectrum (43.28 Mb). The mitochondrial
genome was assembled into two contigs accounting for
78.54 kb. The assembly completeness was 99.78% accord-
ing to the Core Eukaryotic Genes Mapping Approach
(CEGMA [35]), with only one missing accession
(KOG1322, GDP-mannose pyrophosphorylase). We
assembled 66,567 transcripts (mean lenght = 2,744 nt, me-
dian = 2,154 nt) of which 97.8% could be mapped to the
genome. The C. olivacea assembled genome was more
fragmented than its close relative C. puteana (Table 1).
The total repeat content was 2.91% of which 2.15% corre-
sponded to transposable elements, 0.64% to simple re-
peats, and 0.12% to low complexity regions. The
estimation of repeat content from low-coverage Illumina
data (3.8X) yielded 6% of the genome size covered by
transposable elements (Additional file 2: Table S1). We
used transcriptomic information, ab initio predictions and
similarity searches to predict a total of 14,928
genes—84.5% of them having a strong transcriptome sup-
port (spanning more than 75% of the gene length). In
addition, 88.3% of the annotated genes had significant
similarity to proteins from the NCBI nr database and
46.6% to the manually curated proteins from the Swiss-
Prot database (cutoff e−05) [36]. A total of 7,841 predicted
proteins (52.3%) carried Pfam domains and 1,471 (9.8%)
carried signal peptide, of which 470 were predicted to be
secreted using the more stringent SECRETOOL pipeline.
The multigene phylogeny based on 1,677 conserved

single copy genes displayed different classes, orders and
families in branches congruent with previous phylogen-
etic data [37] and with very high support. C. olivacea
was placed in a branch next to its sequenced closer spe-
cies C. puteana representing the Coniophoraceae family
in the order Boletales (Fig. 1).
The whole-genome protein-based alignment between

the two Coniophoraceae species spanned 52.7% of the C.
olivacea and 48.0% of C. puteana assemblies. It shows
evidence of macrosynteny between the two species (Fig. 2a,
Additional file 3: Fig. S1), with an average similarity of
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78.4% in the aligned regions (Fig. 2b) and numerous inver-
sions (1,027 regions). The good conservation between
both genomes in protein coding regions was evidenced by
the amount of orthologous genes obtained using the re-
ciprocal best hit approach (7,468 genes with more than
70% identity over 50% of protein sequences) and by the
number of C. olivacea proteins yielding significant
tBLASTN hits against the C. puteana genome (13,572
genes, cutoff e-5, Fig. 2c). For the remaining 1,352 C. oli-
vacea-specific (orphan) genes, only 48 could be function-
ally annotated based on KOG (Eukaryotic Orthologous

Groups), KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes), GO (Gene Ontology) or InterPro databases.

Carbohydrate-active enzymes of C. olivacea
The annotated proteome was screened for the presence
of carbohydrate-active enzymes (CAZy). A total of 397
proteins were annotated and classified into different
CAZy classes and associated modules. The CAZyme
profile of C. olivacea was very similar to that of C.
puteana although small differences were found in the
glycoside hydrolases (GH, Additional file 4: Table S2).
Some families such as GH5, GH18 or GH31 were
smaller than in C. puteana. Similar to other brown-rot
basidiomycetes, C. olivacea lacked Class II peroxidases
(Auxiliar Activities AA2) and displayed a reduced set of
other cellulolytic enzymes such GH6 (1), GH7 (1) and
CBM1 (2) and AA9 (6).

Functional characteristics of C. olivacea predicted
secretome
Using SECRETOOL pipeline we predicted 470 puta-
tively secreted proteins in C. olivacea and 504 in C.
puteana. An enrichment analysis of gene ontology
(GO) terms was performed to determine what gene
functions were over-represented in the secreted pro-
teins. Thirty GO terms were significantly enriched in-
cluding 24 corresponding to molecular functions, four
to biological processes and two to cellular compo-
nents (Table 2). The most enriched molecular func-
tion was “feruloyl esterase activity,” which is
responsible for plant cell-wall degradation. “Polysac-
charide catabolic process” was the most enriched GO
term within the biological processes, and “extracellu-
lar region” within the cellular components (Table 2).

Table 1 Summary of C. olivacea genome assembly and
annotation

Feature C. olivacea C. puteana

Genome assembly size (Mb) 39.07 42.97

Sequencing coverage depth 137.7× 49.5×

Number of scaffolds 863 210

Scaffold N50 a 80 7

Scaffold L50 (Mb) b 0.14 2.40

N° scaffold gaps 127 412

Genome assembly gaps (%) 0.24 2.57

Assembly completeness (%) 99.78 Unknown

Repeat content (%) c 2.91 4.68

GC content (%) 52.82 52.4

Number of genes 14,928 13,761

Gene density (genes/Mb) 382.07 320.26

Predicted secreted proteins 470 (3.1%) 504 (3.7%)
a N50 indicates the number of scaffolds that account for 50% of the total
assembled sequence
b L50 indicates that 50% of the total sequence is assembled in scaffolds larger
than this size
c Includes TE, simple repeats and low complexity regions

Fig. 1 Maximum-likelihood phylogeny of 17 agaricomycetes inferred from 1677 genes. Branch labels indicate the results of 100 bootstraps
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Analysis of putatively secreted multigene families
Using all-by-all BLASTP followed by MCL we clustered
by similarity the 1,471 proteins carrying signal peptides
in C. olivacea. We used all proteins carrying signal pep-
tides rather than only SECRETOOL predictions in order
to obtain larger protein clusters. Up to 60% of the 1,471
proteins grouped in clusters were formed by 2 to 59
genes (Additional file 5: Table S3), showing the same
distribution as the whole proteome (p = 0.6032, Wil-
coxon test, 61% of the 14,928 predicted genes were
found in clusters containing 2 to 157 members). For fur-
ther analysis of the secreted genes found in clusters, we
focused on the 70 clusters (families) formed by four or
more gene members. Using the KOG, KEGG, InterPro
and GO databases, we could assign functions to 45 out
of the 70 gene families (Table 3). Cytochrome P450,
hydrophobins and aspartic-peptidases were the largest
gene families. In addition, 17 CAZys clusters were found
including glycoside hydrolases (GH), carbohydrate ester-
ases (CE), carbohydrate-binding modules (CBMs) and
redox enzymes classified as auxiliary activities (AA). 25
clusters lacked functional annotation, and some of them
had a high number of genes (clusters 2, 6 and 7 in
Table 3). All of these genes belonging to families with
unknown function were further analyzed with Phyre2 to
predict their protein structure and used for PSI-BLAST
(Position-Specific Iterated BLAST) analysis. Using this
approach, two gene families were functionally annotated
with high confidence (96.3–97.4% confidence for indi-
vidual protein predictions): one as a copper-dependent
lytic polysaccharide monooxygenase (LPMO, also known
as AA9; cluster 16), and the other as thaumatin-lyke
xylanase inhibitor (tlxi, cluster 48). The Cluster16

containing putative LPMOs was particularly interesting.
This was formed by 10 genes coding for small proteins
ranging from 130 to 162 amino acids with three exons
(with the exception of protein ID839457 that shows only
two). All these genes coded for proteins that have a sig-
nal peptide but lack of known conserved functional do-
mains. Six were confidently annotated as LPMOs by
Phyre2, and four of them were predicted to be secreted
by SECRETOOL. In addition, this family of unknown
proteins is conserved in all the agaricomycetes shown in
Fig. 1. Interestingly, four members of this family appear
as a tandem located in C. olivacea scaffold_124 (scaf-
fold_426:4800–12,000).

Impact of repeat content on C. olivacea genome size and
other Boletales
To study the role that TEs have played in the evolu-
tion of the Boletales genomes, we annotated and
quantified the TE content in five species showing im-
portant differences in genome size: C. olivacea
(39.1 Mb), C. puteana (42.9 Mb) [1], Hydnomerulius
pinastri (38.2 Mb) [4], Serpula lacrymans (47.0 Mb)
[3] and Pisolithus tinctorius (71.0 Mb) [4] (Add-
itional file 6: Dataset S1, Additional file 7: Dataset S2,
Additional file 8: Dataset S3, Additional file 9: Dataset
S4, Additional file 10: Dataset S5). TEs were de novo
identified and annotated using pipelines of the REPET
package. The results yielded major differences in TE
content between the five species, with C. olivacea, C.
puteana and H. pinastri having low TE content
(2.15%, 3.94% and 6.54% of their corresponding gen-
ome sizes), and S. lacrymans and P. tinctorius having
up to 29.45% and 41.17% of their genomes occupied

Fig. 2 a Synteny dot plot showing a fraction of the whole-genome alignment between C. puteana and C. olivacea. Every grid line in the y-axes
represents the end of one scaffold and the beginning of the next. Forward matches are displayed in red, while reverse matches are displayed in
blue. b Histogram of similarity of the 39,506 aligned regions. c Venn diagram summarizing the amount of genes shared by the two genomes
based on reciprocal best hit (RBH) and tBLASTN is shown in panel C
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by TEs, respectively (Fig. 3, Table 4). In addition to
higher TE content, species with larger genome assem-
bly size showed higher TE diversity as reflected by
the higher number of TE families, which ranged be-
tween 43 in C. olivacea to 432 in P. tinctorius.
The TEs found belong to seven out of the nine TE or-

ders described by Wicker et al [38]: LTR, DIRS (Dictyos-
telium Intermediate Repeat Sequences), PLE (Penelope-
like Elements), LINE (Long Interspersed Nuclear Ele-
ments), SINE (Small Interspersed Nuclear Elements),
TIR (Terminal Inverted Repeats) and Helitrons. Two of
the orders (LTR and TIRS, which contain long terminal
repeats or terminal inverted repeats, respectively) were

present in the five species. Class I TEs were primarily re-
sponsible for the observed genome size differences—e-
specially the elements belonging to LTR in the Gypsy
superfamily, which accounted for more than 15% of the
assembly in S. lacrymans and P. tinctorius, but less than
3% in H. pinastri, C. olivacea and C. puteana. Of all the
LTR/Gypsy families detected by TEdenovo, we observed
that those elements belonging to the Chromoviridae
group (carrying a Chromatin organization domain,
PF00385, in the N-terminal region after the integrase,
Fig. 4) were the most abundant LTR-retrotransposons in
these five species, ranging from 44 to 83% of the total
Gypsy coverage. LTR-retrotransposons in the Copia

Table 2 GO terms significantly enriched in the predicted secretome of C. olivacea

Molecular Function Description GO/Secretome GO/Genome p valuea

GO:0030600 Feruloyl esterase activity 6/470 9/14,928 0.000171

GO:0042500 Aspartic endopeptidase activity, intra membrane cleaving 11/470 20/14,928 0.000192

GO:0008843 Endochitinase activity 8/470 14/14,928 0.000194

GO:0004568 Chitinase activity 8/470 14/14,928 0.000194

GO:0004650 Polygalacturonase activity 11/470 15/14,928 0.000354

GO:0004806 Triglyceridelipase activity 11/470 29/14,928 0.000376

GO:0016160 Amylase activity 25/470 40/14,928 0.000737

GO:0008933 Lytic transglycosylase activity 25/470 40/14,928 0.000737

GO:0015927 Trehalase activity 25/470 40/14,928 0.000737

GO:0015925 Galactosidase activity 25/470 40/14,928 0.000737

GO:0015924 Mannosyl-oligosaccharide mannosidase activity 25/470 40/14,928 0.000737

GO:0015929 Hexosaminidase activity 25/470 40/14,928 0.000737

GO:0015928 Fucosidase activity 25/470 40/14,928 0.000737

GO:0008810 Cellulase activity 9/470 11/14,928 0.00089

GO:0015926 Glucosidase activity 25/470 41/14,928 0.000948

GO:0015923 Mannosidase activity 25/470 41/14,928 0.000948

GO:0004620 Phospholipase activity 9/470 32/14,928 0.000968

GO:0004553 Hydrolase activity hydrolyzing O-glycosyl compounds 44/470 99/14,928 0.00105

GO:0004194 Obsolete pepsin A activity 17/470 42/14,928 0.00121

GO:0005199 Structural constituent of cell wall 16/470 33/14,928 0.00129

GO:0030246 Carbohydrate binding 9/470 25/14,928 0.00143

GO:0004190 Aspartic-type endopeptidaseactivity 20/470 44/14,928 0.00193

GO:0004099 Chitin deacetylase activity 5/470 9/14,928 0.00803

GO:0004185 Serine-type carboxypeptidase activity 5/470 12/14,928 0.0467

Biological Process

GO:0000272 Polysaccharide catabolic process 5/470 6/14,928 0.000414

GO:0006508 Proteolysis 43/470 189/14,928 0.00128

GO:0005975 Carbohydrate metabolic process 65/470 161/14,928 0.00176

GO:0006629 Lipid metabolic process 10/470 50/14,928 0.00674

Cellular Component

GO:0005576 Extracellular region 7/470 15/14,928 0.000354

GO:0005618 Cell wall 18/470 35/14,928 0.00224
a Bonferroni corrected, Fisher p-value
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Table 3 Size and functional annotation of C. olivacea predicted gene families targeted to the secretory pathway

Gene family SignalP SECRETOOL Functional annotation

Cluster_1 59 3 Cytochrome P450

Cluster_2 33 0 Unknown

Cluster_3 32 17 Hydrophobin

Cluster_4 19 11 Aspartic peptidase

Cluster_5 18 12 Carboxylesterase

Cluster_6 17 0 Unknown

Cluster_7 15 0 Unknown

Cluster_8 14 12 Peptidase G1

Cluster_9 14 9 RlpA-likelipoprotein

Cluster_10 13 0 Pheromone mating factor, STE3

Cluster_11 13 0 Unknown

Cluster_12 12 3 Peptidase S8/S53

Cluster_13 11 9 Unknown

Cluster_14 10 0 CAZy:GH18

Cluster_15 10 9 Cytochrome P450

Cluster_16 10 6 Unknown/lytic polysaccharide monooxygenase (LPMO/ CAZy:AA9)

Cluster_17 9 5 Asparticpeptidase

Cluster_18 9 5 CAZy:CE4 Carbohydrate Esterase Family 4

Cluster_19 9 0 CAZy:GH16

Cluster_20 9 2 Peptidase S10

Cluster_21 9 5 Sugar transporter

Cluster_22 9 4 Unknown/putative lipoprotein

Cluster_23 8 6 Fungal lipase

Cluster_24 8 0 Isoprenylcysteinecarboxylmethyltransferase

Cluster_25 8 0 Monooxygenase, FAD-binding

Cluster_26 7 7 Ser-Thr-rich glycosyl-phosphatidyl-inositol-anchored membrane family

Cluster_27 7 0 Unknown

Cluster_28 7 1 Unknown

Cluster_29 6 5 CAZy:GH128

Cluster_30 6 0 CAZy:GH28

Cluster_31 6 3 CAZy:GH3

Cluster_32 6 2 Peptidase M28

Cluster_33 6 6 Thaumatin

Cluster_34 6 2 Unknown

Cluster_35 6 6 Unknown

Cluster_36 5 1 Aspartic peptidase

Cluster_37 5 2 CAZy:AA1_1

Cluster_38 5 4 CAZy:AA5_1

Cluster_39 5 5 CAZy:AA9

Cluster_40 5 1 CAZy:CBM5

Cluster_41 5 4 CAZy:GH12

Cluster_42 5 5 CAZy:GH30_3

Cluster_43 5 0 CAZy:GH47

Cluster_44 5 2 CAZy:GH71
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superfamily were also particularly abundant in S. lacry-
mans and P. tinctorius (accounting for 2.4–6% of the
total assembly size). Remarkably, non-coding LTR-
retrotransposons such as TRIM (Terminal-repeat Retro-
transposons In Miniature) and LARD (Large Retro-
transposon Derivatives) were also found in three out

of the five genomes, but in lower amounts (<1% of
the genome, Table 4).
LINE, SINE, DIRS and PLE elements were also found

in low copy numbers, but none of these were present in
the five species. Regarding Class II transposons, TIR
order was the most important in terms of abundance

Table 3 Size and functional annotation of C. olivacea predicted gene families targeted to the secretory pathway (Continued)

Gene family SignalP SECRETOOL Functional annotation

Cluster_45 5 0 Monooxygenase

Cluster_46 5 2 Unknown

Cluster_47 5 0 Unknown

Cluster_48 5 5 Unknown/xylanase inhibitor tl-xi

Cluster_49 5 4 Unknown

Cluster_50 5 4 Unknown

Cluster_51 5 4 Unknown

Cluster_52 5 0 Unknown

Cluster_53 5 4 Unknown

Cluster_54 5 0 Unknown

Cluster_55 5 0 Unknown

Cluster_56 4 0 CAZy:GH18, CAZy:CBM5

Cluster_57 4 0 CAZy:GH31

Cluster_58 4 3 CAZy:GH55

Cluster_59 4 4 Flavin monooxygenase-like

Cluster_60 4 3 GOLD

Cluster_61 4 2 Histidine phosphatase superfamily, clade-2

Cluster_62 4 3 Lysophospholipase

Cluster_63 4 1 Peptidase S28

Cluster_64 4 0 Proteolipid membrane potential modulator

Cluster_65 4 3 RlpA-like, ceratoplatanin

Cluster_66 4 1 Thioredoxin-like fold

Cluster_67 4 3 Unknown

Cluster_68 4 3 Unknown

Cluster_69 4 3 Unknown

Cluster_70 4 0 Unknown

Protein IDs of each cluster are shown in Additional file 5: Table S3

Fig. 3 TE content and genome size in five Boletales species. TE content is shown as a histogram, and genome size as a green line in panel A.
Panel B shows a histogram representing the number of TE families found in each species
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and copy number with elements encoding DDE transpo-
sases present in the five species. The second most im-
portant were MITEs (Miniature Inverted–repeat
Transposable Elements) and other non-coding elements
carrying structural features (classified as TIR/unknown in
Table 1). Rolling-circle helitrons were found in H. pinastri,
S. lacrymans and P. tinctorius, while putative Mavericks
were present only in this latter one.

Phylogenetic reconstruction of the LTR reverse-
transcriptases
To understand the phylogenetic relationship between
the LTR-retrotransposon familes in the five analyzed ge-
nomes, we inferred a maximum likelihood phylogeny of
the LTR reverse-transcriptases of the Gypsy consensus
sequences (Fig. 5). Three main clades were obtained (A,
B and C). Clades A and B were formed, almost exclu-
sively, by families found in the P. tinctorius genome.
Moreover, while clade B is formed mostly by distantly
related families, the profile of clade A suggests that an
important fraction of the families underwent recent di-
versification. All LTR families found in the other four
species grouped in clade C along with the remaining
families of P. tinctorius. This clade contained several
retrotransposon sub-clades sharing closely related fam-
ilies from three to five species.

Age of the LTR-retrotransposon amplification bursts in
the Boletales
LTR-retrotransposons carrying conserved domains as well
as intact Long Terminal Repeats (putative autonomous el-
ements) were subjected to further study to investigate

their amplification dynamics over the course of evolution.
Based on the nucleotide divergence between the two
LTRs, we estimated the time of insertion of each element
using a substitution rate of 1.05 × 10−9 nucleotide substi-
tutions per site per year. The number of intact, putative
autonomous LTR-retrotransposons varied greatly in the
five species ranging from 26 elements in C. olivacea to
944 in P. tinctorius. The LTR profiles of C. olivacea, C.
puteana and S. lacrymans showed recent peaks of amplifi-
cation with insertion dates at 0–5 million years (MY). LTR
amplification in H. pinastri showed a peak at 10–15 MY
ago, whereas the profile of P. tinctorium pointed to a
much older amplification burst showing a maximum
peak at 25–30 MY ago and few recent retrotransposi-
tion events (Fig. 6).

Discussion
Genomic and proteomic characteristics of C. olivacea
We report the 39.07 Mb draft genome assembly and an-
notation of brown-rot basidiomycete C. olivacea. In
terms of genome size, this species is slightly smaller than
C. puteana, but it falls in the range of other brown-rot
basidiomycetes such as Hydnomerulius pinastri
(38.3 Mb) [4] or Serpuyla lacrymans (47.0 Mb). As ex-
pected for closely related species, C. olivacea and C.
puteana show macrosynteny, although due to the short
scaffold lengths it is impossible to establish comparisons
at a chromosome scale. We found very good conserva-
tion of protein-coding genes, although C. olivacea has
up to 1,352 orphan genes—most of these are supported
by structure and RNA evidence (i.e., no homology to any
other known gene). In this sense, the higher number of

Fig. 4 Abundance and structure of a Chromoviridae LTR-retrotransposon family of C. olivacea. The upper panel shows the mapping of the annotated
genome copies of this family onto their consensus sequence. The lower panel shows a scheme of the structural and functional domains of this family: long
terminal repeats (LTRs) are represented as blue rectangles; the internal domains shown are (from left to right): aspartate protease, reverse transcriptase,
RNase, integrase, chromatin organization modifier
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annotated genes in C. olivacea relative to C. puteana is
probably related to the higher amount of assembled
RNA contigs used to assist the annotation of the former
(resulting from the higher RNAseq depth). The presence
of about 10% of orphan genes is common in fungal ge-
nomes, and these genes often lack an in silico functional
annotation as we found for C. olivacea [39, 40].
Wood-decaying species require a complex enzymatic

machinery to degrade lignin and obtain nutrients. Ac-
cording to the CAZy enzymes identified in the genome,
the C. olivacea proteome carries the main signatures of
canonical brown-rot: (i) it completely lacks Class II per-
oxidases—enzymes primarily involved in lignin degrad-
ation [41], and (ii) it carries a reduced set of enzymes
involved in degradation of crystalline cellulose. In fact,
its profile is very similar to that of C. puteana, displaying
only minor differences in several enzyme groups. As pre-
viously seen in other wood-degrading fungi, the in silico
secretome of C. olivacea is enriched in functions related
to lignocellulose degradation [42]. Our analysis showed
that most intracellular and secreted proteins are mem-
bers of multi-gene families of diverse size originating
from gene duplications. The number of gene families
that could not be functionally annotated by standard
similarity-based methods was high, a phenomenon that
is frequently observed in fungi.
To overcome this drawback, we used an alternative ap-

proach that combines similarity with structural information
(Phyre-2). We then assigned a putative function to two
multi-gene families conserved across the basidiomycete

phylogeny but for which a putative function had not been
previously proposed. Of special interest is the newly identi-
fied family of putative copper-dependent lytic polysacchar-
ide monooxygenases (AA9, LPMO). The LPMOs are
recently discovered enzymes used by microbes to digest
crystalline polysaccharides [43]. They increase the sacchari-
fication yield of commercial enzyme cocktails [44]. Never-
theless, despite the promising results obtained in silico,
experimental assays will be necessary to confirm the func-
tion of the members of this newly described gene family.

Impact of TEs in the evolution of Boletales genomes
The results of TE annotation in the five Boletales showed
how different patterns of LTR-retrotransposon amplifica-
tions have shaped the architecture of their genomes. The
expansion of LTR/Gypsy retrotransposons belonging to
Chromoviridae occurred mainly in the species with large
genomes, whereas the smaller genomes have a small
amount of these families (ie, three families in C. olivacea
and C. puteana). Chromoviruses are the most common
LTR-retrotransposons in fungi [45], and the key to their
success might be the presence of a chromo-integrase,
which is thought to guide the integration of these ele-
ments into heterochromatic regions [46]. Heterochroma-
tin is gene-poor, and it is silenced by epigenetic
mechanisms such as DNA methylation and RNAi [47].
Thus, integration of these elements in such regions would
allow them to skip purifying selection and increase their
probability to persist in the genome. In fact, this could be
the reason for the longer prevalence of Gypsy over Copia

Fig. 5 Maximum likelihood phylogeny of the Gypsy reverse-transcriptases found in the C. olivacea, C. puteana, S. lacrymans, H. pinastri and P. tinctorius
(blue) genomes. SH (Shimodaira-Hasegawa) local support values are shown in branches. The reverse-transcriptase from Oryza sativa ATLANTIS-I family
consensus (Repbase) was used as outgroup
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LTR-retrotransposons in most fungal species—the latter
tend to integrate at random locations including euchro-
matic regions where transposon fixation is more difficult
[48]. The LTR-retrotransposon amplification bursts of the
Boletales indicate that elements from both Coniophora
species are young and thus putatively active, and the pro-
file of S. lacrymans also indicates a very strong activity of
young copies with a progressive decrease in the amplifica-
tion signals of older elements. Our findings suggest that
the latter three species are currently in a period of genome
expansion. Despite the different profile of H. pinastri and
P. tinctorius we cannot rule out the same hypothesis, as
both assemblies contain high gap content (7.7% and
13.3%, respectively). This fact usually leads to an under-
estimation in the amount of young retrotransposons [6],
as they are difficult to assemble due to their repetitive na-
ture and high sequence identity. In fact, we show that due
to this reason the assembly-based TE quantification
underestimated LTR content in C. olivacea in comparison
to non-assembly based quantification (Additional file 2:
Table S1). The profile of P. tinctorius is intriguing. This
ectomycorrhizal (ECM) species undergoes a massive ex-
pansion of LTR-retrotransposons in the Gypsy superfamily
(similar to that found for other symbiotic species in

Agaricomycotina [7, 49]; however, the majority of ele-
ments are very old (20–40 MY) and still carry structural
and coding domains necessary for transposition. The phyl-
ogeny of Gypsy reverse-transcriptases suggests that many
P. tinctorius-specific families are distantly related to the
other four species. In fact, its impressive retrotransposon
content might be partially explained by the amplification
and diversification of ancestral families (giving rise to
clades A and B in Fig. 5). Our phylogenetic reconstruction
suggests that such ancestral families were also present in
other boletales but didn’t proliferate in the genome (ie, H.
pinastri or C. puteana). Whether genome defense mecha-
nisms or lifestyle constraints are responsible of this
phenomenon is still to be demonstrated. In this regards, it
is interesting to note that the LTR-mediated genome amp-
lification of P. tinctorius roughly coincides with the esti-
mated origins of ECM symbiosis in Boletales [4]. Of the
four Class I TE orders found, only the LTR elements were
present in the five species. The most plausible scenario is
that the elements from the other three orders (DIRS,
LINE, and PLE) were lost by random drift in some of the
species. Alternatively, they might be present in some ge-
nomes but in the form of very ancient and degenerated
copies that are not detectable. Similarly, this patchy

Fig. 6 Estimated insertion age of the LTR-retrotransposons found in C. olivacea, C. puteana, S. lacrymans, H. pinastri and P. tinctorius. MYA = million years ago
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distribution was also found in class II elements (ie,
helitrons were absent in the Coniophora genus and
present in the remaining three species). Previous
studies have shown that besides the conserved pres-
ence of LTR and TIR orders, the remaining TE
groups tend to be present in variable amounts in ba-
sidiomycetes [6].

Conclusions
In this study we present the draft genome sequence and an-
notation of the brown-rot fungi Coniophora olivacea, along
with a comparative analysis with C. puteana and other
members of the Boletales order. Our results show evidence
of macrosynteny and conservation in the protein coding
genes of the two species. The functional analysis of C. oliva-
cea secretome showed that it displays the main signatures
of a canonical brown-rot, and uncovered a new family of
putative LPMOs widely conserved in basidiomycota. The
annotation of transposable elements revealed a particular
contraction in these two species in comparison to other
Boletales, mainly due to the differential expansion of
Chromoviridae LTR-retrotransposons. By analyzing
the distribution of insertion ages and phylogenetic re-
lationships of these elements we show that these
LTR-retrotransposons have played a key role in the
genome expansion experienced by certain species in
the Boletales order.
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