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Abstract

SARS-CoV-2, the virus that causes COVID-19, is a current concern for people worldwide. The virus has recently spread worldwide and is out
of control in several countries, putting the outbreak into a terrifying phase. Machine learning with transcriptome analysis has advanced in
recent years. Its outstanding performance in several fields has emerged as a potential option to find out how SARS-CoV-2 is related to other
diseases. Idiopathic pulmonary fibrosis (IPF) disease is caused by long-term lung injury, a risk factor for SARS-CoV-2. In this article, we used
a variety of combinatorial statistical approaches, machine learning, and bioinformatics tools to investigate how the SARS-CoV-2 affects IPF
patients’ complexity. For this study, we employed two RNA-seq datasets. The unique contributions include common genes identification
to identify shared pathways and drug targets, PPI network to identify hub-genes and basic modules, and the interaction of transcription
factors (TFs) genes and TFs–miRNAs with common differentially expressed genes also placed on the datasets. Furthermore, we used gene
ontology and molecular pathway analysis to do functional analysis and discovered that IPF patients have certain standard connections
with the SARS-CoV-2 virus. A detailed investigation was carried out to recommend therapeutic compounds for IPF patients affected by the
SARS-CoV-2 virus.
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Introduction
Coronaviruses have various variants that can infect humans and
animals [1]. The variants of this virus are responsible for various
diseases, ranging from common fever and cold cough to more se-
rious illnesses such as Severe Acute Respiratory Syndrome
(SARS) and Middle East Respiratory Syndrome (MERS) [2]. Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a
new type of coronavirus, which got a lot of attention at the end of
2019 because it was a new variant of coronavirus that had never
been observed in humans previously. Coronavirus Disease 2019
(COVID-19) is the name of the new coronavirus, which was first
discovered in Wuhan, China, in December 2019 [3]. Chinese offi-
cials reported 44 instances of pneumonia with unknown causes
to the World Health Organization (WHO) between 31 December
2019, and 3 January 2020 [4]. The first fatality of COVID-19 oc-
curred in Wuhan on 9 January 2020, while the first death outside
of China occurred in the Philippines on 1 February 2020. Within a

few days, the disease had spread worldwide and was out of con-

trol in many nations [4]. On 30 January 2020, the WHO designated

the virus as a Public Health Emergency (PHE) of worldwide con-

cern [5]. This virus was declared a pandemic by the same organi-

zation on 11 March 2020, after a total of 4500 deaths were

reported in 30 countries and territories throughout the world [5].

Italy surpassed China, with the highest reported death cases of

this virus reported on 19 March 2020 [4]. The USA has surpassed

both China and Italy as the country with the highest confirmed

virus cases on 26 March 2020 [4]. On a global basis, the bloodiest

week was 13–19 April 2020, when nearly 7460 deaths were offi-

cially reported each day by this virus. The pandemic’s epicenter

migrated to Latin America and the Caribbean in June 2020.

Between 15 July 2020 and 15 August 2020, the region had an aver-

age of almost 2500 deaths per day. With over 78 000 cases on 30

August 2020, India surpassed the US record for the highest cases

in a single day, and a second wave hit India on 9 April 2021.
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There were 281 808 270 confirmed cases from December 2020 to
December 2021, with 5 411 75 deaths by this virus [6]. On 26
November 2021, WHO designated a new variant (B.1.1.529) of
SARS-CoV-2 named Omicron in South Africa. On 26 November,
WHO designated Omicron as a variant of concern. The first
COVID-19 case associated with the Omicron variant was reported
in the USA on 1 December 2021, and at least one Omicron variant
had been detected in 22 states as of 8 December 2021. Recently,
this new variation of this virus has spread worldwide and is out
of control in several countries, putting the outbreak into a terrify-
ing phase.

SARS-CoV-2 is a single-stranded RNA virus that is positive in a
sense. The Spike (S), envelope (E), membrane (M), and nucleocapsid
(N) proteins are the four proteins found in SARS-CoV-2. Spike pro-
teins are responsible for attaching to a host cell’s membrane.
Idiopathic pulmonary fibrosis (IPF) disease is a long illness marked
by the thickening and stiffening of lung tissue associated with scar
tissue formation [7]. In this condition, the sponge or meaty section
of the lung becomes scarred or fibrotic. It is a slow-progressing,
highly fatal disease that affects roughly 80% of people within 3–
5 years of diagnosis [7]. Pulmonary fibrosis affects people in differ-
ent ways. Various common, easily curable diseases might cause
similar symptoms. Shortness of breath and a persistent dry, hack-
ing cough are the most common indications and symptoms of IPF.
Many impacted people also notice a decrease in appetite and
weight loss over time. Due to a lack of oxygen, some people with
IPF acquire enlarged, rounded tips on their fingers and toes (club-
bing) [8]. IPF’s cause is not understood. The following are some of
the most common risk factors for IPF: Almost all patients with IPF
are over 50 years. Genetics, up to 20% of patients with IPF have an-
other family member who suffers from the condition.
Approximately 75% of people with IPF smoke now or have in the
past. Gastroesophageal reflux or heartburn affects about 75% of
people with IPF. Male patients account for roughly 65% of IPF
patients [9]. Radiation treatments to the chest or the use of certain
chemotherapy medications have been shown to enhance the risk
of pulmonary fibrosis [10, 11]. SARS-CoV-2 contains spike protein,
which has a greater interaction with ACE2, and IPF patients have a
lot of this enzyme, confirming IPF as a risk factor for this disease
[12, 13]. These investigations have revealed several linkages be-
tween IPF and COVID-19, which raises concerns.

Contributions
In this article, we used a variety of combinatorial statistical
approaches, machine learning algorithms, and bioinformatics tools
to investigate how the SARS-CoV-2 virus affects IPF patients’ com-
plexity. The following are the main contributions of this article:

• the experiments have been conducted using a real-time data-
set. We have observed common gene identification by ma-
chine learning algorithms and various bioinformatics
analyses to identify shared pathways and drug targets;

• the Protein-Protein Interaction (PPI) network was examined to
discover hub-genes and modules. The interactions of tran-
scription factors (TFs) genes and TFs-miRNAs with common
differentially expressed genes (DEGs) were also discovered.
Furthermore, we used gene ontology (GO) analyses and mo-
lecular pathway analyses to do functional analysis and dis-
covered that IPF patients have certain common connections
with SARS-CoV-2 infection;

• a comprehensive analysis has been conducted to suggest
drug molecules for IPF patients with SARS-CoV-2 infections.

In the context of molecular-based knowledge and several
pathway-based analyses, which illustrate the utility of the bi-
ological system for both SARS-CoV-2 and IPF; and

• finally, the current challenges and future research directions
of integration and interplay between machine learning and
bioinformatics have been discussed.

The remainder of this study is organized in the following man-
ner. The ‘Materials and methods’ section begins with a full de-
scription of the dataset with preprocessing and an overview of
selected methodology. The ‘Result analysis’ section discusses the
evaluation and interpretation of experimental outcomes for
these methodologies. In addition, ‘Discussion’ section contains a
lengthy explanation and discusses some application areas for sci-
entific society. Finally, ‘Conclusions’ section contains an over-
view of the findings and possible future directions.

Materials and methods
In this section, we have thoroughly detailed the overview of the
analysis, including the dataset transformation process and vari-
ous transcriptome analyses.

Overview of approach
We applied machine learning and transcriptomic analysis to
identify shared associations between SARS-CoV-2 and IPF by
employing selected datasets shown in the block diagram in Fig. 1.
The machine learning approaches have been used to identify
common DEGs of the selected datasets. Furthermore, these
shared or common DEGs were used to construct gene–disease as-
sociation networks, identify GO, pathways, PPI network, hub-
genes, transcription factor (TF)–gene, TF–miRNA, and identify
candidate drugs.

Dataset analysis
This section has performed a series of operations on the dataset
without changing its properties. Also, we have thoroughly
explained the overview of the selected dataset.

Dataset description
We have identified common genetic interrelationships between
SARS-CoV-2 and IPF using Ribonucleic Acid Sequencing (RNA-Seq)
datasets from the Gene Expression Omnibus (GEO) collection of
the National Center for Biotechnology Information (NCBI) directory
[14, 15]. The transcriptional responses to SARS-CoV-2 infection are
contained in the SARS-CoV-2 dataset with GEO accession ID
GSE147507 and GEO platform ID GPL18573. In contrast, the tran-
scriptome analysis reveals differential splicing events in IPF lung
tissue that are contained in the IPF dataset GEO accession
GSE52463 and GEO platform ID GPL11154 [16]. SARS-CoV-2-af-
fected Lung Epithelial Cell (LECs) are found in the GSE147507, while
IPF-affected lung tissues are found in the GSE52463 dataset. The
GSE147507 dataset contains two types of samples (control and
SARS-CoV-2-affected cells) taken from SARS-CoV-2-affected LECs,
while the GSE52463 dataset has two types of samples (control and
IPF-affected cells). Metadata and count data are also included in
both databases. The RNA sequence was extracted from the
GSE147507 dataset using high-throughput sequencing technolo-
gies on the Illumina NextSeq 500 (Homo sapiens) platform [17]. The
IPF dataset, on the other hand, comprises mRNA sequencing of
eight IPF-affected lung tissues and seven control lung tissue sam-
ples, all of which were sequenced on the Illumina Hi-Seq 2000 (H.
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sapiens) platform utilizing high-throughput sequencing technology
[18]. Table 1 lists the datasets used in this study and their geo-
features and sequencing methods.

Data preparation
To achieve optimal performance, it is necessary to clean and pre-
pare the dataset before applying machine learning methods.
Data preparation is generally done by removing unnecessary fea-
tures, checking the variation of independent features, converting
non-numerical features, removing outliers, and replacing miss-
ing values if they exist. The two fundamental steps apply during
the data preparation process. The first is data preprocessing, and
the second is the data transformation step.

Data preprocessing
This dataset originates from multiple heterogeneous sources.
Due to its vast size, this dataset is highly susceptible to missing

and noisy data. This section discusses the essential steps in data
preprocessing: data cleaning and data integration.

• Data Cleaning: First, we applied various techniques to remove

noise and clean inconsistencies in the metadata and count-
data from both datasets. For example, Rosner’s test for outliers

checking and the predictive mean matching method for im-
puting missing values. Then, to apply machine learning tech-

niques, we converted the qualitative values into quantitative

values by applying various techniques (e.g. Biobase (version

Figure 1: The complete workflow for the current investigation. Two types of samples (control cells, affected cells) were collected from SARS-CoV-2-
infected lung epithelial cells and both are included in the GSE147507 dataset. The GSE52463 dataset contains IPF-affected lung samples. Common DEGs
were identified from both the datasets using machine learning technique. From the common DEGs, GO identification, pathway analysis, PPIs network,
TF–gene analysis, TF–miRNA analysis, and hub-gene identification were designed and based on those analysis drug molecule identification was
performed.

Table 1: Contents of the datasets

Properties SARS-CoV-2 IPF

GEO Accession GSE147507 GSE52463
GEO Platform GPL18573 GPL11154
Organisms Homo sapiens Homo sapiens
Assay type RNA-Seq RNA-Seq
Type of the datasets Transcriptional response to SARS-CoV-2 infection In IPF lung tissue, transcriptome analysis indicates

distinct splicing events.
Instrument Illumina NextSeq 500 Illumina HiSeq 2000
Total GEO samples 110 15
Experiment type High-throughput sequencing for expression profiling High throughput sequencing for expression profiling
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2.30.0), GEOquery (version 2.40.0), limma (version 3.26.8), and
Bioconductor) packages of the R programming language,
which is a free, open-source, and open-development software
project for the analysis and comprehension of genomic data.

• Data Integration: To improve the accuracy, the data integra-
tion technique helped us reduce and avoid redundancies in
the resulting dataset. This dataset originates from multiple
heterogeneous sources. So, it is essential to check both data-
sets for redundancy and correlation analysis. This analysis
has measured how strongly one feature implies the other.
Figure 2a and b shows the correlation between different fea-
tures for the two datasets, GSE147507 and GSE52463, respec-
tively. For our analysis, we have evaluated the correlation
between all the features using the following Pearson’s
product-moment coefficient equation.

r ¼
Pn

i¼1 xi � x
(

� �
yi � y

(
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi � x

(

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � y
(

� �2
r

where �a is the meaning of x variable and y is the meaning of y
variable, xi and yi are values in tuple i.

Data transformation
We applied this processing step to achieve more efficient result-
ing processes and easily understand the patterns. Some selected
features have larger values than others, which leads to incorrect
performance. We have implemented these strategies to scale the
selected feature values within a range between [0.0] and [1.0]
without changing the characteristics of the data.

N=(X�Xmin)/(Xmax�Xmin)

where N is the output normalized values, X is an original value
and Xmax and Xmin is the maximum and minimum values of
the feature, respectively.

As shown in the following equation, a technique called mini-
mum–maximum normalization has been used to scale the se-
lected feature values within the range. We have also evaluated
the density plot for both datasets. The density plot shows the

Figure 2: The correlation analysis between different features for the two datasets (a) GSE147507 and (b) GSE52463. This analysis has measured how
strongly one feature implies the other.
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smooth distribution of the points along the numeric axis. The

peaks of the density plot are at the locations where there is the

highest concentration of points. Figure 3a and b shows density

plots for the two datasets, GSE147507 and GSE52463, respectively.

Spotting DEGs and shared DEGs between
SARS-CoV-2 and IPF
A gene is differentially expressed when a statistical discrepancy

exists between several test settings during the transcription

phase [19]. The major purpose of this study is to identify DEGs

that are shared between the GSE147507 and GSE52463 datasets.

The DESeq2 and lima packages of the R programming language

were used to access data generated by microarray analysis. DEGs

from both datasets were identified using a machine learning

method. Listing 1 shows the applied procedure of the machine

learning algorithm to identify DEGs from both datasets. Across

all datasets, significant DEGs were identified using cutoff criteria

(P-value< 0.05 and jlog Fcj � 1.00). The shared DEGs of the

GSE147507 and GSE52463 datasets were found using the online

VENN analysis platform JVENN tool [20].

Identifying of GO and molecular pathway
Enrichment analysis of gene set is a technique for identifying

DEGs linked to a biological process or molecular function [21]. GO

is a classification system that divides genes into biological mech-

anisms, molecular functions, and cellular components [22]. The

purpose of analyzing GO concepts is to understand the molecular

activity, cellular structure, and the position in the cell where

genes fulfill their functions [23]. We used four databases to find

common molecular pathways in IPF and COVID-19: Kyoto

Encyclopedia of Genes and Genomes (KEGG) [24], Wiki Pathways

[24], Reactome [25], and BioCarta [25]. Various gene annotations

may be found in the KEGG, which is commonly used to character-

ize metabolic pathways. A web-based platform Enrichr has been

used to obtain GO, and molecular pathways for the common

genes mentioned earlier in this research [26, 27]. To derive GO

and molecular pathways, we utilized 20 sorted genes.

Analysis of PPI network
The role of PPIs in cellular biology is projected to be a major focus

of research, and it serves as a requirement for system biology [28].

Proteins finish their journey within a cell with a comparable pro-

tein affiliation established by a PPI network, indicating the protein

processes. Proteins interact with other proteins to carry out their

activities inside cells, and the information created by a PPI network

informs individuals about the protein’s function [29]. We built the

PPI network of DEGs proteins using the STRING resource to ex-

change activity and physical linkages between IPF and COVID-19

[30]. The STRING generates experimental and predicted outcomes

based on the data and the interaction generated by the online tool,

which is determined by 3D structures, accessory data, and confi-

dence scores [31]. The confidence score was set using the STRING

platform that was different categorized confidence scores (low,

medium, and high). We have been worked on the PPI network with

a medium confidence score (0.400). We get the exact information,

Figure 3: The density plots of the two datasets (a) GSE147507 and (b) GSE52463. The density plot shows the smooth distribution of the points along the
numeric axis. The peaks of the density plot are at the locations where there is the highest concentration of points.
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using the network type “full string network” (the edges indicate

both functional and physical protein resources) and a selected

number of 10 interactors. Then, we consume our PPI network into

Cytoscape (version 3.7.1) for visual representation and further PPI

network experimental studies. And with that the purpose of identi-

fying hub-genes, the obtained PPIs are analyzed through

Cytoscape. Cytoscape is an open-source network visualization

framework that serves as a versatile method for combining several

datasets to optimize efficiency for various interactions such as pro-

tein–protein interactions, genetic interactions, and protein–DNA

interactions, among others [32, 33].

Identifying of hub-genes and module analysis
The PPI networks are nodes, edges, and connections, with hub-

genes being the most entangled nodes. The PPI networks are used

to identify hub-genes. Hub-genes provide dense areas identified as
important parts of the PPIs network. The hub-genes for the associ-
ated PPI networks are indicated by CytoHubba, a Cytoscape applica-
tion plugin [34]. CytoHubba is the most popular Cytoscape
hub-genes identification plugin for its user-friendly interface.
CytoHubba has 20 different methods for topological analysis (e.g.
MCC, Degree, DMNC, MNC, EPC, Bottleneck, etc.). The degree analy-
sis method was employed to find the hub-genes for this study.
Because the degree method facilitates analysis by suggesting large,
closely compacted modules in the PPI network, it is employed in-
stead of another approach [35]. The Molecular Complex Detection
(MCODE) plugin in the Cytoscape software is utilized to locate the
most profound modules in the PPIs network [36]. The MCODE
method is based on a graph-theoretic clustering algorithm that
detects densely connected regions in large protein–protein

Listing 1. The procedure of the machine learning algorithm to identify DEGs from both datasets.

1 Input: RNA-Seq dataset
2 Output: Identification of differentially expressed genes (DEGs)
3

4 outputFileName¼open(“result.csv”,”a”)
5

6 datasetName¼os.listdir(folderPath)
7 for i in range(len(datasetName)):

8 fileName¼open(“GSE”þstr(name[i])þ”.csv”)
9 fileName.next()

10 for dataset in fileName:

11 #Extract countdata and store in a matrix

12 datasetName¼os.listdir(folderPath)
13 countData ¼ read.csv((“GSE”þstr(name[i])þ”filtered_countdata.csv”):
14 countDataFrame ¼ data.frame(countData)

15 countDataFrameRound¼mutate(across(where(is.numeric),round , 3))
16 #Extract metadata and store in a matrix

17 metaData ¼ read.csv((“GSE”þstr(name[i])þ”filtered_metadata.csv”):
18 countDataFrame ¼ data.frame(metaData)

19 #Analyze count data using DESEQ2

20 applyDESeq ¼ DESeqDataSetFromMatrix(countData¼countDataFrameRound,
21 colData¼metaDataFrame, design¼�treatment, tidy¼TRUE)

22 applyDESeq ¼ DESeq(applyDESeq)

23 result ¼ results(applyDESeq)

24

25 #Result Analysis

26 #Check and Omit the null value

27 checkNull ¼ is.na(result)

28 resultsOmitNa ¼ na.omit(result)

29

30 #Count the up regulated gene

31 resultOmitNaFilterUp ¼ filter(resultOmitNa, log2FoldChange

32 >1 & Padj<0.05)

33 #Count the down regulated gene

34 resultOmitNaFilterDown ¼ filter(resultOmitNa, log2FoldChange

35 <-1 & Padj<0.05)

36 #ABS logFC value and setup cuttoff criteria for P adj value

37 resultFinal ¼ filter(resultOmitNa, abs(log2FoldChange)

38 >1 & Padj<0.05)

39 outputFileName.write(resultFinal)

40 outputFileName.close()
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interaction networks that may represent molecular complexes [36].
The method has the advantage over other graph clustering meth-
ods of having a directed mode that allows fine-tuning of clusters of
interest without considering the rest of the network and allows ex-
amination of cluster inter-connectivity, which is relevant for protein
networks. Furthermore, the method is not affected by the known
high rate of false positives in data from high-throughput interaction
techniques [37]. Moreover, the method is relatively easy to imple-
ment and, since it is local density based, has the advantages of both
a directed mode and a complex connectivity mode. The MCODE
method has also been employed in the PPIs network to locate highly
bound areas in the molecular complexes.

TF–gene analysis
TFs bind to individual genomes and regulate their levels of ex-
pression. As a result, it is required for molecular recognition [38].
In all species, TFs control gene expression and play a critical role
in transcription. TFs play an important role in a variety of biologi-
cal processes, including cell cycle regulation and development.
TF–gene linkage with the newly discovered top 12 common DEGs
among 90 DEGs was used to investigate the effects of TF–genes
on functional pathways and genomic levels. By using the
Network Analyst tool to find topologically relevant TFs from the
ENCODE database, which was used in the TF–gene interaction
network [39–41], we were able to exploit TF–gene interactions
with previously established common genes. Network Analyst is a
web-based tool for doing transcriptional research and meta-
analysis on various species, including humans [42, 43]. The TF–
gene interaction network has made up of 190 nodes and 301
edges. Moreover, the network has 12 DEGs and 178 TF–genes,
where HSPB6 is regulated by 85 TF–genes, EPAS1 is regulated by
68 TF–genes, and FCGR2A is regulated by 37 TF–genes according
to their degree value. These 178 TF–genes are regulated by more
than one common DEG, which indicates high interaction of the
TF–genes with common DEGs.

TF–miRNA interaction with the common DEGs
The miRNAs are short non-RNAs that are expressed by RNA poly-
merase II and then regulated by a shared biogenic pathway in a
step-by-step method. Using a combination of experimental and
computational techniques, miRNAs have been discovered in a va-
riety of species. By binding to the 30-untranslated, miRNA regu-
lates gene expression at the post-transcriptional stage. The
RegNetwork database was utilized to collect TF–miRNA coregula-
tory interactions, which helps to identify the miRNAs and regula-
tory TF–genes that regulate DEGs of interest at the
transcriptional and post-transcriptional phases [43]. We found
miRNAs that interact with common DEGs and then utilized the
Network Analyst tool to analyze how they interact. With this
platform, researchers can find complex datasets and determine
biological traits and functions [44]. The network of miRNA–gene
interactions was examined using Cytoscape software. By classify-
ing top miRNAs to higher levels, this software aids researchers in
determining biological roles and features. The TF–miRNA

coregulatory network has 191 nodes and 216 edges. According to
research, DEGs engage with 87 miRNAs and 93 TF–genes.

Candidate drugs identification
Predicting PDI or drug molecule recognition is important for this
research. We identified a therapeutic molecule based on the com-
mon DEGs of SARS-CoV-2 and IPF using the Enrichr tool and
DSigDB database. There are 22 527 gene sets in the drug signa-
tures database. To acquire access to the DSigDB database, the
Enrichr platform is employed [45, 46]. Enrichr is a well-known
web portal with many gene-set libraries that may be used to look
into gene-set enrichment on a genome-wide scale [26].

Result analysis
The overall performance of the analysis is discussed in this sec-
tion. Beginning with a discussion of DEGs and mutual DEG identi-
fication, the article progresses to a description of the candidate
drug identification procedure.

DEGs and mutual DEGs identification
We investigated the interrelationships and implications of dis-
rupted genes that activate COVID-19 and IPF using the NCBI’s hu-
man RNA-seq and microarray datasets. The GSE147507 dataset
determines DEGs for SARS-CoV-2, and its GEO platform identifier
is GPL18573. There are 926 upregulated and 799 downregulated
genes in the GSE147507 dataset, resulting in 1725 DEGs. In the
GSE52463 dataset, which has the GEO platform identifier
GPL11154, we discovered a total of 1008 DEGs, with 669 upregu-
lated and 339 downregulated genes. The quantitative measure-
ment of the selected datasets is shown in Table 2. After
cross-comparative analysis using JVENN, a trustworthy web plat-
form for Venn analysis, we discovered 90 similar DEGs from the
GSE147507 and GSE52463 datasets. Twenty common DEGs were
chosen for further study from 90 common DEGs based on the
P-value (MDK, HP, HSPB6, CHIT1, TNFAIP6, EPAS1, MMP1, CCL18,
CXCL6, CCL11, IL1RN, LAMP3, CD207, ARRB1, RNASE2, LILRA1,
FCGR2A, STAT4, CD69, and SAMSN1). Additional study has been
conducted using these 20 frequent DEGs. Figure 4 depicts the
common DEGs as a Venn diagram, with 90 genes discovered to be
shared in the GSE147507 and GSE52463 datasets.

GO and molecular pathway analysis
Enrichment analysis of gene sets is a technique for identifying
DEGs linked to a biological process or molecular function. For
this study, we looked at the most prevalent DEGs. GO processes
are divided into biological, cellular components, and molecular
functions. Table 3 shows the biological process connected to GO
keyword identification findings based on the combined score.
Table 4 shows the results of the identification of molecular
function-related GO keywords based on the combined score.
Table 5 also shows the results of the cellular component-related
GO keywords identification based on the combined score. The
KEGG, Wiki Pathways, Reactome, and BioCarta have been used to

Table 2: Quantitative measurements of the datasets used in this analysis

Properties GSE147507 GSE52463

Common gene analysis DESeq2 and the lima package DESeq2 and the lima package
Cutoff criteria P< 0.05 and jlog Fcj � 1.0 P< 0.05 and jlog Fcj � 1.0
Total DEGs count 1725 genes 1008 genes
Upregulated DEGs count 926 genes 669 genes
Downregulated DEGs count 799 genes 339 genes
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find the most impactful pathways of the shared DEGs between
IPF and SARS-CoV-2. Tables 6, 7, 8, and 9 show the essential path-

ways discovered in the datasets. The graphical view of GO terms
and pathways analysis are shown in Figs. 5 and 6.

Analysis of PPI network for the identification of
hub-genes
The PPI network analysis is the most important element. This net-

work has conducted hub-gene recognition, module analysis, and
drug identification. In STRING, the specific DEGs have been pro-

vided as input. The analysis file was re-imported into the Cytoscape

software for visualization. For the most frequent DEGs, a PPI net-
work has been created. Finally, the PPIs network results connect to

therapeutic compound suggestions, placing the PPIs analysis as the
research’s focus. Figure 7 shows the PPI network with 60 nodes and

308 edges. For SARS-CoV-2 and IPF, the PPI network was developed
to discover hub-genes and medicinal compounds.

Identification of hub-genes for therapeutic
solutions and module analysis
CytoHubba, a Cytoscape software plugin, was used to track the

hub-genes from the PPIs network. The degree meaning of the

Figure 4: Common DEGs representation through a Venn diagram. There are 90 genes were found common from the 1635 DEGs of SARS-CoV-2 infection
and 918 DEGs of IPF patients. The common DEGs were 3.4% among total 2553 DEGs.

Table 3: The combined score was used to identify biological process-related GO keywords

Group GO ID GO pathways P-value Genes

GO biological process GO: 0006032 Chitin catabolic process 6.98E-03 CHIT1
GO: 0090240 Positive regulation of histone H4 acetylation 6.98E-03 ARRB1
GO: 0006030 Chitin metabolic process 6.98E-03 CHIT1
GO: 0072677 Eosinophil migration 2.59E-04 CCL11; CCL18
GO: 0048245 Eosinophil chemotaxis 2.59E-04 CCL11; CCL18
GO: 0070098 Chemokine-mediated signaling pathway 1.83E-05 CXCL6; CCL11; CCL18
GO: 0030593 Neutrophil chemotaxis 1.94E-05 CXCL6; CCL11; CCL18
GO: 0002029 Desensitization of G-protein coupled receptor

protein signal
7.97E-03 ARRB1

GO: 0038114 Interleukin-21-mediated signaling pathway 7.97E-03 STAT4
GO: 0098757 Cellular response to interleukin-21 7.97E-03 STAT4

Table 4: The combined score was used to identify GO keywords linked to molecular functions

Group GO ID GO pathways P-value Genes

GO molecular function GO: 0019966 Interleukin-1 binding 5.98E-03 IL1RN
GO: 0008009 Chemokine activity 1.26E-05 CXCL6; CCL11; CCL18
GO: 0004568 Chitinase activity 6.98E-03 CHIT1
GO: 0042379 Chemokine receptor binding 1.53E-05 CXCL6; CCL11; CCL18
GO: 0005537 Mannose binding 1.09E-02 CD207
GO: 0048020 CCR chemokine receptor bind 6.54E-04 CCL11; CCL18
GO: 0005041 Low-density lipoprotein receptor 1.29E-02 TNFAIP6
GO: 0005125 Cytokine activity 1.53E-05 CXCL6; IL1RN; CCL11;
GO: 0005149 Interleukin-1 receptor binding 1.49E-02 IL1RN
GO: 0005159 Binding of insulin-like growth factor

receptors
1.49E-02 ARRB1
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hub-genes, which represents the number of interactions be-
tween the genes in the PPI network, has been categorized. Hub-
genes are the bulk of interconnected nodes in a PPI network.
The topological analysis identified the top five genes (AKT1,
IL1B, CCL5, MMP9, and ARRB1) classified as hub-genes based
on their degree value. Table 10 shows the results of the

topological analysis. These hub-genes could be exploited as
biomarkers, leading to new therapeutic approaches for the
studied diseases. The network has 50 nodes and 283 edges, and
we utilized a degree-sorted circle structure to lay it out. The
network of hub-genes is depicted in Fig. 8, with the top five
hub-genes AKT1, IL1B, CCL5, MMP9, and ARRB1.

Table 5: The combined score was used to identify cellular component-related GO keywords

Group GO ID GO pathways P-value Genes

GO cellular component GO: 1904724 Tertiary granule lumen 1.37E-03 CHIT1; TNFAIP6
GO: 0030669 Clathrin-coated endocytic vesicle membrane 3.25E-02 CD207
GO: 0045334 Clathrin-coated endocytic vesicle 4.88E-02 CD207
GO: 0070820 Tertiary granule 1.15E-02 CHIT1; TNFAIP6
GO: 0030659 Cytoplasmic vesicle membrane 5.27E-02 ARRB1
GO: 0035580 Specific granule lumen 6.02E-02 CHIT1
GO: 0031410 Cytoplasmic vesicle 1.92E-02 CD207; ARRB1
GO: 0005769 Early endosome 2.04E-02 LAMP3; CD207
GO: 0031901 Early endosome membrane 7.05E-02 CD207
GO: 0030665 Clathrin-coated vesicle membrane 7.79E-02 CD207

Table 6: Pathway analysis results in identification through KEGG using the combined score

Database Pathways P-value Gene

KEGG IL-17 signaling pathway 1.05E-04 CXCL6; CCL11; MMP1
Chemokine signaling pathway 3.39E-05 CXCL6; CCL11; ARRB1; CCL18
Cytokine–cytokine receptor interaction 1.84E-04 CXCL6; IL1RN; CCL11; CCL18
Rheumatoid arthritis 3.69E-03 CXCL6; MMP1
Asthma 3.06E-02 CCL11
Osteoclast differentiation 7.05E-03 FCGR2A; LILRA1
Relaxin signaling pathway 7.37E-03 MMP1; ARRB1
Bladder cancer 4.02E-02 MMP1
Hedgehog signaling pathway 4.59E-02 ARRB1
Amino sugar and nucleotide sugar metabolism 4.69E-02 CHIT1

Table 7: Pathway analysis results in identification through Wiki pathways using the combined score

Database Pathways P-value Gene

Wiki Pathways Thymic Stromal Lymphopoietin Signaling Pathway 1.00E-03 CCL11; STAT4
Amplification and Expansion of Oncogenic Pathways as Metastatic Traits 1.69E-02 EPAS1
Matrix Metalloproteinases 2.95E-02 MMP1
Signal transduction through IL1R 3.25E-02 IL1RN
Type 2 papillary renal cell carcinoma 3.34E-02 EPAS1
Photodynamic therapy-induced NF-kB survival signaling 3.44E-02 MMP1
Bladder Cancer 3.92E-02 MMP1
Integrated Cancer Pathway 4.31E-02 MMP1
Hedgehog Signaling Pathway 4.31E-02 ARRB1
Hepatitis C and Hepatocellular Carcinoma 4.79E-02 MMP1

Table 8: Pathway analysis results in identification through Reactome using the combined score

Database Pathways P-value Gene

Reactome PTK6 Expression 4.99E-03 EPAS1
Regulation of gene expression by Hypoxia-inducible Factor 9.96E-03 EPAS1
Chemokine receptors bind chemokines 1.42E-03 CXCL6; CCL11
Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 1.78E-02 EPAS1
Activation of SMO 1.78E-02 ARRB1
Regulation of Insulin-like Growth Factor transport and uptake by Insulin-like

Growth Factor Binding Proteins
2.08E-02 MMP1

NOTCH2 Activation and Transmission of Signal to the Nucleus 2.08E-02 MDK
Basigin interactions 2.47E-02 MMP1
Regulation of hypoxia-inducible Factor by oxygen 2.56E-02 EPAS1
Cellular response to hypoxia 2.57E-02 EPAS1
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TF–gene analysis
The Network Analyst platform was used to investigate TF–gene
interactions. The common DEGs were used to examine the TF–
gene network. There are 190 nodes and 301 edges in the TF–gene

network. Furthermore, the network contains 12 DEGs and 178
TF–genes, with 85 TF–genes regulating HSPB6, 68 TF–genes regulat-
ing EPAS1, and 37 TF–genes regulating FCGR2A according to their
degree value. These 178 TF–genes are regulated by several

Table 9: Pathway analysis results in identification through BioCarta using the combined score

Database Pathways P-value Gene

BioCarta Beta-arrest ins in GPCR Desensitization Pathway 3.54E-04 CCL11; ARRB1
NO2-dependent IL12 Pathway in NK cells Pathway 8.96E-03 STAT4
Role of Beta-arrestins in the activation and targeting of MAP kinases Pathway 4.06E-04 CCL11; ARRB1
G-Protein Signaling Through Tubby Proteins Pathway 9.95E-03 CCL11
Roles of Beta-arrestins-dependent Recruitment of Src Kinases in GPCR

Signaling Pathway
5.23E-04 CCL11; ARRB1

Activation of PKC through G-protein coupled receptors Pathway 1.09E-02 CCL11
Visual Signal Transduction Pathway 1.29E-02 ARRB1
Attenuation of GPCR Signaling Pathway 1.29E-02 ARRB1
IL12- and Stat4-dependent Signaling Pathway in Th1 Development 1.49E-02 STAT4
Cystic fibrosis transmembrane conductance regulator (CFTR) and beta

2 adrenergic receptor (b2AR)
1.98E-02 CCL11

Figure 5: According to the combined score, (a) biological, (b) molecular function, and (c) cellular component relevant GO keywords were identified. The
higher the enrichment score, the higher number of genes are involved in a certain ontology.
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common DEGs, indicating a high level of interaction between the
TF–genes and common DEGs. The TF–gene network is shown in
Fig. 9.

TF–miRNA analysis
The TF–miRNA coregulatory network was built using the
Network Analyst tool. Analyzing this TF–miRNA coregulatory

Figure 6: The pathway analysis results were identified using (a) KEGG, (b) Wiki Pathways, (c) Reactome, and (d) BioCarta. The results of the pathway
terms were identified through the combined score.
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network revealed the connection of miRNAs and TFs with com-
mon DEGs. There are 191 nodes and 216 edges in this coregula-
tory network. DEGs interact with 87 miRNAs and 93 TF–genes,
according to this study. Figure 10 shows the TF–miRNA coregula-
tory network.

Candidate drugs identification and validation
Drug compounds for common DEGs have been discovered using
the Enrichr platform. Using the DSigDB database, we discovered
10 candidate medicinal compounds. The top 10 chemical com-
pounds have been extracted based on the combined score of P-
value and adjusted P-value. NICKEL SULFATE CTD 00001417,
Clonidine HL60 UP, and THYMOLPHTHALEIN CTD 00006891 are
the three-drug compounds most genes interact with, according
to the data. These medicines are common pharmaceuticals for
COVID-19 and IPF since these signature drugs have been discov-
ered for common DEGs. Table 11 displays the most efficient med-
ications for the most common DEGs from the DSigDB database.

Computationally predicted results usually need experimental
verification, but it has more difficulty and limitations in practical
implementation. Thus, similar to Zhang et al. [47], they found a
novel validation process for suggested drug compounds based on

the Receiver Operator Characteristic (ROC) curve. We tried to val-
idate our suggested drug compounds using the ROC curve mech-
anism. Figure 11 shows the validation performance comparison
between the top five suggested drug compounds using the ROC
curve. We considered the top five suggested drug compounds,
where Nickel Sulfate has a higher validation accuracy than the
others, according to the ROC curve. Other suggested drug com-
pounds, as shown in Fig. 11, were also validated using the same
procedures, which is much more valuable to the medical com-
munity.

Discussion
COVID-19 is more common in people who have lung disease. This
study contributes to the development of a bioinformatics and
machine learning model to identify the Genetic Effect of SARS-
CoV-2- and IPF-affected patients. Shortness of breath, cough, and
chest pain are the most typical symptoms of these two diseases.
About 1725 and 1008 DEGs were found in GSE147507 and
GSE52463, respectively, using bioinformatics-related techniques.
Common DEGs between the GSE147507 and GSE52463 datasets
have been discovered for better coordination. There is a total of

Figure 7: A network of PPIs discovered common DEGs in two illnesses (SARS-CoV-2 and IPF). The orange nodes denote common DEGs, whereas the
edges denote the relationship between two genes. The network under investigation has 60 nodes and 308 edges.

Table 10: Exploration of topological results for the top five hub-genes

Hub gene Degree Stress Close ness Between ness Bottle neck Clustering coefficient EcCentricity Radiality

AKT1 27 3322 42.25000 637.30186 26 0.25356 0.25000 4.47458
IL1B 26 2172 42.33333 475.08574 03 0.34154 0.33333 4.52542
CCL5 22 1216 38.25000 238.70899 14 0.35931 0.25000 4.23729
MMP9 22 1808 39.16667 322.49125 07 0.35498 0.33333 4.33898
ARRB1 19 1630 37.55000 291.37776 06 0.43865 0.25000 4.25424
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Figure 8: The PPIs network was used to find hub-genes. There are 50 nodes and 283 edges in the network. AKT1 and IL1B have degrees of 27 and 26,
respectively, according to topological analysis. CCL5, MMP9, and ARRB1 had degrees of 22, 22, and 19, respectively.

Figure 9: The interaction of TF–genes with common DEGs is represented via a network. The common genes are shown by the highlighted yellow color
node, while TF–genes are represented by the other nodes. There are 190 nodes and 301 edges in the network.
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90 DEGs that have been identified. Twenty common DEGs were
chosen for further study from 90 common DEGs based on the P-
value (MDK, HP, HSPB6, CHIT1, TNFAIP6, EPAS1, MMP1, CCL18,
CXCL6, CCL11, IL1RN, LAMP3, CD207, ARRB1, RNASE2, LILRA1,
FCGR2A, STAT4, CD69, and SAMSN1). The analysis of GO, KEGG,
Wiki Pathways, Reactome, BioCarta pathway analysis, PPIs, TF–
gene, TF–miRNA coregulatory network, and candidate drug de-
tection has been continued in the research project.

DEGs that have been identified as common have been used to
find GO words. GO keywords were identified using the combined
score. Biological process, molecular function analysis, and

cellular component analysis are the three categories of GO analy-
sis [48]. KEGG, Wiki Pathways, Reactome, and BioCarta were used
to identify pathway analysis results. For the most prevalent
DEGs, the KEGG pathway has been determined. KEGG is a data-
base that aids researchers in understanding the high-level func-
tions and utility of biological systems. Because hub-gene
recognition, module analysis, and drug identification are all
strongly dependent on the PPI network, it is the significant part of
the research. Common DEGs were also subjected to PPI analysis.
The identification of hub-genes in the PPI network was studied.
The five genes that have been highlighted are AKT1, IL1B, CCL5,

Figure 10: There are 93 TF–genes, 87 miRNAs, and 11 DEGs in the TF–miRNA network. There are 191 nodes and 216 edges in the network. DEGs are
represented by blue nodes, while miRNA is represented by green nodes, and TF–genes are represented by other nodes.

Table 11: The top 10 drug compounds suggested for common DEGs

Name of the drugs P-value Adjusted P-value Name of the genes

Nickel Sulfate CTD 00001417 1.37E-12 8.81E-10 CXCL6; IL1RN; CCL11; TNFAIP6;
EPAS1; MMP1; LAMP3; CD207;
STAT4; CD69; SAMSN1

Clonidine HL60 UP 1.04E-06 3.36E-04 IL1RN; FCGR2A; RNASE2;
SAMSN1

Thymolphthalein CTD 00006891 3.80E-04 1.01E-02 EPAS1; ARRB1
Peptidoglycan CTD 00006490 4.34E-04 1.07E-02 TNFAIP6; MMP1
Lithocholic acid HL60 UP 4.63E-04 1.10E-02 CD69; SAMSN1
Beclomethasone CTD 00005468 3.93E-05 3.21E-03 IL1RN; CCL11; RNASE2
Salmeterol CTD 00002421 4.92E-04 1.13E-02 CCL11; RNASE2
Mephentermine HL60 UP 4.48E-05 3.21E-03 IL1RN; EPAS1; CD69
Colchicine HL60 UP 8.09E-06 1.04E-03 IL1RN; FCGR2A; EPAS1; SAMSN1
Bromocriptine HL60 UP 6.94E-05 4.07E-03 FCGR2A; TNFAIP6; SAMSN1
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MMP9, and ARRB1. These five genes are classified as hub-genes
based on their degree value. The aim of concentrating on a small
area is to suggest a more effective medication component.

The interaction of TF–genes and miRNAs was investigated to
identify transcriptional and post-transcriptional regulators of
common DEGs. The specific DEGs have been used to investigate
TF–gene interactions. TF–genes act as regulators of gene expres-
sion, which can contribute to cancer cell formation. About 85
TF–genes regulate HSPB6, 68 TF–genes regulate EPAS1, and 37
TF–genes regulate FCGR2A according to their degree value in the
network, with 12 DEGs and 178 TF–genes. The TF–miRNA coregu-
latory network depicts the interactions between miRNAs and TF–
genes tested for their ability to influence common DEGs. There
were 87 miRNAs and 93 TF–genes discovered. Several studies
have found evidence of altered miRNA expression in IPF samples,
and members of the miR-200 family play a significant role in IPF
sample management [49]. Taz et al. [50] investigated only 69 sam-
ples, whereas we analyzed 110 SARS-CoV-2 samples. As a result,
this research will ideally integrate COVID-19 with IPF risk factor
treatment. Chemical testing can be used to verify the drugs’
efficacy.

In addition, we thoroughly discussed the application areas of
our research for the scientific society. First of all, researchers can
use the same approach to investigate the impact of SARS-CoV-2
on other diseases. Also, if a new virus appears, our research will
serve as a useful starting point for further investigation.
Furthermore, our research suggests several viable drugs, so sci-
entists will be able to find a treatment for SARS-CoV-2 with more
research. Finally, our research is an example of a virus’s genetic
relationship with a certain type of patient. So, researchers can
use this methodology to figure out the genetic relationships be-
tween different viruses and patients.

Conclusions
COVID-19 infections have been associated with a high-risk fac-
tor for IPF patients. Shortness of breath, cough, and chest pain

are the most typical symptoms of these two diseases. We used

machine learning and bioinformatics analysis to summarize

the relationships between these two disease genes as part of

our research. We analyzed DEGs from two selected datasets, an-

alyzed the results using shared gene identification, and discov-

ered SARS-CoV-2- and IPF-affected lung-cell infection

responses. As a consequence, we discovered 90 genes that are

linked across these datasets. These interconnected genes built

the PPI network, which identified the five most important hub-

genes. In addition, we looked at SARS-CoV-2 and IPF to see if

they might predict the outcomes of identifying infections of

other diseases. The therapeutic goals are logically presented be-

cause they are executed from the discovery of hub-genes and

could work as an effective precursor to meanwhile licensed

medications. We believe that the biomarkers, pathways, and

molecular markers we discovered will be valuable in developing

pharmacological therapies.
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