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Identifying species of insects used to estimate postmortem interval (PMI) is amajor subject in forensic entomology. Because forensic
insect specimens are morphologically uniform and are obtained at various developmental stages, DNAmarkers are greatly needed.
To develop new autosomal DNA markers to identify species, partial genomic sequences of the bicoid (bcd) genes, containing the
homeobox and its flanking sequences, from 12 blowfly species (Aldrichina grahami, Calliphora vicina, Calliphora lata, Triceratopyga
calliphoroides, Chrysomya megacephala, Chrysomya pinguis, Phormia regina, Lucilia ampullacea, Lucilia caesar, Lucilia illustris,
Hemipyrellia ligurriens and Lucilia sericata; Calliphoridae: Diptera) were determined and analyzed. This study first sequenced the
ten blowfly species other than C. vicina and L. sericata. Based on the bcd sequences of these 12 blowfly species, a phylogenetic
tree was constructed that discriminates the subfamilies of Calliphoridae (Luciliinae, Chrysomyinae, and Calliphorinae) and most
blowfly species. Even partial genomic sequences of about 500 bp can distinguishmost blowfly species.The short intron 2 and coding
sequences downstream of the bcd homeobox in exon 3 could be utilized to develop DNA markers for forensic applications. These
gene sequences are important in the evolution of insect developmental biology and are potentially useful for identifying insect
species in forensic science.

1. Introduction

DNA-based methods in forensic entomology have advanced
rapidly since the first successful attempt to discriminate
important forensic insect species in 1994 [1]. DNAgenotyping
is now routinely used in the laboratory [2]. Traditionally, a
small number of expert insect taxonomists have identified
species based onmorphological traits. However, growth rates
and habitats of important forensic insects differ from one
species to another. Further, insect specimens captured at the

crime scene or from corpses are often at immature develop-
mental stages and are outwardly indistinguishable, making
them morphologically unsuitable for forensic purposes [3].
Identifying important forensic insects, including blowflies
and fleshflies, using DNA-based techniques is promising
because it contributes considerably to the estimation accu-
racy of the postmortem interval (PMI) [4].

Blowfly species (Diptera: Calliphoridae) are among the
first to colonize decomposing human bodies, and they play
a significant ecological role by infesting a corpse with their
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larvae. Many blowfly species are distributed globally, while
others show more localized distributions. Blowflies have
12 chromosomes, including ten autosomes and X and Y
chromosomes [5].

DNA-based techniques for identifying forensic blowfly
species have been developed using genes encoded in mito-
chondrial genomes, such as cytochrome oxidase subunits I
and II (COI and COII) [5–11] or nuclear genes such as 28S
ribosomal RNA [12, 13]. Since the conventionalDNAmarkers
have some limitations, new autosomal-based DNA markers
for the identification of forensic insect species may ame-
liorate the problems associated with conventional markers.
Among blowfly species, two Lucilia species (L. illustris and
caesar), two tropical Luciliinae species (Lucilia cuprina and
Hemipyrellia ligurriens), and two African Chrysomya species
(C. putoria and C. chloropyga) show species level paraphylies
[14–16]. According to Zaidi et al., identification of closely
related species may demand a multigene approach [17].

Bicoid (bcd) is a gene whose transcripts are secreted from
maternal nurse cells into the anterior poles of eggs. During
embryonic patterning, the protein forms a concentration
gradient that determines the anterior-posterior axis, signif-
icantly impacting the development of the head and thorax in
Drosophila melanogaster [18, 19]. The bcd protein is a tran-
scription and translation factor that contains a homeodomain
and that acts as amorphogen in the formation of the anterior-
posterior pattern [20]. Embryonic bcd transcripts localize in
the anterior regions of blowfly and housefly embryos [21, 22].

Found only in higher dipteran families (suborder: Cyclor-
rhapha), which include most forensic fly species, bcd genes
are evolutionary novel [20, 23].The gene bcd is an exceptional
member of the Hox3 cluster of homeobox genes [23]. Full
or partial bcd gene sequences have been determined in
many dipteran species, including a primitive cyclorrhaphan
fly (Megaselia abdita) [23], a dozen Drosophila species [24],
the housefly (Musca domestica), and some blowflies, such as
Lucilia sericata and Calliphora vicina [25]. A genomic map
of the housefly bcd gene is now available, along with that
of D. melanogaster [25]. Though bcd expression in housefly
and blowflies may have diverged from that of the fruitfly
[21, 22, 26], the structures of the four exons have been
largely conserved between the fruitfly and housefly, with
some introns expanded in housefly [25] (see supplemen-
tary Figure 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2013/538051).

To evaluate the applicability of bcd gene sequencing to
the identification of forensic insect species, partial genomic
sequences of bcd genes containing the homeobox, and flank-
ing sequences were obtained by PCR amplification from a
number of specimens of 12 blowfly species collected in Korea.
The sequences were determined and analyzed for suitability
in blowfly species identification.

2. Materials and Methods

2.1. Fly Collection. To collect flies, pork liver bait was
used to attract them to traps in several regions of South
Korea. After being submerged in 70% ethanol solution, flies

were identified under a dissecting microscope. Morpho-
logical identification was done under the taxonomic Keys
by Kano and Shinonaga [27]. Both male and female flies
were subjected to DNA analysis. To trace the transmission
of single nucleotide and insertion/deletion polymorphisms,
some adult blowfly species were mated in the laboratory
and genotyped. A few F1 and several F2 progenies of the
same first-generation females were obtained and subjected to
subsequent experimental analysis.

2.2. DNA Extraction. After immersion into liquid nitrogen,
whole blowfly bodies without headswere ground into powder
in 1.5 mL microcentrifuge tubes with piston pellets (Tokken
Inc., Japan). The genomic DNA was extracted with phenol-
chloroform-isoamyl alcohol (25 : 24 : 1).

2.3. Polymerase Chain Reaction (PCR) and Cloning. The
initial PCR was performed with a degenerate primer pair (F1
and R1) based on similarities in the C. vicina (AJ297855),
L. sericata (AJ297856), and M. domestica (AJ297853 and
AJ297854) coding sequences (see supplementary Table 1).
The initial degenerate primer pair amplified–350 bp-long
homologous sequences, spanning from the 3󸀠 region of exon
2 to immediately downstream of the bcd homeobox motif.
For the initial PCR, touch-down amplificationwas performed
with an initial step of 95∘C for 11min, followed by eight
cycles of 95∘C for 30 sec, annealing temperatures starting
at 42∘C for 1min and decreasing 1∘C/cycle, and extension
at 72∘C for 1min. These cycles were followed by 35 cycles
of 95∘C for 30 sec, 42∘C for 1min, and 72∘C for 1min,
with a final extension at 72∘C for 15min. DNA fragments
amplifiedwith degenerate primers were visualized on agarose
gel electrophoresis, eluted using a GeneClean III kit (Q-
Biogene, Bio 101 Systems, Carlsbad, CA, USA), and cloned
into aTAvector system (Real BiotechCorporation, Banquiao,
Taiwan). The plasmids were extracted from the E. coli host
strains, and the sequences were determined.

Based on the initial sequences, two new 5󸀠 primers (F2
and F3) were designed to hybridize 60–80 bp downstream of
the initial 5󸀠 primer (F1). The new 5󸀠 primers and a 3󸀠 primer
(R2), which hybridized more than 200 bp downstream of the
initial primer, were used for subsequent PCR amplifications
[9, 10]. After analyzing the sequences from the first and
second rounds of PCR, specific primers (FD1–9 and RD1–
3) were designed (see supplementary Table 2) and used to
amplify 500–525 bp targets. The sequences were determined
either by direct sequencing or by sequencing after cloning.

2.4. Sequencing. Sequencing was performed with automatic
sequencers (ABI PRISM 310 genetic analyzer) [9, 10]. Direct
sequencing of amplified products was performed using the
BigDye Terminator Sequencing kit (v1.1) (Applied Biosys-
tems, Foster City, CA, USA).The specific forward and reverse
primer sets (FD1–9 and RD1–3) were used to sequence
the amplified products. Some amplified DNAs were cloned
into TA vectors, and multiple colonies were sequenced to
delineate haplotypes. All of the sequences obtained with the
FD-RD primer pairs were submitted to GenBank (Accession
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Table 1: Intraspecific distances of the partial coding sequences and intron 2 of the bcd gene∗.

Species (abbreviation) Coding sequence Intron 2 𝑁

(1) Triceratopyga calliphoroides (Cl) 0.003024 0.000000 14∗

(2) Aldrichina grahami (Gr) 0.000000 0.000000 7
(3) Calliphora lata (La) 0.001335 0.000000 10
(4) Calliphora vicina (Vi) 0.001661 0.000000 11
(5) Chrysomya megacephala (Mg) 0.000000 0.000000 3
(6) Chrysomya pinguis (Pi) 0.008341 0.055927 7∗

(7) Phormia regina (Re) 0.000600 0.000000 8
(8) Lucilia ampullacea (Am) 0.008057 0.017557 3
(9) Lucilia caesar (Ca) 0.001029 0.000000 8
(10) Lucilia illustris (Il) 0.000000 0.000000 22
(11) Hemipyrella ligurriens (Li) 0.000000 0.000000 2
(12) Lucilia sericata (Se) 0.001468 0.013168 8∗

Coding sequences = 3󸀠 of exon 2 and 5󸀠 half of exon 3 of bcd.
𝑁: sample size.
∗The number of the sequences deposited in GenBank is greater than the sample size.

Numbers GU256065–256168 and 979851–979856). Most bcd
sequences were heterozygous though homozygous sequences
of two L. sericata individuals (GU256104-5 and GU256107-
8), one T. calliphoroides (GU256113-4), and two Ch. pinguis
(GU256138–141) were also deposited.

2.5. Sequence Analysis and Phylogenetics. mRNA and
genomic sequences were downloaded from GenBank
(NCBI) and analyzed in order to resolve the bcd genomic
structures (see supplementary Figure 1). The XM 00210237
and AF465792 sequences were downloaded to resolve the
genomic structure of Drosophila simulans bcd, which has
about 97% nucleotide identity to the coding sequence of D.
melanogaster. For the common housefly (M. domestica), the
AJ297853 and AJ297854 mRNA sequences were compared
to partial genomic sequences (AJ297850–52). The bcd
sequences of the housefly and the mRNA sequence of C.
vicina (AJ297855) were used as references to compare and
analyze new blowfly DNA sequences.

Nucleotide and amino acid sequences were aligned using
ClustalW in MEGA4 software [28, 29], which calculated
nucleotide distance matrices based on maximum composite
likelihoods. Phylogenetic trees were generated using the
neighbor-joiningmethod with a bootstrapping of 1,000 repli-
cates.

3. Results

3.1. Coding Sequence Variation. The sequences were analyzed
according to a dichotomy of coding (3󸀠 region of exon 2 and 5󸀠
half of exon 3) and noncoding sequences (intron 2) (Table 1).
The coding sequences, excluding intron 2, showed a relatively
small intraspecific distance. Ch. pinguis and L. ampullacea
individuals showed similar variation (0.0083, 𝑛 = 7 and
0.0081, 𝑛 = 3; resp.), while A. grahami, Ch. megacephala,
L. illustris, and H. ligurriens had virtually no intraspecific
variation (Table 1).

The interspecific nucleotide differences (distances) in the
coding sequences between the 12 blowflies ranged from 0.21

to 0.26 (see supplementary Table 3). Among the 12 blowfly
species, C. vicina and Ch. pinguis differed the most (distance
= 0.1235) followed by C. vicina and Ch. megacephala (0.1215).
On the other hand, L. caesar and L. illustris (distance =
0.0006) showed the highest sequence similarity, followed by
Ch. megacephala and Ch. pinguis (0.01646).

Partial amino acid sequences downstream of the bcd
homeodomain (about 70 amino acids) displayed compar-
atively higher inter- and intraspecific variations than did
the homeodomains among the 12 blowfly species (Figure 1).
These variations reflect somenonsynonymous nucleotide and
codon insertion/deletion polymorphisms.The partial protein
sequence of exon 2 (about 25 amino acids) showed few amino
acid changes among and within species.

3.2. Intron 2 Variation. Intron 2 from bcd genes showed
high interspecific variation in the lengths and nucleotide
sequences. The sequence lengths could be classified into
two types (Table 2). The first type was similar in size to D.
melanogaster (55 bp). bcd intron 2 was either 52 bp or 53 bp
in T. calliphoroides, 53 bp in A. grahami, C. vicina, C. lata, L.
caesar, and L. illustris, 53–55 bp in L. sericata and 57 bp in H.
ligurriens. Intron 2 in L. ampullacea was either 53 bp or 60 bp
depending on the presence of an eight-nucleotide insertion.
These blowfly species belong to the subfamilies Calliphorinae
and Luciliinae. In addition, a multiple alignment showed that
intron 2 from Calliphorinae species, such as T. calliphoroides,
A. grahami, C. vicina, and C. lata, differed from those of the
Luciliinae species, such as H. ligurriens, L. caesar, L. illustris,
L. ampullaceal, and L. sericata (Table 2).

The second type of intron was about 10 bp longer, similar
in size to that of the housefly (M. domestica) (73 bp). Intron
2 was 63 bp in P. regina, 68-69 bp in Ch. pinguis, and 69 bp
in Ch. megacephala. These species belong to the subfamily
Chrysomyinae.

The interspecific sequence variation in intron 2 was
relatively higher than that of the coding sequences (see sup-
plementary Table 4). The interspecific distance was highest
between A. grahami and P. regina (0.9730). L. caesar and L.
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Musca domestica (AJ297854)
Calliphora vicina
Calliphora lata
Lucilia ampullacea
Lucilia caesar
Lucilia illustris
Lucilia sericata
Triceratopyga calliphoroides
Aldrichina grahami
Hemipyrellia ligurriens
Chrysomya megacephala
Chrysomya pinguis
Phormia regina

Figure 1: Multiple alignments of the amino acid sequences downstream of the bcd homeodomain in blowflies. The sequences–70 amino
acids downstream of the bcd homeodomain in 12 blowfly species were aligned to the 73 amino acid sequence of M. domestica (AJ297854).
All 12 blowfly species lack the three serine residues present inM. domestica. Other serine residues are also deleted from around the distinct
serine-rich region. All blowfly sequences were represented without being accountant for intraspecific variation.

illustris (distance = 0.0263) showed the highest similarity,
with the next highest observed between Ch. megacephala and
Ch. pinguis (distance = 0.0319) (see supplementary Table 4).

Six species, Ch. pinguis, L. ampullacea, L. sericata, L.
illustris, L. caesar and C. lata, contained intraspecific sin-
gle nucleotide polymorphisms (Table 2). Single-nucleotide
insertion/deletion (indel) polymorphisms were discovered
in Ch. pinguis, and T. calliphoroides, while a two-nucleotide
indel polymorphism was found in L. sericata. An eight-
nucleotide indel polymorphism was also discovered in L.
ampullacea. L. sericata, grown in the laboratory, confirmed
the stable transmission of these single-nucleotide and indel
polymorphisms to progeny (data not shown).

3.3. Phylogenetic Tree. A phylogenetic tree of the 12 blowfly
species was constructed based on the partial bcd genomic
sequences containing the homeobox and flanking coding
and noncoding sequences (Figure 2). With the partial bcd
genomic sequences, three subfamilies: Luciliinae, Chrysom-
inae, and Calliphorinae, within the family Calliphoridae,
could be classified among the 12 blowfly species collected
fromKorea. In the subfamily Luciliinae, the taxonomic status
of the genus Hemipyrellia (H. ligurriens), which is distinct
from the genus Lucilia (L. illustris, L. caesar, L. ampullacea,
and L. sericata), was confirmed. In the subfamily Chrysom-
inae, some Ch. pinguis haplotypes fell outside a cluster of
other Ch. pinguis and Ch. megacephala sequences. In the
subfamily Calliphorinae, the genus Calliphora, namely, C.
vicina and C. lata in this study, did not form a monophyletic
group, clustering with a species of a different genus, A.
grahami. Almost all blowfly species in this study could
be discriminated in the phylogenetic tree except the Ch.
megacephala and Ch. pinguis species pair (Figure 2).

4. Discussion

Thegenomic bcd sequence is potentially useful for identifying
forensically important insect species. Partial bcd sequences
of about 500 bp were amplified to evaluate possible species-
specific DNA markers, with promising results.

We observed intra- and interspecific lengths and
sequence polymorphisms in intron 2 bcd from 12 blowfly
species. The sizes of intron 2 in D. melanogaster, D. simulans,
and M. domestica were interesting (Figure 1). Among the
three dipteran species, intron 2 showed small-size differences
(55 bp, 55 bp, and 73 bp, resp.). In contrast, introns 1 and 3
showed substantial size differences and were expanded inM.
domestica, but conserved to a considerable extent in the two
Drosophila species. Introns 1 and 3 were expanded 6–8 times
in M. domestica (12–13 kbp and 2.5 kbp) compared to those
of the two Drosophila species (about 400–500 bp) (Figure 1)
[25].

The D. melanogaster bcd sequences (AF466621-45) did
not vary in intron 2 of bcd (Table 2) among 25 isofemale
lines collected from Zimbabwe, a representative ancestral
population [30]. Intron 2 in M. domestica is larger than that
of D. melanogaster and showed intraspecific variation that
transmits stably to ensuing generations (data not included).

The interspecific length polymorphisms of intron 2 could
be classified into two categories: first, a D type including
the subfamilies Calliphorinae and Luciliinae, similar to the
intron 2 of D. melanogaster and D. simulans, and second,
an M type including the subfamily Chrysomyinae, similar
to that of M. domestica (Table 2). Lengthwise, the first type
could be further classified into the two subfamilies: intron 2
in Luciliinae tended to be slightly longer than Calliphorinae
(Table 2). The nucleotide distance values complement the
length polymorphism-based distinction: species within the
same subfamily showed below-average pairwise distances,
while species of different subfamilies displayed above-average
pairwise distances (average distances among the 12 blowfly
species = 0.5453) (see supplementary Table 4).

Downstream of the bcd homeobox (about 210
nucleotides), exon 3 also displayed intra- and interspecific
variations (Figure 1). The posthomeodomain sequence,
which includes exons 3 and 4, is thought to interact with
other transcription factors and proteins for translation [20].

There are also interspecific amino acid differences imme-
diately downstream of the homeobox (Figure 1), which may
provide the basis for a simple, reliable, and effective DNA-
based method for distinguishing forensic insect species.
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Figure 2: A neighbor-joining phylogenetic tree of 12 blowfly
species. The bcd genomic sequence of M. domestica was used as
the outgroup to construct the phylogenetic tree. Most sequences are
diploid except some haploid sequences of L. sericata (GU256104-
5, GU256107-8), T. calliphoroides (GU256113–GU256114) and Ch.
pinguis (GU256138-141).

Thus, taxon-specific sequence-characterized amplified region
(SCAR) markers [31–33] based on bcd will likely become
available for forensic applications.

The SCAR markers can be developed to discriminate
between a pair of sister species likeL. caesar andL. illustris [15,
27]. In this study, eight L. caesar individuals and 22 L. illustris
individuals were subjected to analysis of bcd polymorphisms.
A single nucleotide difference between L. caesar and L.
illustris (position 42 in intron 2, multiple alignments in
Table 2) could distinguish the two closely related species;
cytosine (C) is present in this location in L. caesar and
adenine (A) in L. illustris. This specific difference can be
incorporated into SCAR markers for species identification.
These markers should be able to discriminate blowfly species
captured in South Korea.

All blowfly species were well clustered according to
subfamilies Luciliinae, Chrysominae and Calliphorinae in
this study (Figure 2), according to partial bcd sequencing
phylogenetic analyses. In the subfamily Luciliinae, the gen-
era Hemipyrellia and Lucilia formed individual clades. The
closely related sister species,L. illustris andL. caesar, were also
distinguishable. In the subfamily Chrysominae, the analysis
of more individuals may be necessary to distinguish between
Ch. megacephala and Ch. pinguis. A greater number or
complete bcd sequences from more individuals may resolve
the apparent species-level paraphyly in Ch. pinguis. The
genus-level paraphyly in the subfamily Calliphorinae (genera
Aldrichina, Cynomya, Eucalliphora, Triceratopyga, etc.) based
on mtDNA phylogenies has been reported previously [10,
34, 35]. C. vicina and C. lata showed similar trends in this
study; they did not form a genus-level monophyly, instead A.
grahami clustered with the two Calliphora species (Figure 2).
Based on the COI phylogeny, Rognes [34] and Whitworth
[35] suggested that A. grahami and the genus Eucalliphora
should be incorporated into the genus Calliphora. The bcd
phylogenetic tree supports this suggestion, calling for a
possible future taxonomic revision.

This study showed that even a 500 bp partial bcd genomic
sequence containing the homeobox motif can be useful for
distinguishing most forensically important blowfly species
including previously recognized confused taxa, that is, L.
illustris and L. caesar. Additionally, this kind of study may
be extended to other confused taxa such as L. cuprina
and some Chrysomya species [14–16]. This study is the first
to use a renowned developmental gene, bicoid, in forensic
science and entomology. Bcd sequences of 12 blowfly species
are useful for species identification although many blowfly
species uncommon in Korea were not included in this study.
However, we expect that other researchers can easily apply
our degenerate PCR strategy to amplify bcd sequences of their
regional blowfly species.
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