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Complexity analysis of fNIRS 
signals in ADHD children during 
working memory task
Yue Gu1, Shuo Miao2, Junxia Han3, Ke Zeng3, Gaoxiang Ouyang3, Jian Yang2 & Xiaoli Li3

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in 
children. Neuroimaging studies have revealed abnormalities of neural activities in some brain regions, 
including the frontal cortex, striatum, cerebellum, and occipital cortex. Recently, some investigators 
have demonstrated that nonlinear complexity analysis of neural activity may provide a new index to 
indicate ADHD. In the present study, we used the permutation entropy (PE) to measure the complexity 
of functional near-infrared spectroscopy (fNIRS) signals in children with and without ADHD during a 
working memory task, it was aimed to investigate the relationship between the PE values and the 
cortical activations, and the different PE values between the children with and without ADHD. We found 
that PE values exhibited significantly negative correlation with the cortical activations (r = −0.515, 
p = 0.003), and the PE values of right dorsolateral prefrontal cortex in ADHD children were significantly 
larger than those in normal controls (p = 0.027). In addition, the PE values of right dorsolateral 
prefrontal cortex were positively correlated to the ADHD index (r = 0.448, p = 0.012). These results 
suggest that complexity analysis of fNIRS signals could be a promising tool in diagnosing children with 
ADHD.

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders, 
which is characterized by difficulty paying attention, excessive activity, and impulsivity. Generally, ADHD 
arises in childhood and frequently persists into adolescence and adulthood1–3. It is estimated that about 5–8% 
of school-aged children are affected by ADHD4. Consequently, children with ADHD have difficulties controlling 
their behaviors or paying their attentions, which result in an adverse effect on academic performance and social 
function1. Furthermore, this disorder may increase a risk of other disorders which are not directly related to 
ADHD, such as antisocial disorders5, 6. Therefore, it is important to explore valid biomarkers for earlier diagnosis 
and intervention.

Working memory is defined as the temporary storage and manipulation of information7, 8, which has been 
considered as a core deficit in ADHD9. Some subsequent neuropsychological measures have proposed to detect 
working memory deficits in youth and adults with ADHD10, 11. These impairments in ADHD include the perfor-
mance on digit span, consonant trigrams and mental arithmetic12. N-back task is a common working memory 
paradigm, which has been used in many functional neuroimaging researches on ADHD. Functional magnetic 
resonance imaging (fMRI) data from ADHD adults showed significantly decreased activity in cerebellar and 
occipital regions and a trend toward decreased activation in prefrontal cortex compared to control subjects dur-
ing a 2-back task12. Besides, the activation of parietal cortex was also decreased in ADHD patients during a ver-
bal n-back task13. The study of electrophysiological activation during the visual n-back found that frontal theta 
event-related synchronization was significantly reduced in ADHD compared to control subjects, meanwhile, 
ADHD patients showed lower alpha event-related desynchronization and higher subsequent alpha event-related 
synchronization14. These studies indicate that n-back working memory tasks are associated with prefrontal 
function12.
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Recently functional near-infrared spectroscopy (fNIRS) has been applied in the neuroscience, which is a 
non-invasive optical imaging technique that can measure the concentration changes in oxygenated hemoglobin 
([HbO]) and deoxygenated hemoglobin ([Hb]) associated with functional brain activity15. The subjects need to 
wear a cap embedded with detector-emitter pairs of near-infrared light, meanwhile they are without the con-
straints of confined space. One detector-emitter pair generates one channel. This form makes fNIRS better to 
localize the neural signals than EEG. In addition, fNIRS is more low-cost and more robust to movement than 
fMRI. With its relatively low cost, portability, and high ecological validity, fNIRS is particularly suitable for inves-
tigating the brain function of children and patients with ADHD16, 17.

Many previous studies of fNIRS about ADHD mainly focus on the abnormalities of brain activation during 
different experimental paradigms. In the studies of subjects performing a Stroop task, which requires the inhibi-
tion of competing response, controls had a significant increase in [HbO] over right dorsolateral prefrontal cortex, 
whereas the ADHD children did not18, 19. The Go-NoGo task requires individuals to inhibit prepotent response. 
During the NoGo block, ADHD children had a weaker increase in [HbO] over the prefrontal cortex compared to 
controls, which indicated that ADHD children were not activating the prefrontal cortex20. In working memory 
processes, adult patients with ADHD had a reduced lateral prefrontal activation during n-back task21. These stud-
ies consistently indicated hypoactivity in the prefrontal cortex in ADHD patients.

It is well known that the human brain is a complex nonlinear system22. Output neurophysiologic signals 
exhibit complex fluctuations both in spatial and temporal23, which reflect nonlinear dynamical processes24. 
Consequently, nonlinear analysis was applied to neurophysiologic signals for providing a novel understanding 
of the complexity of human brain activity and the physiological processes in either healthy or pathological pop-
ulations25, 26. Several complexity analysis methods were reviewed in Takahashi’s paper24. In the past few decades, 
novel nonlinear approaches based on entropy have been widely used to measure the complexity of physiological 
signals. In general, entropy methods describe the degree of underlying randomness of a random signal27. Random 
signal with large entropy has a high level of randomness, in contrast, random signal with small entropy corre-
sponds a low level of randomness27, 28. Entropy methods have been successfully applied in many areas, such as 
depth of anesthesia monitoring29, 30, seizure prediction31, and mental disorders24. For example, in studies about 
ADHD, the sample entropy of EEG signals in the alpha frequency band decreased in ADHD children during a 
multi-source interference task22, and the adult patients with ADHD showed reduced sample entropy of fMRI 
signals in frontal and occipital regions during resting state32. These results were consistent with the hypothesis 
that there is a loss of complexity in the dynamics of many integrated physiological processes with disease33, 34.  
However, sample entropy is heavily dependent on the data length and may result bias for short data sets35. 
Moreover, sample entropy is sensitive to parameter choices, especially the selection of similarity criterion36. 
Permutation entropy (PE) as an appropriate complexity measure for time series can overcome these issues37. PE 
statistically measures the different orders of neighboring relative values in the time series, rather than estimating 
the similarity like sample entropy. Therefore, it does not need to set the similarity criterion. According to the 
report of Bandt and Pompe, PE is robust to the choice of data length (128 samples are sufficient)37. Moreover, 
PE is a normalized value, which makes the comparison between different results more easily. Therefore, PE may 
provide a novel tool to investigate neural signals with ADHD.

In this study, our aim was to investigate the relationship between the complexity of fNIRS signals and the 
cortical activation, and the change of brain complexity in ADHD children and controls during an n-back task. To 
address these issues, we measured the fNIRS signals of both ADHD children and normal controls during a digital 
n-back task. We used the general linear model (GLM) to detect the activation areas in the both groups during the 
task. PE was applied to measure the complexity of fNIRS signals. Then, the differences between the PE values of 
the two groups were further statistically evaluated. Finally, Pearson’s correlation coefficient was used to test the 
relationship between the PE values and the cortical activations.

Results
Behavioral performance.  The data of reaction time (RT) and accuracy (ACC) were listed in the Table 1. 
We used two-sample t-test to compare the performance data between the two groups in each condition. There 
were no significant differences between the two groups on any of the task performance data. However, there was a 
trend for the controls to perform faster and more accurately than the ADHD children. Although the trend of the 
results was consistent with the previous studies12, 38, 39, the control and ADHD groups in this study showed poorer 
performances on the n-back task than those in previous studies. We think the difference of age may be the main 
reason why the subjects showed poorer performances in this study. The subjects in this study are younger than 
those in previous studies.

Activation analysis.  We analyzed the activation levels in each condition within each group. The distribu-
tions of activation levels in each condition within each group were shown in Fig. 1(A,B). There were no regions 
in which the ADHD group activated significantly in any condition. There were also no significant differences 

Controls Mean (SD) ADHD Mean (SD) p value

1-back RT (ms) 908 (195) 988 (215) p = 0.29

1-back ACC (%) 70.7 (16.1) 60.1 (20.7) p = 0.12

0-back RT (ms) 732 (147) 833 (214) p = 0.13

0-back ACC (%) 89.9 (10.7) 81.2 (16.2) p = 0.09

Table 1.  Behavioral performances.
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between the two conditions in ADHD group. As well as the ADHD group, the control group had no significant 
activations in 0-back condition. However, the control group significantly activated right DLPFC (channel 3) and 
VLPFC (channel 35) in 1-back condition (t15 = 5.93, p = 0.001; t15 = 5.17, p = 0.006). We then performed a sub-
tractive contrast (1-back minus 0-back) within each group. In the subtractive contrast, the control group had 
more significant activation in right DLPFC (channel 3) in 1-back condition than in 0-back condition (t15 = 4.32, 
p = 0.032, see Fig. 1(C)). Differences between the two groups in each condition were also examined. There were 
no regions in which the control group had greater activation than the ADHD group in 0-back condition. In 
1-back condition, the control group more strongly activated right DLPFC (channel 3) than the ADHD group 
(t29 = 4.39, p = 0.007, see Fig. 1(C)).

Permutation entropy analysis.  The complexity of fNIRS signals was measured by PE. The larger the value 
of PE is, the more irregular or complex the time series is, and vice versa. We calculated the PE values in 0-back and 
1-back separately. The distributions of PE values in each condition within each group were shown in Fig. 2(A,B). 
In 0-back condition, the PE values in bilateral DLPFC and right VLPFC were relatively small for the two groups. 
In 1-back condition, the control group obtained a distribution of PE values similar to they did in 0-back condi-
tion. As well as bilateral DLPFC, the PE values in superior MPFC were relatively small for the ADHD group. Then 
we compared the PE values between the two conditions within each group. There were no significantly different 
PE values in any region in the ADHD group, although the PE values in right DLPFC, VLPFC and TC were lightly 
larger, and the PE values in superior MPFC were lightly smaller in 1-back condition than in 0-back condition. 
In the control group, the PE values of channel 3 in right DLPFC were significantly smaller in 1-back condition 
than in 0-back condition (t15 = −4.23, p = 0.038, see Fig. 2(C)). We also compared the PE values between the two 
groups in each condition. In 0-back condition, there were no regions in which the ADHD group obtained signifi-
cantly different PE values compared to the control group. In 1-back condition, the PE values of channel 3 in right 
DLPFC were significantly larger in ADHD group (t29 = 3.91, p = 0.027, see Fig. 2(C)).

Figure 1.  fNIRS activation maps for 0-back condition (A) and 1-back condition (B). The beta values are 
indicated by color. The light colors represent strong cortical activations, and vice versa. Bar plots of beta values 
showing the beta values of channel 3 in each conditions for the ADHD and control group (C). Error bars 
represent the standard error of the mean. *p < 0.05; **p < 0.01.
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Correlation analysis.  Significant difference in PE values was found in right DLPFC (channel 3). Thus, we 
used the data of channel 3 in 1-back condition for the correlation analysis. The Pearson’s correlation coefficient 
was used to test the relationship between the PE values and the cortical activations, and the ADHD index. The 
results are shown in Fig. 3, in the form of scatter plots. The number of data points in each panel was 31. Each data 
point in each panel represented one subject. The beta values estimated in GLM were used to represent the activa-
tion level. Obviously, the PE values were negatively correlated to the cortical activations (r = −0.515, p = 0.003), 
and positively correlated to the ADHD index (r = 0.448, p = 0.012).

Discussion
In this study, we used PE to analyze the complexity of fNIRS signals in children with and without ADHD during 
a working memory task. We investigated the relationship between the complexity (PE values) and the activation 
patterns, and sought the differences in complexity between fNIRS signals acquired from children with and with-
out ADHD during a working memory task.

The application of complexity analysis to physiological signals has provided important information about cor-
tical abnormalities in neuropsychiatric disorders that may not be apparent by linear analysis. In previous studies, 
approximate entropy (AE) and sample entropy (SE) have been used for complexity analysis of neural signals in 
ADHD32, 40, 41. However, the disadvantage of AE and SE is that both of them require long, stationary and noiseless 
data42. Fortunately, PE as a new complexity statistical parameter does not have such limitations. This is because PE 
calculation just considers the order relation between the values of a time series instead of the values themselves. 
In addition, the value of PE is based on the distribution of ordinal patterns, PE is therefore less sensitive to noise 
embedded in fNIRS signals. Meanwhile, PE is conceptually simple, computationally efficient and artifact resist-
ant. Therefore, PE is more suitable for application of complexity analysis to fNIRS signals.

In the present study, we found that the control group significantly activated the right DLPFC and VLPFC in 
1-back condition than in 0-back condition, and more strongly activated right DLPFC than the ADHD group. 
This indicates that greater working memory demands evoke greater activations in brain regions associated with 

Figure 2.  PE maps for the 0-back condition (A) and 1-back condition (B). The PE values are indicated by color. 
The light colors represent large PE values (high complexity), and vice versa. Bar plots of PE values showing 
the PE values of channel 3 in each conditions for the ADHD and control group (C). Error bars represent the 
standard error of the mean. *p < 0.05.
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working memory, including dorsolateral prefrontal cortex, inferior frontal junction39. Additionally, in the ADHD 
group, there are functional deficits of right DLPFC which is as the main neural correlate of the central executive43. 
The n-back tasks are classical executive function tests in that they require subjects to monitor stimulus and update 
information in working memory to generate appropriate responses44. In a meta-analysis, Smith et al. reported 
that an increasing demand on n-back tasks was associated with increasing DLPFC activity in healthy subjects45. 
As the review of Cubillo et al., there are deficits of executive functions in children and adults with ADHD46. 
Whether the structural studies or the functional imaging studies, indicated that the DLPFC which is an important 
region related to the executive functions differentiate ADHD patients from controls. Shallice et al. inferred that 
the executive function differences between ADHD patients and controls might be associated with a higher-level 
effort mechanism47.

In our complexity analysis we found that the PE values of right DLPFC in ADHD children were significantly 
larger than those in controls. The global PE values of ADHD children were relatively increased during the work-
ing memory task. But they were not significantly different. Generally, if the signal is measured from an inactive 
region, it should contain more spontaneous brain activity, and thus its PE should reach a relatively high value. 
If the signal is measured from an active region, it should be more ordered, and thus has a smaller PE48. As men-
tioned above, the ADHD children didn’t activate the right DLPFC due to the functional deficits. This makes the 
fNIRS signals from the right DLPFC not be modulated by the working memory task in ADHD children. That 
is to say, the fNIRS signals from the right DLPFC are more random during the working memory task in ADHD 
children. Therefore, the complexity of corresponding region in ADHD children is higher than that in controls. 
That is also why the cortical activations and PE values exhibited significantly negative correlation in right DLPFC.

However, our results are different from some previous studies which reported relatively decreased complexity 
of brain activity in ADHD subjects32, 49. We inferred that there may be three main reasons. First, the fNIRS signals 
we used were recorded from prefrontal cortex and partial temporal cortex, while the signals previous studies used 
were recorded from the whole brain. According to the hypothesis that there is a loss of complexity in the dynam-
ics of many integrated physiological processes with disease33, 34, we think the complexity of other regions we did 
not measure should be lower in ADHD children compared to controls. Second, we used different neuroimaging 
modalities during different tasks. We recorded the fNIRS signals during an n-back task, while the previous studies 
recorded their fMRI or MEG signals at resting state. Third, our subjects are younger. The brain signal complexity 
of healthy subjects will increase with age50, while the brain signal complexity the ADHD patients will not increase 
due to the neurodevelopmental deficit. These factors combine to cause the results in previous studies different 
from this study.

We think there are two main advantages of PE analysis over traditional activation analysis. First, the PE analy-
sis has the lower signal-noise-ratio requirements than the traditional activation analysis, because the PE analysis 
is less affected by the amplitude of the signals and less sensitive to the noise embedded in the signals. Second, PE 
analysis can be applied to both task state and resting state, while the traditional activation analysis can be just 
used during a task. In the future, we also hope to investigate the complexity of fNIRS signals during resting state 
in ADHD children. Note that, the two methods describe different physical phenomena. The PE analysis can not 
supersede the traditional activation analysis. The PE analysis of fNIRS signals just provides a new research per-
spective on the ADHD.

Based on this study, we think there are several implications of the PE value. First, the negative correlation 
between PE value and activation level implies that the PE value may estimate the cortex activation degree during 
a cognitive task. Second, the difference of the PE values between ADHD group and control group implies that 
the PE value may be as a parameter of neurofeedback for rehabilitation of ADHD children. Third, the correlation 
between PE value and ADHD symptom severity implies that the PE value may serve as a potential candidate for 
neurophysiologic marker of ADHD.

Figure 3.  Scatter plots showing the correlation between the PE values and the cortical activations (A), and the 
ADHD index (B). The PE values were negatively correlated to the cortical activations ( = − .r 0 515, = .p 0 003) 
and positively correlated to the ADHD index ( = .r 0 448, = .p 0 012).
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It should be noted that, the results presented in this study might be limited to children samples but not to other 
age groups. Hence, we should test our results on a larger sample, and consider the effect of age and gender in the 
further studies. Meanwhile, we just chose the empirical values as the parameters of PE calculation. We should 
systematically discuss the effect of parameters to PE calculation in the further studies. Furthermore, we also aim 
to evaluate and compare the complexity of the brain at resting state in the near future studies.

Conclusion
To our knowledge, this is the first study to investigate the complexity of fNIRS signals in children with and with-
out ADHD during a working memory task. We evaluated the complexity of brain by using the PE metric. It was 
found that the cortical activations and PE values exhibited significantly negative correlation, and the PE values of 
right DLPFC in ADHD children were significantly larger than those in controls. The results reveal that the right 
prefrontal complexity was changed in ADHD, and suggested that ADHD may be related to neural disconnection. 
Therefore, the complexity analysis based on PE may provide a new view to understand the neural mechanism of 
ADHD. Although there are some limitations in this study, we still suggest that the complexity analysis based on 
PE is a promising tool in diagnosing ADHD.

Materials and Methods
Participants.  Thirty-one children, consisted of fifteen with ADHD (5 females and 10 males, aged 6–9 years, 
mean ± standard deviation 7.6 ± 1.4) and sixteen normal controls (6 females and 10 males, aged 6–9 years, 
mean ± standard deviation 7.3 ± 1.3), participated in this study. Children with ADHD were recruited randomly 
from Capital Institute of Pediatrics’ Children’s Hospital and diagnosed by an experienced child psychiatrist using 
the diagnostic interview that assesses ADHD according to the DSM-V criteria. The severity of ADHD symptoms 
was assessed using the ADHD index from the Conners’ rating scales for parents. No ADHD children exhibited 
any complication such as neurological limitation, epilepsy, mental retardation, or genetic disorder. In addition, 
all the ADHD children were drug-naive. The controls were recruited from the local community and had no 
history of any mental or neurological disorders. The intelligence quotients (IQ) of all children were evaluated 
by means of the Chinese version of the Wechsler Intelligence Scale for Children-Revised (WISC-R). There were 
no significant differences between the groups in terms of age and IQ. The detailed demographic data of subjects 
were listed in Table 2. This study was approved by the ethics committee of Children’s Hospital Attached to The 
Capital Institute of Pediatrics, and all methods were carried out in accordance with the relevant guidelines and 
regulations. Written informed consent was obtained from the parents of all children.

Experimental protocol.  Figure 4 summarizes the experimental procedure. A blocked periodic design that incor-
porated 0- and 1-back tasks was used in the present study. The order of the task conditions was random across 
subjects and the participants didn’t know the task order prior to the start of experimentation. The adjacent two 
tasks were separated by 30 s resting segments during which participants were instructed to sit still and relax. Each 
of the two conditions was conducted three times. Each block began with 5000 ms presentation of the condition 
cue (specifying 0- or 1-back). In addition, a 30 s baseline period preceded the first task segment. Within each 
condition, 10 single digits were pseudo randomly shown to the participants. Each digit was presented for 300 
ms, followed by an interstimulus interval of 1700 ms. Every block contained 15 trials. For the 0-back condition, 
the participants were instructed to press the button under the right index finger whenever a digit that appeared 
on the computer screen in front of them was identical to the target digit, otherwise, press the button under the 
right middle finger. For the 1-back condition, the participants had to press the button under the right index finger 
whenever the presented digit was identical to the preceding one, otherwise, press the button under the right mid-
dle finger. For both conditions, a total of 12 target trials appeared. The reaction time (RT) and accuracy (ACC) 
were recorded for analysis of behavioral data. The n-back task was generated by E-Prime (version 2.0, Psychology 

Controls Mean (SD) ADHD Mean (SD)

Number of subjects 16 15

Age 7.3 (1.3) 7.6 (1.4)

IQ 110 (12) 107 (11)

ADHD index 5.1 (1.2) 16.5 (5.1)

Table 2.  Demographic data of subjects.

Figure 4.  Schematic of the experimental procedure. The order of the task conditions was random across 
subjects. The adjacent two tasks were separated by 30 s periods of rest. Just one possible order was shown in this 
figure.
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Software Tools, Inc., Pittsburgh, PA, USA), and presented in a 17′ computer screen. The distance between the 
subject’s eyes and the screen was approximately 50 cm. Before the fNIRS measurement, all participants were 
instructed about the task, and trained to practice some trials of the task. An experimenter observed the course of 
practice to confirm that the participants understood the paradigm correctly.

fNIRS measurements and preprocessing.  In this study, we used the ETG-4000 (Hitachi Medical 
Company, Japan) NIRS system working with two different wavelengths of near infrared light (695 nm and 
830 nm) to measure the [HbO] and [Hb]. The sampling frequency was 10 Hz. We used a “3 × 11” measurement 
patch, which was placed on the head with regard to the relevant standard positions of international 10–20 sys-
tem for EEG electrode placement. The middle inferior optode was placed over Fpz and inferior row of optodes 
was oriented in direction of T3 or T4 respectively (Fig. 5(A)). In this patch, 17 emitters and 16 detectors were 
positioned in an alternating fashion, forming 52 measurement channels. The emitter-detector distance was 3 cm.

We mapped fNIRS channels to the corresponding areas of a brain model. According to literature51, we divided 
these channels into nine regions as shown in Fig. 5(B) (left VLPFC: 39, 40, 49, 50; right VLPFC: 34, 35, 45, 46; left 
DLPFC: 7, 8, 17, 18, 19, 28, 29; right DLPFC: 3, 4, 13, 14, 15, 24, 25; left PSFC: 9, 10, 20, 21; right PSFC: 1, 2, 11, 12; 
left TC: 22, 23, 32, 33, 43, 44; right TC: 30, 31, 41, 42, 51, 52).

The [HbO] and [Hb] were calculated using the modified Beer-Lambert law52. Because [HbO] signals can 
reflect changes in regional cerebral blood oxygenation and provide a better signal to noise ratio53, we only used 
[HbO] data in this study. The motion artifacts in [HbO] data were corrected using the empirical mode decompo-
sition method54. To remove the high-frequency physiological noise and low-frequency baseline drift, a band-pass 
filter (4th order infinite impulse response Butterworth filter) between 0.01 to 0.3 Hz was applied to the [HbO] 
data. At last, the [HbO] data was down-sampled to 2 Hz.

General linear model analysis.  GLM analysis has been increasingly used to analyze fNIRS data in many 
studies to identify cortical areas significantly stimulated by given tasks55. In this study, we also employed GLM 
to analyze channel-wise hemodynamic responses in the cortex stimulated by the n-back task. GLM models the 
measured brain response as a linear combination of predicted responses due to variable stimulations plus an error 
term, which can be formulated as:

β β= + +y x x e (1)0 0 1 1

where y is the measured hemodynamic response ([HbO] in this study) at each channel, x0 and x1 are the predicted 
stimulation-evoked responses (0-back and 1-back) which are generated by convolving the task onset with the 
canonical hemodynamic response function, β0 and β1 are the estimated amplitudes of [HbO], and e is the error 
term. By using the method of least squares, we would obtain the estimated β0 and β1. Last, cortical activation 
levels were obtained by statistically analyzing the β0 and β1.

Permutation entropy.  Permutation entropy was originally proposed by Bandt and Pompe37 as a quantita-
tive complexity measure of a dynamical time series. With the PE method, a time series is first mapped to a 

Figure 5.  Schematic arrangement of the fNIRS probe array. (A) Location of optodes (red = emitters; 
blue = detectors) and channels (numbers) over a standard brain model. (B) Anatomical areas covered by the 
probe array. Different colors represent different anatomical areas.
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sequence of order patterns based on comparison of neighboring values, and then PE is the statistical measure of 
relative frequencies of the different order patterns. Given a time series ≤ ≤x i N{ : 1 }i , vectors 

= …τ τ+ + −X x x x{ , , , }i i i i m( 1) , ≤ ≤ − −i N m1 ( 1) with the embedding dimension m and time lag τ  are con-
structed. Then, vector Xi is arranged in an ascending order: ≤ ≤ … ≤τ τ τ+ − + − + −( ) ( ) ( )x x x{ }i j i j i j1 1 1m1 2

. For m 
dimensions, there are =K m! possible order patterns, which are also called motifs. As illustrated in Fig. 6(A), 
there are six different motifs for =m 3. Each vector Xi can be represented by one of the K  motifs. The probability 
of occurrence of the j th motif, Pj, is then calculated. The PE of this time series is defined as:

∑= −
=

PE P Pln
(2)j

K

j j
1

The corresponding normalized entropy is defined as follows:

=
−∑ =PE

P P

K

ln

ln (3)
j
K

j j1

The largest value of PE is 1, meaning the time series is random and the smallest value of PE is 0, meaning the 
time series is absolutely regular. That is, the larger the value of PE is, the more irregular or complex the time series 

Figure 6.  (A) Six motifs for the embedding dimension of 3. M represents motif. (B) A segment of fNIRS data 
used in this study. (C) The number of every order pattern at =m 2, 3, 4 and 5. Horizontal ordinate represents 
the order pattern. Vertical ordinate represents the number of the order pattern.
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is, and vice versa. The calculation of PE is dependent on the selection of embedding dimension m. If m is too small 
( =m 1, or 2), only very few distinct order patterns are included in the time series, so this can’t work. If m is too 
large ( >m 10), it is not sure that every possible motif occurs in the time series. As shown in Fig. 6(C), when 

=m 2, the number of the two order patterns were almost equal, however, when =m 4 or =m 5, some order 
patterns didn’t occur in our data. Therefore, according to the characteristics of fNIRS data, we think =m 3 is 
appropriate.

Statistical analysis.  For the performance data, two-sample t-test was used for the between-group compar-
isons. In activation analysis, within-group analysis was performed using one-sample t-test for 0-back contrast, 
1-back contrast and subtractive (1-back minus 0-back) contrast; between-group comparisons were completed 
using two-sample t-test. In PE analysis, the PE values in each condition (0-back and 1-back) were calculated 
channel by channel for each subject, and the two-sample t-test was performed to identify the significantly dif-
ferent regions between the two groups. Since there are 52 channels, we can calculate 52 values (beta or PE). The 
t-tests were performed repeatedly across 52 channels. The Bonferroni correction was then applied to correct for 
multiple comparisons. The p-value × 52 < 0.05 is considered as significant result. The p-value × 52 was reported 
in this study. The Beta-maps and the PE-maps for both groups were generated by a custom software based on 
NIRS-SPM55 and SPM-fNIRS (https://www.nitrc.org/projects/spm_fnirs/). Last, we used the Pearson’s correlation 
coefficient to test the relationship between the PE values and the cortical activations, and the ADHD index.
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