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Abstract

Purpose

To identify the protein profiles in vitreous associated with retinal fibrosis, angiogenesis, and

neurite formation in epiretinal fibrovascular membranes (FVMs) in patients with proliferative

diabetic retinopathy (PDR).

Methods

Vitreous samples of 5 non-diabetic control patients with vitreous debris and 7 patients with

PDR membranes were screened for 507 preselected proteins using the semi-quantitative

RayBio® L-series 507 antibody array. From this array, 60 proteins were selected for a cus-

tom quantitative antibody array (Raybiotech, Human Quantibody® array), analyzing 7 con-

trol patients, 8 PDR patients with FVMs, and 5 PDR patients without FVMs. Additionally,

mRNA levels of proteins of interest were measured in 10 PDR membranes and 11

idiopathic membranes and in retinal tissues and cells to identify possible sources of protein

production.

Results

Of the 507 proteins screened, 21 were found to be significantly elevated in PDR patients,

including neurogenic and angiogenic factors such as neuregulin 1 (NRG1), nerve growth

factor receptor (NGFR), placental growth factor (PlGF) and platelet derived growth factor

(PDGF). Angiopoietin-2 (Ang2) concentrations were strongly correlated to the degree of

fibrosis and the presence of FVMs in patients with PDR. Protein correlation analysis showed
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PDGF to be extensively co-regulated with other proteins, including thrombospondin-1 and

Ang2. mRNA levels of glial-derived and brain/derived neurotrophic factor (GDNF and

BDNF) were elevated in PDR membranes. These results were validated in a second study

of 52 vitreous samples of 32 PDR patients and 20 control patients.

Conclusions

This exploratory study reveals protein networks that potentially contribute to neurite out-

growth, angiogenesis and fibrosis in the formation of fibrovascular membranes in PDR. We

identified a possible role of Ang2 in fibrosis and the formation of FVMs, and of the neuro-

trophic factors NRG1, PDGF and GDNF in neurite growth that occurs in all FVMs in PDR.

Introduction

Proliferative diabetic retinopathy (PDR) is a serious ocular complication of diabetes and is

characterized by retinal neovascularization and microvascular leakage in response to chronic

ischemia. Although anti-VEGF therapy alongside pan-retinal photocoagulation has been

shown to reduce neovascularization and macular edema [1], response to anti-VEGF treatment

is heterogeneous [2]. Additionally, there have been concerns that anti-VEGF treatment may

temporarily increase fibrovascular membrane (FVM) formation and retinal traction [3–7].

Ultimately both retinal detachment and hemorrhages in PDR are the leading causes of perma-

nent vision loss or blindness in adults of working age [8,9]. Therefore, it is imperative that the

molecular pathways leading to FVM formation are better understood in order to identify

novel therapeutic targets.

Recently, it has also become clear that PDR is characterized not only by fibrovascular but

also by neuroglial pathology [10,11]. It was previously assumed that in PDR, the neurons of

the retina are incapable of proliferation, and that the total neural cell volume remains either

static, or is reduced due to apoptosis following diabetic damage [10]. Recently however, it has

been shown that PDR-associated FVMs contain neurite extensions growing alongside Müller

cells, a specialized type of retinal glia cell [12]. These neurites originate from rod photorecep-

tors and various populations of retinal ganglion cells [12–14]. New vessel growth is orches-

trated by chemoattractant and trophic factors derived from neurons [15] and Müller cells [16],

and Müller cells also serve as a scaffold for new vasculature [17]. Under these conditions, reti-

nal glial cells, macrophages, monocytes, hyalocytes (resident cells in the vitreous), fibroblasts,

pericytes and vascular endothelial cells will migrate and proliferate into the vitreous body,

hereby forming FVMs [18,19]. The cause and pathological implications of early neurite

recruitment in FVMs and their contribution to retinal angiogenesis and fibrosis are still

unknown.

FVM formation occurs secondary to secretion of cytokines and growth factors by the retina

in response to ischemia [4,20]. A number of cytokines and growth factors have been identified

in measurable quantities in the vitreous of PDR patients, and their levels correlated strongly

with PDR disease activity [21,22]. Among them, vascular endothelial growth factor (VEGF)

remains the growth factor that is most-frequently studied [23], although various other growth

factors such as transforming growth factor-ß (TGF- ß), hepatocyte growth factor (HGF),

plasma kallikrein and platelet-derived growth factor (PDGF) have also been implicated in

PDR [24–26]. Moreover, the balance between connective tissue growth factor (CTGF) and

VEGF is correlated with the degree of retinal fibrosis [4] and the angio-fibrotic switch. The
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large number of growth factors and cytokines that may be involved in PDR pathogenesis

necessitates the use of high throughput techniques to identify relevant proteins.

In the present study, we used a combination of semi-quantitative and quantitative antibody

arrays to screen over 500 proteins in the vitreous of PDR patients and control patients oper-

ated for vitreous floaters. We included a large series of angiogenic and neurogenic growth fac-

tors to identify those that are involved in PDR pathogenesis and thus are potential therapeutic

targets. In addition, we compared mRNA levels of the corresponding genes in FVMs of PDR

patients and idiopathic epiretinal membranes (ERMs, macular puckers of non-diabetic

patients) and various other retinal tissues to identify the possible sources of these proteins.

Materials and methods

Study population

For this study, 23 vitreous samples were used, including vitreous samples from PDR patients

(n = 16) and from patients with vitreous floaters (n = 7). In addition, 21 FVMs were collected

from patients with either PDR (n = 10) or non-diabetic patients with a macular pucker

(n = 11) who were operated by pars plana vitrectomy. Clinical variables were assessed by

trained ophthalmologists. The study was approved by the Medical Ethics Committees of the

Academic Medical Center and the VU University Medical Center, Amsterdam, The Nether-

lands. The study was conducted according to the tenets of the Declaration of Helsinki and

written consent was obtained from all patients.

Table 1 highlights clinical features of the 23 patients that were included in the study of pro-

teins in vitreous. There was no statistically significant difference in the average age of control

(58 years) and diabetic (52 years) patients (T-test, P = 0.27). Additionally, there was no differ-

ence in the gender ratio between both groups (Fischer’s exact test, P = 0.41). In total, 43% of

participants in the study were male and 57% were female. The majority of the PDR patients

received preoperative pan-retinal laser treatment (n = 14) and 9 out of 16 PDR patients

received preoperative anti-VEGF therapy with bevacizumab (Avastin; Genentech, San Fran-

cisco, California, USA).

Table 2 presents the clinical features of the 21 patients from whom membranes were har-

vested during pars plana vitrectomy. The patients where either non-diabetic and operated for

the removal of a macula pucker (n = 11), or suffering from PDR and operated for the removal

of FVMs (n = 10). PDR patients were on average younger (52 years) than control (71 year)

patients (T-test, P = 0.002). No difference in gender ratio between both groups was found

(Fischer’s exact test, P = 0.08). In total, 57% of the participants in the study were male and 43%

were female. Eight out of 10 PDR patients had received pan-retinal laser treatment and another

8 out of 10 patients were treated with bevacizumab at 3 days prior to surgery.

We repeated our analysis in an independent set of vitreous samples obtained by the Univer-

sity of Newcastle upon Tyne. A favorable ethical opinion for the collection of the samples was

obtained from the National Health Service (NHS) research ethics committee (South East Coast

—Surrey research ethics committee reference 12/LO/0130) and the collection carried out at

Sunderland Eye Infirmary under the sponsorship of City Hospitals Sunderland NHS founda-

tion trust. The study was conducted according to the tenets of the Declaration of Helsinki and

written consent was obtained from all patients. Fifty two vitreous samples of PDR patients

(n = 32) and of control patients without diabetes who had undergone vitrectomy for macular

hole or non-inflammatory vitreous opacities (n = 20) were included. Eighteen of the PDR

patients had fibrovascular membranes and 14 had no signs of fibrosis. PDR patients were on

average younger (56 years) than control patients (66 years) (t-test, P = 0.01). In total, 27% of the

52 patients were male and 73% were female with no difference in gender ratio between both
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groups (Fischer’s exact test, P = 0.13). None of the PDR patients had received pan-retinal laser

treatment or cataract surgery within the last 2 months, none had previous vitrectomy surgery

and none had undergone previous treatments with steroid therapy in the last year. Patients with

confounding retinovascular or other eye disease (e.g. retinal vein occlusion or glaucoma) and

patients who had received anti-VEGF therapy within the last 3 months were excluded.

Clinical measurements of PDR

The degree of fibrosis, activity of neovascularization, degree of hemorrhage, and presence and

type of diabetes, were obtained from pre-operative ophthalmic and ultrasound examinations.

Table 1. Clinical characteristics of patients whose vitreous samples were used for protein analysis with antibody arrays.

Case Status1 Ophthalmological

Status

Age Sex Hemorrhage2 Degree of

Fibrosis3
Degree of

Neovascularisation4
Laser Avastin Array5

1 CON Vitreal floaters 61 F 0 0 0 no no L+Q

2 CON Vitreal floaters 59 F 0 0 0 no no L+Q

3 CON Vitreal floaters 42 M 0 0 0 no no L+Q

4 CON Vitreal floaters 51 F 0 0 0 no no Q

5 CON Vitreal floaters 49 F 0 0 0 no no Q

6 CON Vitreal floaters 68 M 0 0 0 no no L+Q

7 CON Vitreal floaters 73 F 0 0 0 no no L+Q

8 DM2 PDR withoutFVM 54 F 1 0 0 yes no Q

9 DM2 PDR with FVM 44 M 3 3 2 yes no L+Q

10 DM2 PDR without FVM6 62 F 0 0 0 yes yes Q

11 DM2 PDR with FVM 56 M 2 2 2 yes yes L+Q

12 DM2 PDR with FVM 54 M 2 2 0 yes no Q

13 DM2 PDR with FVM 59 F 0 3 1 yes yes Q

14 DM2 PDR without FVM 63 M 1 0 2 yes yes Q

15 DM2 PDR without FVM 67 M 3 0 1 yes no Q

16 DM2 PDR with FVM 27 M 1 3 2 yes yes L

17 DM2 PDR with FVM 35 F 1 3 2 yes yes L

18 DM2

+ INS

PDR with FVM 55 F 2 2 1 yes no Q

19 DM2

+ INS

PDR with FVM 48 F 2 3 2 no yes L+Q

20 DM2

+ INS

PDR with FVM 53 F 0 3 2 yes no L+Q

21 DM2

+ INS

PDR without FVM 51 M 3 0 2 yes no Q

22 DM2

+ INS

PDR with FVM 51 F 1 2 2 yes yes Q

23 DM2

+ INS

PDR with FVM 57 M 0 3 2 no yes L

1 Diabetic status: CON, no diabetes; DM2, diabetes type 2; DM2 + INS, diabetes type 2 with insulin dependency.
2 Hemorrhage: 0, no hemorrhage; 1, mild hemorrhage; 2, moderate hemorrhage or heavy hemorrhage more than 2 months ago; 3, heavy hemorrhage

within 2 months.
3 Degree of fibrosis: 0, no evidence of fibrosis; 1, few pre-retinal membranes; 2, membranes with limited extension into the vitreous; 3, abundant white

membranes reaching into the vitreous body.
4 Degree of neovascularisation: 0, absent; 1, quiescent; 2, active.
5 Array used: L, L507 Array; Q, Quantibody Array.
6 Patient was operated for vitreomacular traction

https://doi.org/10.1371/journal.pone.0187304.t001
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Additionally, the patient files and per-operative observations, which were recorded using a

standardized form, were used. Fibrosis was graded as 0 when there was no fibrosis, as 1 when

there were a few pre-retinal membranes (limited as in macular pucker), as 2 when pre-retinal

membranes were present with limited extension into the vitreous, and as 3 when abundant

membranes reaching into the vitreous body were observed. Neovascularization was graded as

0 when absent, as 1 (quiescent) when only non-perfused vessels were present, and as 2 (active)

when perfused pre-retinal capillaries were present [27]. Degree of hemorrhage was graded as 0

when all media were clear and all fundus details were visible, as 1 when media were slightly

clouded but the fundus could still be examined, as 2 when the hemorrhage was moderate, or

heavy and more than 2 months ago, and as 3 when the hemorrhage was heavy and less than

two months ago.

Control tissue and cells

Control retinas from donor eyes were provided anonymously by the Corneabank Beverwijk

(http://www.eurotissuebank.nl/comeabank/), The Netherlands. In The Netherlands, the use of

donor material is provided for by a law named "Wet op Orgaan Donatie (WOD)". Following

this law, donors provide written informed consent for donation with an opt out for the use of

left-over material for related scientific research. Specific requirements for the use of left-over

Table 2. Clinical characteristics of patients whose fibrovascular membranes where used for mRNA analysis.

Case Status1 Ophthalmological Status Age Sex Hemorrhage2 Degree of Fibrosis3 Degree of Neovascularisation4 Laser Avastin

1 CON Pucker 84 F 0 1 0 no no

2 CON Pucker 66 F 0 1 0 no no

3 CON Pucker 72 M 0 1 0 no no

4 CON Pucker 79 M 0 1 0 no no

5 CON Pucker 62 F 0 1 0 no no

6 CON Pucker 73 F 0 1 0 no no

7 CON Pucker 70 M 0 1 0 no no

8 CON Pucker 66 F 0 1 0 no no

9 CON Pucker 80 F 0 1 0 no no

10 CON Pucker 63 F 0 1 0 no no

11 CON Pucker 69 M 0 1 0 no no

12 DM1 PDR 41 M 3 2 2 yes yes

13 DM1 PDR 59 M 2 1 2 yes no

14 DM1 PDR 43 M 3 1 2 yes yes

15 DM1 PDR 48 F 0 1 2 yes yes

16 DM2 PDR 25 M 3 3 2 no no

17 DM2 + INS PDR 48 F 2 3 2 no yes

18 DM2 + INS PDR 79 M 3 1 2 yes yes

19 DM2 + INS PDR 39 M 1 1 2 yes yes

20 DM2 + INS PDR 72 M 3 1 2 yes yes

21 DM2 + INS PDR 61 M 1 2 2 yes yes

1 Diabetic status: CON, no diabetes; DM2, diabetes type 2; DM2 + INS, diabetes type 2 with insulin dependency.
2 Hemorrhage: 0, no hemorrhage; 1, mild hemorrhage; 2, moderate hemorrhage or heavy hemorrhage more than 2 months ago; 3, heavy hemorrhage

within 2 months.
3 Degree of fibrosis: 0, no evidence of fibrosis; 1, few pre-retinal membranes; 2, membranes with limited extension into the vitreous; 3, abundant white

membranes reaching into the vitreous body.
4 Degree of neovascularisation: 0, absent; 1, quiescent; 2, active.

https://doi.org/10.1371/journal.pone.0187304.t002
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material originating from corneal grafting for scientific research have been described in an

additional document formulated by the Ministry of Health, Welfare, and Sport and the BIS

foundation (Eurotransplant; Leiden, July 21, 1995; 6714.ht). The present study was performed

in accordance with all requirements stated in the WOD and the relevant document and in

accordance with these regulations approval of the local medical ethics committee was not

required as the data were analyzed anonymously.

Human primary retinal pigment epithelial cells were also obtained from donor eyes, with a

post mortem time of less than 15 hours, as described previously [28]. Human primary retinal

endothelial cells and pericytes were obtained from donor eyes (up to 24 hours post mortem) as

described for bovine retinas [29]. Endothelial cells were cultured in complete EBM-2 medium

(Lonza, Breda, The Netherlands) with 5% human serum. For glial cells a human astrocytoma

cell line, U-373 MG (Uppsala) (Sigma-Aldrich, Zwijndrecht, The Netherlands) was used. RNA

from blood was obtained as described previously [30].

Vitreous protein quantitation

Vitreous samples of 7 PDR patients with FVMs and of 5 control patients were measured using

a biotin label-based human antibody array (Human Antibody L-series 507 Array; RayBiotech,

Norcross, GA, USA) to screen for potential proteins of interest. The array was performed in

accordance with the manufacturer’s instructions. In brief, vitreous samples were centrifuged

for 15 min at 14,000 g at 4˚C. Supernatant was collected and dialyzed with PBS overnight at

4˚C. After determination of protein concentrations, the appropriate amount of biotin was

added and samples were again dialyzed with PBS overnight at 4˚C. Samples were then hybrid-

ized to the arrays overnight at 4˚C with gentle shaking. Biotinylated proteins captured by the

membrane-bound antibodies were detected by incubation with HRP-streptavidin and analysis

was performed by an Agilent laser scanner (Agilent Technologies, Palo Alto, CA, USA). Spot

intensities were quantified with ScanAlyze software (Michael Eisen, http://rana.lbl.gov/

EisenSoftware.htm) and mean signal and median background values were applied in subse-

quent calculations.

Sixty proteins of interest (based on results of the L507 array and relevant literature) were

selected for further quantitative analysis. Quantitation was achieved using a customizable

array-based multiplex immunoassay (RayBiotech, Human Quantibody1 array) in accordance

with the manufacturer’s instructions. Standard curves for each protein were generated and the

lower limit of detection (LOD) was calculated based on the average and standard deviation of

four negative controls (average + 2x standard deviation). Proteins that were undetectable in

more than half of the samples were deemed to be below the LOD.

Correlation network construction

The correlation network was constructed in the statistical package ‘R’ (version 3.2.3) (https://

www.R-project.org) using the igraph package (version 1.0.1) (igraph.org). First, Pearson corre-

lations between Quantibody protein profiles over all samples were calculated for all pairs of

proteins. Subsequently, the proteins were presented in a correlation network [27] in which the

nodes represent proteins and the interconnecting lines represent the correlation between the

proteins. We discarded all correlations that were lower than 0.7 and removed all unconnected

proteins.

RNA isolation and mRNA quantification

Fibrous tissue was removed during surgery, placed in 250 μL TRIzol reagent (Life Technolo-

gies, Carlsbad, CA, USA) and stored at -80˚C until further processing. Membranes were then
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homogenized using a pestle and vortexed. RNA from ERMs was extracted and quantified using

techniques described previously [28]. Total RNA yields were measured using a NanoDrop

(ND1000 Spectrophotometer; NanoDrop Technologies, Wilmington, DE, USA) and RNA qual-

ity was assessed using an Experion™ Automated Electrophoresis System (Bio-Rad, Hercules,

CA, USA). For all samples, RNA quality indicator (RQI) values ranged between 6.5 and 8.5.

A 1-μg aliquot of total RNA was treated with DNAse I (Amplification Grade; Invitrogen)

and reverse transcribed into first strand cDNA using the Maxima1 First Strand cDNA Syn-

thesis Kit (Thermo Scientific, Roskilde, Denmark). Real-time quantitative PCR was performed

on 20x diluted cDNA samples using a CFX96 system (Bio-Rad, Hercules, CA) as described

previously [31].

Primer details are listed in S2 Table. The specificity of the primers was confirmed by NCBI

BLAST. The presence of a single PCR product was verified by both the presence of a single

melting temperature peak and detection of a single band of the expected size on 3% agarose

gel. Non-template controls were included to verify the method and the specificity of the prim-

ers. Normalization of data was performed with global mean normalization [32].

Statistical analysis

Values of vitreous proteins are reported as a mean (pg/ml) ± standard deviation. Univariable

analysis with two-tailed T-tests assuming unequal variance were performed to identify individ-

ual proteins significantly associated with PDR. For all statistical analyses a P value< 0.05 was

considered to indicate statistically significant differences.

Results

Detection of vitreous proteins

The L507 array allowed us to screen the vitreous for presence of 507 proteins in PDR patients

with FVMs relative to control patients with floaters. 453 proteins were shown to have a higher

and 54 proteins had a lower concentrations in vitreous of PDR eyes. Only 55 of the proteins

were significantly higher in concentration in PDR patients, whereas none of the proteins were

significantly lower in concentration in PDR patients (two-tailed Welch’s t-test). Fifty three

proteins had concentrations in the vitreous of PDR patients more than 2-fold higher than con-

trols, while 25 proteins had a 10-fold higher concentration (S1 Table).

Quantitation of vitreous proteins

On the basis of the results of the L507 array and relevant literature, we designed a custom

quantibody array containing antibodies for the detection of 60 proteins in 20 samples (13 PDR

and 7 controls). Although more expensive, the advantage of the quantibody array is that actual

protein concentrations rather than relative yields of protein can be measured. Of the 60 pro-

teins screened, 20 had concentrations below the LOD (defined as>50% of samples below

detection limit) and were excluded from further analysis (AR, b-NGF, BDNF, COCO, E-Selec-

tin, GDNF, ICAM3, IGF1R, IGF2, Insulin, Insulin R, NT3, NT4, PDGF-Ra, PDGF-Rb, Prolac-

tin, TARC, TGFβ1, TPO and XEDAR). For the other 40 proteins, occasional samples that were

below the LOD were approximated as the LOD/
p

2 [33]. Four proteins showed concentrations

above the highest standards (Adiponectin, IGFBP6, NrCAM and TIMP-1).

The results of the quantibody array and the lower limits of detection are presented in

Table 3. Twenty-one proteins were significantly upregulated in PDR patients (Welch’s T-test)

and are highlighted in bold. In addition, 14 of the proteins exhibited a larger than 3-fold rise in

concentration and are highlighted in bold. In a second independent study group of PDR
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Table 3. Protein concentrations in vitreous of control and PDR patients. Protein concentrations were determined by Quantibody arrays in patients with

vitreal floaters (CON) and patients with proliferative diabetic retinopathy (PDR) that underwent vitreoretinal surgery.

CON PDR

LOD mean SD min max mean SD min max Fold Change P-value

Adiponectin* 5.5 9680.0 4869.9 2116.3 17181.5 38271.7 21622.7 6359.8 71881.8 3.95 <0.001

ANG-1 5.4 95.1 28.0 57.0 137.8 259.6 240.4 69.4 863.9 2.73 0.031

ANG-2 5.1 93.5 52.9 28.9 161.0 1802.4 2979.4 117.8 11369.4 19.28 0.061

AR 8.2 BDL BDL

BDNF 1.0 BDL BDL

bFGF 32.5 117.0 236.8 23.0 653.7 45.2 19.6 23.0 80.0 0.39 0.454

BMP-2 1.7 59.2 11.5 44.6 73.4 95.9 51.5 27.7 202.6 1.62 0.028

BMP-5 148.6 240.7 111.3 105.1 396.9 281.8 106.4 105.1 513.1 1.17 0.439

b-NGF 2.9 BDL BDL

COCO 418.2 BDL BDL

DcR3 242.7 202.1 52.1 171.6 282.1 656.5 655.2 171.6 2487.7 3.25 0.028

ErbB3 13.0 154.5 24.5 126.5 186.6 179.4 98.2 9.2 403.9 1.16 0.401

E-Selectin 50.2 BDL BDL

Galectin-3 32.5 162.9 284.2 23.0 798.7 353.1 497.5 23.0 1579.9 2.17 0.291

GDF-15 0.8 370.7 273.1 48.1 880.7 975.7 425.8 172.8 1645.4 2.63 0.001

GDNF 3.0 BDL BDL

GH 29.0 34.1 20.5 20.5 75.2 77.5 53.0 20.5 177.8 2.28 0.018

HGF 4.3 2500.6 1062.3 1618.6 4418.0 7967.1 2151.6 2752.1 10711.5 3.19 <0.001

ICAM-1 76.4 696.0 1031.4 54.0 2707.0 3762.4 3531.0 696.9 13167.3 5.41 0.011

ICAM-3 24.7 BDL BDL

IGFBP-1 4.3 222.5 242.9 38.6 726.1 2210.9 2132.1 207.7 7383.2 9.94 0.006

IGFBP-2 41.5 16751.2 7003.4 7562.7 30992.2 24718.9 9332.7 13573.6 42543.5 1.48 0.047

IGFBP-3 114.1 1043.7 704.0 319.4 2053.4 19596.4 11034.1 2595.4 37544.3 18.78 <0.001

IGFBP-4 539.2 3463.8 1293.0 2009.4 5910.7 3471.7 1488.8 1156.9 6029.0 1.00 0.990

IGFBP-5 115.4 234.3 125.6 81.6 393.4 389.6 366.1 81.6 1570.1 1.66 0.185

IGFBP-6* 68.3 27483.8 8803.2 22349.7 47174.6 33899.1 10489.7 21769.8 55469.0 1.23 0.168

IGF-I 27.0 51.8 41.1 19.1 129.4 62.3 40.2 19.1 151.5 1.20 0.594

IGF-I R 48.6 BDL BDL

IGF-II 41.4 BDL BDL

IGF-II R 18.4 199.2 47.5 148.0 266.4 208.7 190.9 27.2 770.8 1.05 0.867

Insulin 20.1 BDL BDL

Insulin R 3,115.9 BDL BDL

NCAM-1 104.1 17561.3 8210.6 5251.9 28434.0 17835.7 9907.3 6488.9 37545.7 1.02 0.948

NGF R 10.3 41.3 27.4 7.3 78.5 74.7 21.7 40.2 105.6 1.81 0.019

Notch-1 2.1 21.9 16.4 12.6 58.3 17.4 18.2 1.5 62.7 0.80 0.590

NOV 5.8 1836.0 458.4 1202.5 2740.6 3206.6 942.9 1627.7 5509.0 1.75 <0.001

NrCAM* 5.0 4872.9 1914.6 2185.5 7215.7 6082.5 3285.2 715.4 12610.8 1.25 0.313

NRG1-b1 10.8 11.9 4.8 7.6 19.9 36.9 27.5 7.6 69.7 3.10 0.007

NT-3 12.1 BDL BDL

NT-4 5.3 BDL BDL

PDGF Ra 1,170.8 BDL BDL

PDGF Rb 10.8 BDL BDL

PDGF-AA 2.0 99.1 86.8 9.6 263.3 602.2 556.6 91.8 1827.7 6.08 0.007

PDGF-AB 5.0 6.6 1.6 3.5 8.3 16.9 16.2 5.5 67.5 2.54 0.042

PDGF-BB 0.4 0.7 0.5 0.3 1.3 2.9 2.7 0.6 9.3 4.03 0.015

(Continued )
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patients (n = 32) and controls (n = 20) from the University of Newcastle upon Tyne, we mea-

sured protein levels of 5 of these proteins (Ang2, NRG1β1, PDGF-AA, PlGF and VEGF). The

fold changes between PDR patients and controls were comparable with those of the first study

group and the differences were statistically significant, except for NRG1β1 (S3 Table).

Next, we attempted to identify differences in protein concentrations between PDR patients

with and without FVMs. Vitreous samples were divided into control, PDR patients without

membranes and PDR patients with membranes. A significant upregulation of Ang2 in PDR

+FVM patients compared to PDR-FVM patients was found (Kruskal-Wallis + Mann-Whitney

U test) (Fig 1). Ang2 protein levels were log10 transformed to obtain a normal distribution. A

similar trend for Ang2 was observed in the independent study group (S1 Fig). No statistically

significant differences in concentrations of the other proteins were found in PDR patients with

or without FVMs.

Correlations between vitreous protein concentrations and clinical

features of PDR

Correlations between vitreous protein concentrations in PDR patients and clinical features of

fibrosis, neovascularization and vitreous hemorrhage were assessed using Spearman’s rank

correlation coefficients. Moderate correlations were defined as coefficients between 0.40 and

0.59 and strong correlations between 0.60–0.79. PDGF-AA, Ang2 and PlGF showed a strong

correlation with the degree of fibrosis (R2 = 0.638, 0.632 and 0.597, respectively), whereas

IGF-II R showed a strongly negative correlation (R2 = -0.617). Additionally, IGFBP-6, GDF-15

and Ang1 were strongly correlated with neovascularization (R2 = 0.629, 0.623 and 0.599,

respectively). The degree of vitreous hemorrhage was negatively correlated with NrCAM,

NCAM-1 and DcR3 (R2 = 0.709, 0.669 and 0.563, respectively).

Table 3. (Continued)

CON PDR

LOD mean SD min max mean SD min max Fold Change P-value

PIGF* 2.5 1.8 0.0 1.8 1.8 102.8 134.5 1.8 467.4 57.30 0.019

Prolactin 151.7 BDL BDL

TARC 1.7 BDL BDL

TGFb1 151.4 BDL BDL

TGF-b2 7.1 30.3 14.1 13.0 43.9 48.9 56.7 5.0 184.7 1.61 0.281

Thrombospondin-1 215.0 980.3 1650.2 152.0 4645.7 10116.4 10082.6 499.9 34455.3 10.32 0.007

TIMP-1* 13.4 60145.6 19198.7 41110.6 88938.0 61745.9 9704.1 47592.0 82709.5 1.03 0.842

TIMP-4 6.5 395.0 333.7 142.0 1054.3 611.8 282.4 196.5 1069.2 1.55 0.173

TPO 139.9 BDL BDL

Ubiquitin+1 136.8 261.9 197.4 96.7 578.9 897.7 390.9 271.1 1465.3 3.43 <0.001

VCAM-1 794.5 7383.1 7964.7 561.8 23677.8 8143.9 5254.2 2198.5 22644.2 1.10 0.825

VEGF 10.7 23.5 42.2 7.6 119.2 1208.1 1528.2 7.6 5038.6 51.40 0.016

WIF-1 19.5 11133.9 2970.5 8184.8 15679.3 9207.2 3063.2 4362.8 13964.5 0.83 0.195

WISP-1 68.6 176.1 98.6 48.5 293.8 191.5 121.9 48.5 499.5 1.09 0.763

XEDAR 3.3 BDL BDL

Data are presented in pg/mL ± SD with min and max values. BDL, below limit of detection (LOD). Unpaired t-test with Welch’s correction was used to

assess statistical differences between PDR and control patients. Fold changes higher than 3-fold and significant differences (P < 0.05) are indicated in bold.

*Adiponectin, levels in PDR patients above the highest standards; IGFBP6, NrCAM, TIMP-1, all levels above the highest standards; PlGF, all control levels

were below LOD and set at LOD/
p

2.

https://doi.org/10.1371/journal.pone.0187304.t003
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Effects of bevacizumab on protein concentrations

Six of the PDR patients had been treated by intravitreous injection with bevacizumab 3 days

prior to surgery. We investigated whether the use of bevacizumab had effects on the concentra-

tions of proteins other than VEGF. Whereas VEGF concentrations were almost completely

downregulated by bevacizumab, concentrations of PlGF (a family member of VEGF) were not

significantly affected (Fig 2). IGF1 concentrations, however, were significantly higher in
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Fig 1. Ang2 protein is increased in vitreous of PDR patients with FVMs. Protein levels of Ang2, as

detected by Quantibody arrays, were log10 transformed to obtain a normal distribution. Differences between

groups were analyzed by a Student’s t-test. CON, non-diabetic control patients; PDR–FVM, PDR patients

without FVMs; PDR + FVM, PDR patients with FVMs. The lines represent the geometric means.
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that did not receive bevacizumab; PDR + B, PDR patients that received bevacizumab. Differences between groups were analyzed with an unpaired t test

with Welch’s correction. Lines represent mean values.

https://doi.org/10.1371/journal.pone.0187304.g002
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bevacizumab-treated eyes (p = 0.0155). Significant effects of bevacizumab on other proteins

were not observed.

Correlations between proteins

We investigated whether proteins were co-regulated and analyzed this by a pairwise compari-

son of proteins (Fig 3). Visual inspection revealed 3 groups of co-expressed proteins. The larg-

est group contained the most interactions, showing co-expression of various proteins centered

around a PDGF axis, consisting of the PDGF-AA, AB and BB subunits. In another group, co-

regulation was found between neuronal cell adhesion molecule (NrCAM) and neural cell

adhesion molecule (NCAM). Weaker associations were found in the third group between

growth differentiation factor 15 (GDF15), nephroblastoma overexpressed (NOV), hepatocyte

growth factor (HGF), and insulin-like growth factor binding protein 3 (IGFBP3).

Fig 3. Coregulation of proteins. Pearson correlations between Quantibody protein profiles over all samples

as calculated for all pairs of proteins. The proteins are presented in a correlation network in which the nodes

represent proteins and the interconnecting lines represent the correlation between the proteins. The thickness

of the lines represent the strength of the correlation. All correlations <0.7 and disconnected proteins were

removed.

https://doi.org/10.1371/journal.pone.0187304.g003
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Gene expression in idiopathic and PDR-associated membranes

In order to identify possible cellular or tissue sources of the proteins in the vitreous of PDR

patients, we determined gene expression in FVMs and compared these data to gene expression

in blood cells from diabetic patients, control retina tissue, retinal pigment epithelial cells

(RPE), human retinal endothelial cells (HRECs), human retinal pericytes (HRPCs) and human

glial cells (Table 4). In total 11 idiopathic ERMs, and 10 PDR membranes were analyzed.

In accordance with protein concentrations found in the vitreous of PDR patients, 5 genes

were found to be consistently expressed in all PDR membranes (GDF15, IGFBP3, THBS1,

TIMP1 and VEGFA). In addition, BDNF and GDNF were found to be expressed in all idio-

pathic and 9 of the 10 PDR membranes (Table 4), even though protein concentrations of these

respective proteins in the vitreous were below the LOD (Table 3).

Increased vitreous protein concentrations may be due to either increased local production

or due to leakage from the vasculature. Despite showing elevated vitreous concentrations,

angiogenic growth factors such as adiponectin, PDGFA and PDGFB mRNAs were hardly, or

Table 4. Gene expression in membranes, retinal tissues and cells, and blood.

n = 11 n = 10 Relative expression

Gene iERM PDR iERM PDR* Retina RPE Glial cells HRECs HRPCs Blood

ADIPOQ 0 0 0 0 0 0 0 0 0 2

ANGPT2 7 9 30 135 150 0 4 22 0 13

BDNF 11 9 182 72 117 387 475 1337 550 1015

bNGF 8 6 7 32 13 394 134 30 210 687

GDF15 11 10 35 48 9 14 80 34 411 487

GDNF 11 10 12962 41091 0 0 156 177 0 512

HGF 10 8 136 359 268 3 0 72 857 153

ICAM1 11 9 90 224 780 545 24 279 75 1394

IGFBP1 7 7 26 47 0 1 4 721 7 56

IGFBP3 11 10 4179 2726 282 10095 317 3384 5234 257

NCAM1 10 8 810 392 1006 11 176 241 0 19

NGFR 10 8 1295 1933 1302 0 27 0 0 0

NOV 4 5 5 10 38 151 0 10 5 163

NRG1 10 5 36 12 47 99 649 318 33 17

NRG2 7 6 26 18 69 1 189 5 2 0

NRN1 11 9 288 392 3652 0 1628 169 0 979

NTF3 4 4 9 6 36 940 19 80 0.2 711

NTF4 0 0 0 0 0 0 101 3 5 773

PDGFA 0 2 0 4 0 0 11 0 0 17

PDGFB 0 0 0 0 0 0.5 3 14 0 29

PGF 9 7 242 47 71 0 10 15 0 5913

THBS1 11 10 2479 2011 2 610 88481 2749 7989 1132

TIMP1 11 10 6544 10088 11366 90200 40299 361760 59631 12807

VEGFA 11 10 4434 907 8879 18 8369 165 188 507

Left side (iERM, PDR): number of membranes in which gene expression is detected. Right side (Relative expression): abundance of gene expression in

arbitrary units. iERM, idiopathic epiretinal membrane; PDR, epiretinal membrane from PDR patient; Retina, whole retina of non-diabetic donor eye; RPE,

primary retinal pigment epithelial cells; Glial cells, U373 cell line; HRECs, human primary retinal endothelial cells; HRPCs, human primary retinal pericytes;

Blood, pooled whole blood from patients with diabetic macular edema. Underlined values show significant difference in gene expression levels between

PDR and iERM membranes (P < 0.05).

https://doi.org/10.1371/journal.pone.0187304.t004
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not at all, found in membrane tissues. In other ocular tissues studied, adiponectin was only

detected in blood cells and not in any of the ocular tissues including FVMs, whereas PDGFA
was expressed in white blood cells and glial cells and PDGFB was expressed in white blood

cells, RPE cells, glial cells and HRECs. Since PDGF concentrations in the vitreous of PDR

patients were lower than the concentrations of PDGF reported in the plasma of both diabetic

patients [34] and healthy volunteers [35], PDGFA is most likely derived from blood, whereas

PDGFB is probably synthesized by either RPE, HREC or glial cells. TIMP1, which showed the

highest vitreous protein concentrations, also showed the highest abundance in mRNA levels in

all tissues and cells, with HRECs being the major source.

When considering differences in mRNA expression levels between non-diabetic ERMs and

PDR membranes, a few observations stand out: expression levels of ANGPT2 were 4.6-fold

higher in PDR membranes as compared to non-diabetic ERMs (Table 4; Fig 4), which is in

agreement with the elevated vitreous protein concentrations in PDR patients (Table 3). Con-

versely, gene expression levels of NRG1, PGF and VEGFA were strikingly lower in PDR mem-

branes when compared to controls (Table 4; Fig 4), whereas proteins concentrations in the

vitreous of PDR patients were increased (Table 3). In addition, mRNA levels of connective tis-

sue growth factor (CTGF), a marker of fibrosis [4], IGFBP3 and vimentin (VIM), a highly

abundant glial cell marker in ERMs, were comparable between non-diabetic ERMs and PDR

membranes (Fig 4).

Discussion

In the present study, vitreous samples were screened for 507 proteins, including various neural

and glial growth factors, leading to the identification of 55 vitreous proteins elevated in PDR.

A search in the Embase and Pubmed databases indicates that 8 of these proteins (BMP2,

DcR3, GDF15, IGFBP4, NGFR, NOV, NRG1β1, UBB+1) were not previously reported to be

associated with PDR.

A serious sight threatening complication of PDR is the formation of FVMs, which may

result in retinal traction and retinal detachment. An initial step in the formation of these
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Fig 4. mRNA levels in idiopathic and PDR membranes. Transcript levels of genes were quantified by real-time quantitative PCR. Differences

between groups were analyzed by a Student’s t-test. Lines represent mean values.

https://doi.org/10.1371/journal.pone.0187304.g004
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membranes may be neurite outgrowth from neurons and Müller cells, which not only secrete

neurotrophic and pro-angiogenic growth factors, but may also serve as a template for the

growth of other cell types and new blood vessels [4,18,19]. We identified Ang2 as being the

most strongly correlated protein to the degree of fibrosis and the presence of FVMs in patients

with PDR. Furthermore, the PDGFs seem to play a role in fibrosis and in neurite outgrowth as

well, based on our observations in all membranes.

Proteins related to neurite outgrowth

Many of the tested neurotrophins, such as NT3, NT4, bNGF, BDNF and GDNF were below

the LOD in both control samples and PDR samples, suggesting that these proteins are not

involved in retinal-vitreous neurite formation. Other studies confirmed the absence of bNGF

and BDNF [36], but showed detectable levels of NT3 and NT4 [36] and GDNF [37], suggesting

differences in sensitivity or specificity of the detection methods. While GDNF was found to be

undetectable in the vitreous of PDR patients, we did find active mRNA transcription of GDNF
in all PDR-associated membranes, as well as in the non-diabetic macular puckers. Further

studies to clarify the possible role that GDNF may play in retinal neurite growth are

warranted.

Other neurotrophic factors such as Neuregulin1/Heregulin1-b1 (NRG-1) exhibited a>3

fold upregulation in the vitreous of PDR patients, implicating their possible involvement in

neurite outgrowth. Indeed, previous reports show that NRG1 can elicit neurite outgrowth in

dorsal root ganglia explants [38] and developing rat retina [39]. Additionally, there may be

increased sensitivity for neurotrophic factors as evidenced by the elevated concentrations of

nerve growth factor receptor (NGFR) found in the vitreous of PDR patients. However, in the

independent study group, the increased NRG1β1 protein levels were not confirmed, thus mak-

ing the involvement of NRG1β1 in neurite outgrowth dubious.

Another possibility is that PDGF drives neurite growth, in addition to its angiogenic effects

[40]. Indeed, PDGF has been shown to induce neuronal [41,42] and Müller cell proliferation

in vitro [43], and outgrowth of neurites in primary rat brain cultures [44]. Additionally, trans-

genic mouse models overexpressing PDGFA have increased retinal glial cell proliferation [45],

which can in turn drive neurite outgrowth via purinergic G protein-coupled receptor activa-

tion [46].

A role for PDGFs in fibrosis

Although PDGF is known to be a strong angiogenic stimulus, we also found a strong correla-

tion between PDGFAA concentrations and retinal fibrosis. In addition, PDGF was correlated

with a number of other proteins known to be involved in fibrosis and neovascularization such

as angiopoietin-1 (Ang1, ANGPT1) and -2 (Ang2, ANGPT2), PlGF and TGFβ [47]. This raises

the possibility that PDGF may be one of the driving forces behind pathological angiogenesis

and fibrosis in patients with PDR. Recent studies have shown that PDGF has a role in the pro-

duction of FVMs in patients with a related condition, proliferative vitreoretinopathy (reviewed

by Lei et al., 2010) [48]. In this condition, in contrast to PDR, fibrosis rather than a mixture of

angiogenesis and fibrosis is the main pathological process.

Angiopoietins

Ang1 and Ang2 are known to exert their biological effects by competitively binding to endo-

thelial cell-specific tyrosine kinase with immunoglobulin and epidermal growth factor homol-

ogy domains 2 (Tie-2) receptors [49]. The angiopoietin/Tie2 system is a context-dependent

system with opposing effects. Binding of Ang1 leads to Tie2 phosphorylation and endothelial
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cell stabilization, but Ang2 binding leads to robust angiogenesis in the presence of VEGF [50].

A decreased ratio of Ang1 and Ang2 seems to be a critical switch for the development of vascu-

lar pathology, including blood-retinal barrier breakdown [51] and pericyte migration [52].

Here, we confirm reports that PDR is characterized by a disturbed balance of Ang1 and Ang2,

since the concentrations of Ang2 were found to be increased almost 20-fold in PDR, whereas

Ang1 concentrations only increased 3-fold.

In addition, Ang2 was found to be correlated to the degree of retinal fibrosis. ANGPT2 gene

expression was found in all PDR membranes and in the majority of non-diabetic ERMs. Fur-

thermore, vitreous samples of PDR with FVMs had increased concentrations of Ang2 com-

pared to PDR without FVMs. This could be accounted for by increased production of Ang2

from highly activated FVM endothelial cells [53]. It seems that, in addition to playing a role in

active angiogenesis [50,54], Ang2 may well be involved in retinal fibrosis in PDR. This is sup-

ported by increased intravitreal Ang2 concentrations related to rhegmatogenous retinal

detachment [55] and formation of FVMs in patients with retinopathy of prematurity [56].

Also, Ang2 was shown to be causative in the formation of liver fibrosis in rats [57] and cardiac

fibrosis in db/db mice [58].

Thrombospondin

We observed high protein concentrations of thrombospondin-1 in vitreous of PDR patients,

10-fold higher than in control vitreous samples. In conjunction, gene expression of THBS1
was observed in all membranes in comparable quantities in non-diabetic ERMs and PDR

membranes. Thrombospondin-1 is a matricellular glycoprotein that has anti-angiogenic prop-

erties and is involved in wound healing and fibrosis in the eye [59]. A possible mechanism is

the activation of latent TGFβ, either directly [60], or indirectly by induction of MMP-2 and

MMP-9 [61,62]. It is detected as an abundant protein on platelets and is secreted by endothe-

lial cells, fibroblasts, smooth muscle cells, and many other cells of the retina, including glial

cells (summarized by Masli et al., 2014 [59]). Indeed, we observed high transcript levels in

these cell types, especially in glial cells, endothelial cells and pericytes. Thrombospondin-1 pro-

tein in vitreous has not been widely studied thus far. One study reports undetectable levels

[63], whereas another study reports detectable levels by western blotting in human postmor-

tem donor eyes and rat eyes [64]. In contrast to our results, vitreous samples from diabetic rats

showed decreased thrombospondin-1 levels as compared to controls in the prior study. More

research is needed to find out whether these differences are caused by technical or species-

dependent factors. Considering the contribution to anti-angiogenesis, thrombospondin-1 may

be upregulated in response to pro-angiogenic factors to counteract and balance the angiogenic

switch in PDR. Interestingly, thrombospondin-1 and Ang2 were both clustered around the

PDGF-axis in the correlation network analysis, which suggests that these proteins are co-regu-

lated within our samples. This may mean that PDGFs, thrombospondin-1 and Ang2 work

together in the formation of FVMs in PDR. More research is needed to clarify the relationship

between these proteins.

IGFBPs

Two insulin-like growth factor binding proteins, IGFBP-1 and -3, stood out with respect to

their increased vitreous protein concentrations in PDR patients as compared to controls, with

an increase of 10- and 19-fold respectively. Of these, IGFBP3 mRNA was also abundantly

expressed in non-diabetic ERMs and PDR membranes and several control tissues, with RPE

cells showing the most abundant expression. Others have reported increased IGFBP1 [65] and

IGFBP3 [66,67] levels in the vitreous of PDR patients in the same range. IGFBPs bind IGFs in
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the serum to protect them from degradation and increase their bioavailability [68]. IGFBP3 is

described to have both pro-angiogenic and anti-angiogenic effects, probably dependent on the

context and the presence of certain other growth factors. IGF1- and VEGF-induced prolifera-

tion and survival of human umbilical vein endothelial cells were both inhibited by IGFBP3

[69], whereas IGFBP3 supplementation to mouse Matrigel implants increased vascular

ingrowth as compared to control animals [70]. In addition, IGFBP3 has been reported to be a

protector of blood-retinal barrier breakdown and a stimulator of vasorelaxation by mediating

NO levels [71]. Because of complex interactions with other serum proteins, the mechanism of

IGFBP3 involvement in the pathophysiology of PDR may be difficult to unravel. On the other

hand, IGFBP3 levels may serve as a useful biomarker of disease severity in PDR.

Effect of bevacizumab

Because some of the patients received bevacizumab before surgery, we were able to analyze the

effects of anti-VEGF treatment on protein concentrations. There have been concerns that inhi-

bition of VEGF may upregulate other pro-angiogenic proteins, which could explain resistance

to anti-VEGF therapy. One such protein is PlGF, a family member of VEGF, which has been

reported to be iatrogenically upregulated by anti-VEGF therapy [72,73]. In the present study,

we did not observe an upregulation on PlGF following bevacizumab treatment, whereas con-

centrations of IGF1 were significantly upregulated. These observations need to be carefully

interpreted since the number of patients was rather low and need further investigations. IGF1

upregulation may be a reaction to the absence of VEGF, since IGF1 is known to induce VEGF

synthesis [74]. It is worth noting that mRNA levels of VEGF were also significantly lower in

the membranes of PDR patients as compared to controls. It is possible that this may due to the

anti-VEGF treatment since all except two of the PDR patients received bevacizumab before

surgery. It has previously been reported that anti-VEGF treatment may target endogenous

VEGF levels, which is known to regulate its own transcription through VEGFR2 [75]. Besides

VEGF, concentrations of 3 other protein were decreased in ERMs of PDR patients as com-

pared to controls: PlGF, NRG1 and BDNF. Decreased PlGF may be explained by the transcrip-

tional regulation by VEGF in microvascular endothelial cells [76], but the relation of VEGF

with NRG1 and BDNF is less clear. In one study VEGF was found to work upstream from

BDNF produced by endothelial cells in neurogenesis in songbirds [77] and in another study

BDNF was found to promote the expression of NRG1 in neurons [78]. These observations

warrant further investigation on larger patient groups.

Limitations of the study

This study was limited by the small number of samples that we were able to obtain. Future

studies using a larger patient population will enhance the statistical power of the correlations

obtained in this study. Additionally, the use of a non-proliferative diabetic group of patients

will allow more accurate assessment which growth factors are specific to PDR.

The cross-sectional acquisition of vitreous fluid only allowed protein measurements to be

taken at a single time point in the course of disease. This makes inferences regarding causality

difficult since the sequence of fluctuations in protein concentrations over time could not be

obtained. Furthermore, we were unable to distinguish between proteins produced in the retina

and proteins derived from the blood via a compromised blood-retina barrier or vitreous hem-

orrhage [79].

Our selection of proteins analyzed in the antibody arrays was limited by commercial avail-

ability. In this way, we regret that it was not possible to include measurements of CTGF, a pro-

tein previously reported to be integral in the relationship between retinal fibrosis and
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angiogenesis [4]. Further studies investigating the changes, origin, and sites of action of the

proteins identified here will yield further insight into the pathophysiology of FVM formation

in PDR.

Conclusions

In conclusion, we found 8 novel proteins in the vitreous of PDR patients, as well as novel cor-

relations between vitreous proteins and retinal fibrosis and angiogenesis. Ang2 was not only

strongly related to the degree of fibrosis, but was also related to the occurrence of FVMs, sug-

gesting that it may have a causative role in the formation of these membranes. In addition, the

elevated concentrations of the neurotrophic factors NRG1 and PDGF in vitreous, and high

gene expression levels of GDNF and BDNF in PDR membranes present potential proteins

responsible for the retinal neurite growth that is displayed in all FVMs. The large amount of

proteins that have been screened in our study may serve as a basis for more detailed analysis in

larger study groups, eventually leading to a better understanding of molecular mechanisms of

PDR pathology.
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