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Abstract

Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) 

binding to its p25 activator instead of its p35 activator and becoming over-activated. The 

overactive complex stimulates the hyperphosphorylation of tau proteins, leading to neurofibrillary 

tangles (NFTs) and stunting axon growth and development. It is known that the sigma-1 receptor 

(Sig-1R), an endoplasmic reticulum chaperone, can be involved in axon growth by promoting 

neurite sprouting through nerve growth factor (NGF) and tropomyosin receptor kinase B 

(TrkB)[1, 2]. It has also been previously demonstrated that a Sig-1R deficiency impairs the process 

of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs)[3]. 

The recent study by Tsai et al. sought to understand the relationship between Sig-1R and 

tauopathy[4]. It was discovered that the Sig-1R helps maintain proper tau phosphorylation and 

axon development by facilitating p35 myristoylation and promoting p35 turnover. Neurons that 

had the Sig-1R knocked down exhibited shortened axons and higher levels of phosphorylated tau 

proteins compared to control neurons. Here we discuss these recent findings on the role of Sig-1R 

in tauopathy and highlight the newly presented physiological consequences of the Sig-1R-lipid 

interaction, helping to understand the close relationship between lipids and neurodegeneration.

Neurodegenerative and CNS diseases, such as Alzheimer’s disease and Parkinson’s disease, 

are in part caused by disturbances in proper axonal maintenance and can be recognized by a 

decrease in axonal length[5–7]. There are a variety of factors that can impact axon length: for 

example, proteins such as glial cell-line derived neurotrophic factor (GDNF) and nerve 

growth factor (NGF) can influence axon length, branching, and growth kinetics[8], and the 

expression of ADP-ribosylation factor nucleotide-binding site opener (ARNO) and ADP-

ribosylation factor 6 (ARF6) can result in enhanced axonal extension via downstream 

activation of phosphatidyl-inositol-4-phosphate 5-Kinase α [PI(4)P 5-Kinase α][9]. It has 

also been demonstrated that sphingolipid synthesis is necessary for axon growth[10].
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In normally functioning neurons, tau proteins stabilize the structure of microtubules, 

contributing to proper axon growth[11, 12]. In contrast, in CNS disorders it is characteristic 

for tau proteins to be highly-phosphorylated and form neurofibrillary tangles (NFTs), often 

in aggregates known as paired helical filaments (PHFs)[13]. It has been proposed that 

hyperphosphorylation causes a functional loss of tau, preventing it from interacting with or 

stabilizing microtubules. This would result in axonal microtubules becoming destabilized 

and depolymerized and could cause neurons to degenerate[14]. It has also been suggested 

that abnormally phosphorylated tau proteins interact with normal tau proteins, making the 

latter unavailable to stabilize microtubules[15]. The kinases that phosphorylate tau proteins 

are generally divided into two categories: proline directed kinases and non-proline directed 

kinases[16]. Examples of proline directed kinases include GSK3B, cdk5, p38, MAP, and 

JNK, and examples of non-proline directed kinases include the tyrosine kinase fyn, MARK, 

PKA, PKC, and CK1[16–19].

Important to this paper is the role of cyclin-dependent kinase 5 (cdk5), a proline directed 

kinase, in maintaining proper function of axonal maintenance by phosphorylating tau 

proteins. Cdk5 can be activated by p35 or p25[20–25]. These two activators cause different 

responses: p35 causes “beneficial” activation of cdk5, whereas p25 causes “abnormal” 

activation of cdk5. P35 has a relatively short half-life; there exists a negative feedback loop 

in which the activity of the p35/cdk5 kinase complex leads to autophosphorylation and 

degradation of p35 and therefore inactivation[26]. In adult neurons it is more common for 

p35 to be cleaved by calpain into p25[27–29]. P25 has a longer half-life than p35, so upon 

cleavage, p25 activates cdk5 and allows the complex to remain activated longer. In addition 

to prolonging activation of cdk5, p25 induces aberrant activation by releasing the complex 

from the membrane and allowing it to access additional substrates[30]. This overactive cdk5 

complex can cause the hyperphosphorylation of tau proteins that leads to NFTs.

The study led by Tsai et al. examined the role of the Sig-1R, an endoplasmic reticulum (ER) 

chaperone, in the process of tauopathy[4]. Tsai and colleagues ultimately learned that the 

Sig-1R associates with myristic acid, promoting p35 turnover and regulating tau 

phosphorylation. To confirm the hypothesis that the Sig-1R is involved in regulating tau 

phosphorylation, Tsai et al. first transfected neurons with Sig-1R siRNA (siSig-1R) or 

control siRNA (SiCon) to verify that the Sig-1R is associated with axon development. When 

compared to the control group, it was seen that neurons transfected with siSig-1R resulted in 

reduced axon length. This supports the idea that the Sig-1R chaperone is involved in the 

regulation of axonal length and density. It was also discovered that diminished Sig-1R 

expression in neurons resulted in a noticeable accumulation of PHFs, which are indicative of 

hyperphosphorylated tau proteins and ultimately affect axon length.

When crude brain extracts from Sig-1R WT and KO mice were treated with CaCl2 to induce 

calpain activity, there was no difference in the cleavage of p35 to p25 between types of 

mice[4]. When taken together with data from treatments with the calpain inhibitor ALLM, 

these results show that the Sig-1R is not related to axonal length by affecting the conversion 

of p35 to p25 via calpain but rather by controlling the p35 degradation mainly through the 

proteasomal pathway.
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Work by Patrick et al. demonstrated that p35 is more abundant than p25 in the membrane 

fraction, which may indicate that p35 is normally located at the membrane[21]. Asada et al. 
furthered this notion and revealed that myristoylation regulates the membrane association of 

p35[31]. Martin and Hayden recently reported that post-translational myristoylation (PTMyr) 

may not be limited to apoptosis and may play a role in cell survival, differentiation, and 

autophagy[32]. Tsai et al. determined that in the process of tauopathy, the Sig-1R binds 

myristic acid, which is used to myristoylate p35, and regulates the attachment of p35 to the 

membrane, perhaps by transferring myristic acid to p35[4]. Once p35 is myristoylated and 

bound to the membrane it can activate cdk5. Minegishi and colleagues found that both 

proteasomal degradation and calpain cleavage of p35 are stimulated by membrane 

association, which is in turn mediated via myristoylation of the N-terminal p10 region of 

p35. Therefore, when p35 is bound to the membrane the total turnover rate (by both 

degradation and cleavage) is greater than when p35 is not bound to the membrane[30]. The 

Sig-1R, by binding myristic acid, effectively helps balance the rate at which p35 is cleaved 

into p25 or degraded by proteasomes, serving thus as a modulator between the “normal” and 

“abnormal” activation of cdk5 and the regulation of axonal development.

By supplementing cells with exogenously added myristic acid, it was confirmed that 

myristic acid is important in regulating axon length and density[4]. In Sig-1R knockdown 

neurons, the addition of myristic acid eliminated irregular buildups of p35. Additionally, in 

WT and Sig-1R KO neurons, adding exogenous myristate not only amplified axon growth in 

the WT neurons but recovered the loss of axon length in KO neurons.

Several authors have previously reported on the relationship between Sig-1R and lipids. 

Results from Hayashi and Su indicate that the Sig-1R regulates the dynamics and 

compartmentalization of lipids on the ER[33]. Hayashi and Fujimoto stated that the Sig-1R is 

located at the MAM at specific ceramide- and cholesterol-rich lipid microdomains and that 

these lipid raft microdomains play a role in the distribution of Sig-1R[34]. When these sets of 

data are analyzed together they appear to indicate a seemingly reciprocal regulating 

relationship between the Sig-1R and lipids. On the one hand, it was found that changing the 

lipid membrane composition results in the translocation of Sig-1R, and it was thus proposed 

that the microdomains are used to anchor the Sig-1R to a location[34]. On the other hand, 

Palmer et al. provided evidence that in breast cancer cell lines the Sig-1R helps model and 

stabilize lipid rafts by binding to and inserting cholesterol into the membrane[35]. Slightly 

relevant to this relationship is a report that demonstrated that the Sig-1R associates with 

Insig in a 25-hydroxycholesterol-dependent manner to form an ER associated degradation 

(ERAD) system at the membrane and that the degradation of the sphingolipid enzyme 

CGalT is regulated by this ERAD system possibly through an interaction between CGalT 

and sterols[36]. Although those previous studies have shown that Sig-1Rs are interacting with 

the lipids, this paper by Tsai et al. reported for the first time on the physiological 

significance of the Sig-1R-lipid interaction[4]. Thus, the new finding of Tsai et al. suggests 

that the Sig-1R apparently provides the myristic acid, by means of myristic acid 

“hitchhiking” on the Sig-1R that allows p35 to bind to the lipid membrane where p35 can 

accomplish the balanced or homeostatic activation of cdk5. This ultimately results in the 

regulation of normal axonal growth and maintenance.
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