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S u m m a r y  

We examined the effect of mutations in the V/3 portion of a pigeon cytochrome c (cyto c)-specific 
V/33 +/Vcz11 + T cell receptor on its ability to recognize cyto c/IE k and various superantigens. 
The results were consistent with an immunoglobulin-like structure for the receptor V/3 domain 
and with separate interaction sites on V/3 for conventional antigen and superantigens. An amino 
acid predicted to lie in CDR1 was critical for cyto c/IE k but not superantigen recognition, while 
several amino acids predicted to lie in the hypervariable region 4 loop were critical for superantigen 
but not cyto c/IE k recognition. 

T he V domains of the TCR or//3 are similar to those of 
Igs both in primary amino acid sequence (1-3) and in 

the organization of their rearranging gene elements (4-7). 
A great deal is known from x-ray crystallography about the 
molecular structure of Ig V domains (8-13). Several authors 
have proposed that the conservation of critical amino acids 
among Ig and TCR V domains predicts that the structure 
of the TCR V domains will be very similar to those of Ig 
with Ig light chain corresponding to the TCR ot chain, and 
heavy chain corresponding to the TCR/3 chain (1-3). The 
TCR V domains are, therefore, predicted to be formed from 
a series of antiparallel/3 strands with the loops corresponding 
to the three Ig CDR regions brought to one face of the do- 
main to form the binding site for antigen/MHC complexes. 
Some of the/3 strands (C, C', F, G) are predicted to be in- 
volved in the interaction between the o~ and/3 V domains 
and therefore sequestered from the solvent. The other/3 strands 
(A, B, D, E) in combination with a fourth nonantigen binding 
loop (hypervariable region 4 [HV4]) 1 between/3 strands D 
and E are predicted to form a lateral solvent-exposed face. 

There are some data directly supporting this Ig model for 
the TCR V domains. Several laboratories have shown that 
amino acids important for antigen/MHC recognition in 
regions of the ot and/3 chain V domains correspond to the 
CDILs of Ig, especially CDR3 (14-18). We (18-20) and others 
(21) have demonstrated amino acids in HV4 and in the 

1Abbreviations used in this paper: cyto c, cytochrome c; HV4, hypervariable 
region 4; SE, staphylococcal enterotoxin. 

predicted solvent-exposed/3 strand leading up to CDR1 (/3 
strand B) are involved in superantigen recognition. 

In the current study we examined a TCR specific both 
for a cytochrome c (cyto c) peptide complexed with IE k and 
for the bacterial superantigen toxin SEC3. We tested several 
amino acids for their importance in the recognition of both 
types of antigen. An allelic residue in CDR1 was shown to 
be required for cyto c/IE k but not staphylococcal enterotoxin 
(SE)C3 recognition, while exchange of amino acids in the 
predicted HV4 loop with those from the closely related V/317 
element eliminated SEC3 recognition without affecting cyto 
c/IE k reactivity. These results provide additional evidence for 
an Ig model for TCR V domains and further indicate that 
conventional antigens and superantigens interact with different 
sites on the TCR V/3 domain. 

Materials and Methods 

T Cell Hybridomas. The two T cell hybridomas used in these 
studies were produced as previously described (22, 23). The first, 
5KC-73, was produced from T cells from B10.BK mice immunized 
with pigeon cyto c in CFA. The hybrid was sdected on the basis 
of strong reactivity to both pigeon and moth cyto c peptide 88-104 
presented by IEk-expressing APC and the presence of a V/33/ 
Vc~11 § TCR cz/~ as judged by reactivity with the V/33-specific 
mAb KJ25 (24), and with the Vcz11-specific mAb RR-8 (25). A 
15 chain loss variant of this hybridoma was produced by first screening 
random subclones for the absence of surface TCR c~/15 and then 
screening RNA from the TCR or~B- subclones by the PCR for 
the absence of V/33 + /3 chain, but not Vex11 + ~ chain, mRNA 
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(26, 27). The phenotype was confirmed by the reexpression on the 
surface of TCR o(/13 upon transection of the variant with con- 
structs encoding the complete B chain of 5KC-73 as described below. 
This transfectant, instead of the original hybridoma, was used as 
the wild-type control in the experiments presented here. 

The second T cell hybridoma, 3QO23-24, was produced from 
T cells taken from SWR/J mice immunized with chicken (c)OVA 
and subsequently panned on the V/317a-specific mAb KJ23a (28, 
29). This hybridoma was selected for high reactivity to cOVA 
presented by IAq APC and for reactivity with KJ23a (28). 

A/K?. A number of APC lines were used in these experiments. 
An IEk-expressing fibroblast line, DCEK (30), was used for the 
presentation of cyto c Peptides. This line and the mutant IE k-/ 
IA d§ B cell lymphoma line, M12.B5 (31), were used for presenta- 
tion of staphylococcal toxin superantigens. These lines had the ad- 
vantage that neither presented endogenous mammary tumor virus 
(MTV) superantigens (SAgs), DCEK because of lack of expression 
of the MTV SAg genes 02) and M12.B5 because of the lack of 
a functional IE molecule 01). MTV SAgs were presented by two 
other cdllines. CH12.1, a B cell lymphoma of C57BL origin (33), 
expresses the SAg of MTV9 (34, 35), which in combination with 
IE k stimulates VB17 + T cells (29, 36), but not V/33" T cells. 
LBB.1, a class II + B cell lymphoma hybridoma produced by fu- 
sion of the BALB/c lymphoma, M12, and R.F/J spleen cells (37), 
carries SAgs from a large array of MTVs in addition to MTV9, 
including MTV6 and MTV1, which are identical in sequence (38) 
and stimuhte both VB17 + (21) and VB3 + (38) T calls. 

Antigens. Pigeon cyto c was purchased from Sigma Chemical 
Co. (St. Louis, MO). Peptide 88-104 of pigeon and moth cyto c 
were prepared by the Molecular Resource Center, National Jewish 
Center for Immunology and Respiratory Medicine. SEA and SEC3 
were purchased from Toxin Technology (Madison WI). Recom- 
binant SEB was produced and purified as previously described (39). 

11.,2 Production by T Cell Hybridomas. The relative responses of 
T cell hybridomas and transfectants to antigenic stimuli were as- 
sessed by the amount of IL-2 they produced as previously described 
using the II.-2-dependent cell line HT-2 (22, 40). 

Introduction of ~8 Chains into B- 5KC-73. tLdntroduction of the 
TCR o(//9 ~ chain into the ~3 chain loss variant of 5KC-73 was 
performed as previously described using the expression vector 
pBDWC~3 (18). Briefly, cDNA from mRNA prepared from 5KC- 
73 was used as template in a PCR. The 5' primer 5'-AGGTCG- 
ACCACCATGGCTACAAGGCTC-Y matched the VB3 leader and 
contained a SalI site. The Y-primer 5'-GTCACATTTCTCAGA- 
TCTTC-Y matched the NH2-terminal region of CB and intro- 
duced a BgllI site. The VB3 domain-containing PCP, product was 
cloned into the SalI/BGIlI site of a variant of pTZ18R in which 
the BamHI site in the multiple cloning site was replaced with a 
BgllI site. The insert from a clone established to have the correct 
sequence was subdoned into the SalI/BgllI site of pBDWCB in 
frame with the CB2 gene and transfected by electroporation into 
the ~ loss variant of 5KC-73. Transfectants were selected in G418 
and one was chosen on the basis of the reexpression of the V~3 + / 
V(x11 + "ICE (z/~ 

Introduction of Mutations into the Vd3 of the TCR cr/d of SKC- 
73. Mutations were introduced into the 5KC-73 VB3 as previ- 
ously described (18). Briefly, an oligonudeotide primer containing 
the mutation was synthesized for one strand. A primer overlap- 
ping the first primer past the mutation was synthesized for the 
other strand. Using each of these with the primers described above, 
the 5' and Y portions of the V/33 domain were synthesized by the 
PCR. The two fragments were fused by using them as a mixed 
template in a second PCR again using the leader and C/3 primers 

described above. The fused fragment containing the mutations in 
a complete VB domain was cloned, sequenced, subcloned into 
pBDWC/3, and transfected into the 5KC-73 B loss variant as above. 
Transfectant dories were screened for approximately equal levels 
of TCR (x//3 measured with KJ25 (anti-V/93) and HAM-597 (anti- 
C~) (41) mAbs. 

Results 
Amino Acids in V,83 Important for SEC3 Recognition. In 

the mouse the V~ dement most dosdy related to V/33 is 
V/~17. These V/3s are identical in 65% of their amino acids 
with the differences scattered throughout their primary se- 
quences (Fig. 1). T cells bearing these V/~ dements have sirnilar~ 
but not identical, specificities for the SE superantigens (45, 
46). Likewise, these elements have similar but not identical 
specificities for the mouse MTV-encoded SAgs (21, 24, 29, 
36, 38). 

These points are illustrated in Fig. 2. Two T cell hybrid- 
omas, 5KC-73, bearing V~3 and specific for pigeon cyto c 
(88-104) plus IE k, and 3QO23-24, bearing VB17 and 
specific for cOVA plus IAq, were compared for their re- 
sponse to various Staphylococcus aureus and MTV SAgs 
presented by various class II MHC antigen-presenting lines. 
Neither hybridoma responded to SEB, but both responded 
well to SEA presented by either an IEk-transfected fibroblast 
line or an IAa-expressing B cdl lymphoma. However, the 
hybridomas differed in their response to SEC3. The V/33 § 
hybridoma responded wdl to SEC3 presented by either call 
line, while the response of the V/~17 + hybridoma was re- 
duced ,vS0-fold with the IAa-presenting ceils and absent 
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Figure 1. Sequences ofV/33b, Vi~3a, and V/~lTa. The protein sequence 
of the VB3b (42) eont=ini~g VI~ domain of the 5KC-73 TCR ~/B is shown 
aligned with that of VB3a (43) and V/~17a (29). The 5KC-73 DNA and 
protein sequence is identical to that of T cell hybridoma, 5C.C7, previ- 
ously reported by Pink et al. (44). The V~ll.1/J~AC25~ontaining Vo~ 
domain of the 5KC-73 receptor was cloned and sequenced as well (data 
not shown). The sequence is identical to that of hybridoma, 116, reported 
by Jorgensen et al. (16). For VB3a and VB17a only those amino adds dif- 
feting from Vfl3b are shown. Others are designated with a period. Regions 
corresponding to CDR1, CDR2, CDR3, /3 strand ]3, and HV4 based 
on homology to Ig are indicated (1-3). Boxed amino adds were substituted 
into the VB3b element of 5KC-73 in these studies. 
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V~3b and V/~17a have similar but  not identical SAg 
speciticities. Shown are the ID2 responses of  the Vfl3b + fl chain-restored 

chain loss variant of  5KC-73 and the V317 + hybridoma, 3QO23-24, 
to a challenge with either pigeon cyto c peptide 88-104 or various SAgs. 
Results are averaged from at least three experiments in each case. 

with the IEk-presenting cells. The hybridomas differed in 
their responses to MTV SAgs as well. Whereas only the 
VB17 + hybridoma responded to the IE-dependent MTV9 
SAg of the B cell lymphoma CH12.1, both bybridomas 
responded to the B cell lymphoma hybridoma, LBB.1, which 
carries a number of MTV SAgs, including those of MTV9, 
MTV1, and MTV6. 

In general the specificity of a TCR o~//3 for a SAg/MHC 
complex is determined by the V/3 element of its receptor. 
Our previous experiments identified amino acids important 
in SAg recognition in the region of VB predicted to form 
solvent-exposed/3 strand B and the adjacent HV4 loop (18-20). 
VB3 and V/317 differ in seven amino acids in these regions 

Pigeon None 
cyto c lO DCEK (IEk) 
s s - lo4  loo i 

1 MI2.B5 (IAd iil 
SEA 1 DCEK (lEk) 

0.1 
1 ~q12.B5 (IAd) 

SEC3 
0.1 I 
I DCEK (IF.k) 
10 I 

~H12.1 
',/one None 

LBB.I 

Figure 3. 
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SEC3 recognition is contl"O]]ed by amino acids in the predicted 
strand B and/or HV4 of V~3b. Antigen recognition by 5KC-73 was 

compared with that ofa transfectant in which the amino acids at positions 
18, 20, 22, 66, 68, 72, and 74 of the/~ chain had been replaced with the 
corresponding amino acids of V~17a. Both were challenged with either 
pigeon cyto c peptide 88-104 or various SAgs, and the IL-2 response was 
measured. Results are averaged from at least three ~periments in each case. 
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(Fig. 1). Therefore, we transfected the fl chain deletion variant 
of the V/33 + hybridoma with a construct carrying a mutant 
V/33 + /3 chain in which these seven amino acids were ex- 
changed for those of V/317. The transfectants were tested for 
their ability to respond to various toxins and MTV SAgs as 
well as cyto c/IE k. The results are shown in Fig. 3. 

The transfectant with the wild-type V/~3 + /3 chain 
responded to cyto c peptides plus IE k, as well as to SEA, 
SEC3, and LBB.1, but not to CH12.1. Replacement of the 
amino acids in B strand B and in HV4 with those from V~17 
had no effect on the response of the transfectant to cyto 
c/IE k, SEA, or LBB.1. However, the response to SEC3 was 
reduced by these substitutions even more dramatically than 
seen with V/~17 itself (Fig. 2). These results pinpointed amino 
acids in putative/3 strand B and/or HV4 as important in SEC3 
recognition and confirmed that extensive nonconservative mu- 
tations in these regions have no effect on the recognition of 
conventional peptide antigen bound to MHC class II. 

Perhaps unexpectedly, conversion of these seven amino adds 
of V/~3 to those of V~17 did not transfer the V/~17 reactivity 
to the MTV9 SAg of CH12.1, indicating that the amino acids 
in these positions may be necessary, but are not sufficient, 
for recognition on this MTV SAg. 

To pinpoint the amino acids essential for SEC3 recogni- 
tion we exchanged the three amino acids in B strand B and 
the four amino acids in HV4 separately and in addition ex- 
changed pairs of amino acids at positions 66 and 74 and at 
positions 68 and 72 of HV4 separately. Again the transfec- 
tants were tested for their response to cyto c peptides presented 
with IE k and to SEA or SEC3 presented by the two antigen- 
presenting lines. The results are shown in Fig. 4. Mutation 
of the three amino acids in/3 strand B alone had no effect 
on the response to the cyto c peptide, SEA, or SEC3. How- 
ever, exchange of the four amino acids in HV4 eliminated 
the response to SEC3 without affecting the response to SEA 
or to cyto c/IE k. Partial reduction of the response to SEC3 
was seen when amino acid pair 66/74 was exchanged, and 
virtually a complete loss of response was seen with exchange 
of the 68/72 pair. These results identify HV4 as an essential 
part of the VB3 recognition site for SEC3. 

An Amino Acid in V~3 Important for Cyto c/IE k Recogni- 
tion, Pigeon cyto c peptide 88-104 is presented in H2 k mice 
by the IE k molecule and the response is dominated by T cells 
bearing V/33/Vo~11 (47-49). Two allelic forms of the VB3 
dement have been identified (Fig. 1). Most mouse strains, 
such as B10.BR, carry the VB3b allde, which has a valine 
at position 29 predicted to lie in CDR1. A few strains (e.g., 
C57BR, SWR) carry the V~3a allele, which has a phenylalao 
nine at this position. Gahm et al. and Fry and Matis (43, 
49) have reported that H2 k mice carrying VB3a fail to re- 
spond to cyto c with the usual dominant V/33/Vo~11 dono- 
types, suggesting that the valine at position 29 is critical for 
cyto c/IE k recognition by these clones. To test this idea 
directly we replaced this amino acid in the/3 chain of 5KC- 
73 with the phenylalanine of V~3a and tested the ability of 
the resulting hybridoma to respond to cyto c/IE k and to sev- 
eral superantigens. The results are shown in Fig. 5. The hy- 
bridoma bearing the wild-type V/33b + B chain responded 
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Figure 4. SEC3 recognition is controlled by amino 
acids in predicted HV4 of VB3b. Antigen recognition 
was compared among a series of 5KC-73 transfectants 
in which various combinations of the amino acids at 
positions 18, 20, 22, 66, 68, 72, and 74 of the 13 chain 
had been replaced with the corresponding amino acids 
of VB17a. The transfectants were challenged with ei- 
ther pigeon cyto c peptide 88-104 or various SAgs, 
and the I1,2 response was measured. Results are aver- 
aged from the same experiments as those described 
in Figure 3. 

well to pigeon cyto c presented with IE k, to SEA and SEC3 
presented by IE k or IA a, and to the MTV1/6 SAgs of 
LBB.1. Introduction of the VB3a phenylalanine at position 
29 eliminated the response to pigeon cyto diE k. Similar 
results were seen with the corresponding peptide from moth 
cyto c (data not shown). There were no effects of this muta- 
tion on the response to the bacterial or viral SAgs. These 
results are consistent with an important role for amino acid 
29 of CDR1 in recognition of peptide/MHC, but not a 
number of SAg/MHC complexes. 

Mapping Amino Acids on a Ig Vh Model for V~. Fig. 6 
shows a model of VB3 derived from the known structures 
of a number of Ig heavy chain V domains using the align- 
ment of Chothia et al. (2). The four amino acids (66E, 68P, 
72P, 74S) important for SEC3, but not cyto c/IE k, recogni- 
tion are predicted to lie on the side of the VB domain in 

HV4. The amino acids at positions 67 and 73 are both cys- 
teines and predicted to be immediately adjacent to each other 
on opposite strands so that there is a high probability that 
they form a short disulfide loop. The formation of this loop 
would cause the side chains of amino acids 66, 68, 72, and 
74 to point outwards towards the solvent, available for inter- 
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Figure 5. Cyto c/IE k recognition is controlled by an amino acid in 
predicted CDR1 of V83b. Antigen recognition by 5KC-73 was compared 
with that of a transfectant in which the valine at position 29 of VB3b 
had been replaced with the phenylalanine of V153a. Both were challenged 
with either pigeon cyto c peptide 88-104 or various superantigens, and 
the I1,2 response was measured. Results are averaged from at least three 
experiments in each case. 

Figure 6. The structure of the 5KC-73 ~ chain V domain based on 
Ig. The a-carbon backbone of the 5KC-73 O chain V domain was predicted 
using the coordinates of a set of Ig Vh domains (8-13) obtained from the 
Brookhaven Data Base (Upton, NY), the alignment of Chothia et al. (2), 
and software from the Biosym Corp. (San Diego, CA) running on a Silicon 
Graphics (Mountain View, CA) IRIS Indigo workstation. The view is 
of the solvent-exposed face composed of O strands B, 13, and E as well 
as HV4 (colored medium is blue r for amino acids 66, 68, 72, and 
74, which are dark blue). A disulfide bond was forced between the cys- 
teines at positions 67 and 73. CDK1 is green (except the valine at position 
29, which is red); CDK2 is yellow and CDR3 is orange. All other amino 
adds are light blue. 
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action with the SAg. The valine at position 29 essential for 
cyto c/IE k, but not SAg, recognition is predicted to lie at 
the COOH-terminal end of CDR1 with its side chain pointed 
out toward the potential antigen/MHC ligand. Therefore, 
the model for the Vfl domain based on Ig is consistent with 
the functional properties of the VB3 mutants and places the 
SAg and peptide/MHC interaction sites on different solvent- 
exposed faces of the protein. 

Discussion 

The antigenic ligands for Ig and the TCR c~/3 are very 
different. While almost all chemical structures are possible 
ligands for Ig, only peptide or protein antigens that combine 
with MHC molecules are potential ligands for TCR c~/3. 
Therefore, despite the similarities in gene organization and 
primary sequences between Ig and the TCR od3 (1-7), it 
would not be surprising if the V domains of these two mole- 
cules had quite different structures. However, a number of 
authors have argued for an Ig-like structure for the TCR c~/3 
V domains based on the conservation of amino acids in posi- 
tions critical for the backbone structure of Ig V domains (1-3). 
In addition, there is mounting direct evidence, including that 
presented here, supporting an Ig-like structure for the TCR 
cff3 with regions corresponding to the Ig CDR loops in- 
volved in peptide antigen/MHC recognition, some 3 strands 
buried between the Vc~ and Vfl and others together with 
HV4 forming another solvent-exposed face involved in SAg 
recognition. 

For example, sites for potential N-linked glycosylation are 
frequent in mouse and human Vo~ and Vfl elements, and a 
number of these have been shown to be glycosylated in vivo 
(19, 50, 51). Glycosylated asparagines of course must be sol- 
vent exposed and should be rare on antigen-binding loops. 
The Ig model of the TCR odfl predicts that these sites will 
lie almost exclusively on solvent-exposed fl strands or loops, 
rather than CDR loops or buried fl strands (C,C',F,G). Like- 
wise, the few amino acids known to be involved in binding 
of anti-TCg odfl mAbs are predicted by the Ig model to 
be on solvent-exposed loops (18, 19). 

There are a number of examples now of amino acids that 
affect peptide antigen/MHC interaction, which lie in the 
predicted CDR regions. This is particularly true for CDR3 
where alterations in the predicted CDR3 of the oL or fl chain 
have been associated with changes in peptide antigen specificity 
(14--16). Recently, the predicted CDR1 region of Vo~ has been 
implicated in the allo-MHC specificity of a TCR odfl (17). 
We have identified residues at either end of Vfl CDR1 that 
are important for antigen/MHC interaction. In a previous 
study (18) a threonine at position 24 of Vf18.2 was found 
to be critical for recognition of a cOVA peptide with IA b, 
and in the current study a valine at position 29 of VB3 was 

essential for response to cyto c plus IE ~. This latter finding 
confirms the prediction of Gahm et al. (43). 

There is also accumulating evidence that the predicted 
solvent-exposed HV4 of V3 plays an essential role in the rec- 
ognition of various types of SAgs complexed to MHC class 
II. Previously, we have found that residues in this loop are 
critical for mouse VflS.2 interaction with Mls-1 a, the SAg 
of MTV7 (18, 19). In this case residues on the adjacent fl 
strand B were also found to be important. Casenave et al. 
(21) have identified an amino acid in the HV4 loop of Vfl17a 
(72Q) that controls in vivo deletion of Vf117 + T cells by an 
MTV SAg carried by C57BL/6 mice (mostly likely that of 
MTV9). We previously found HV4 to be important in the 
recognition of SEC2 and SEC3 by human V~13.2 (20), and 
now in the current study in the recognition of SEC3 by mouse 
v 3. 

The data have not yet defined the role of MHC class II 
in SAg recognition. For conventional peptide antigens MHC 
restriction of antigen recognition is a function of the allelic 
amino acids involved both in antigen binding to MHC and 
in TCR od3 interaction with the MHC portion of the ligand. 
The picture is not so clear for SAgs. Although SAg binding 
to MHC appears to be a prerequisite for TCR c~/3 recogni- 
tion (52-54), the recognition is not MHC restricted in the 
usual sense. A given TCR c~/fl may recognize a particular 
SAg in association with many different allelic (or in some 
cases, isotypic or even xenogenic) forms of MHC class II 
(52-55), and UFwardly pointing mutations in the ol-helical 
barrels of MHC, which interfere with TCR odfl recogni- 
tion of bound peptide antigen, often have no effect on recog- 
nition of bound SAg (56, 57). These findings in combina- 
tion with the overriding importance of HV4, rather than 
the CDRs, in determining SAg interaction raise the possi- 
bility that there are few or no essential interactions between 
TCR odfl and MHC during SAg recognition and that the 
main function of the MHC is to capture, orient, and perhaps 
conformationally alter the SAg, thus promoting interaction 
with the HV4 site. 

Several observations could be used to argue against this 
view. Occasionally amino acid mutations in the TCR o~/fl 
CDRs (18) and the MHC c~ helices (57) eliminate T cell rec- 
ognition of a particular SAg/MHC combination. Also some- 
times TCR c~/~ with the correct V~ element fails to recog- 
nize the appropriate SAg presented by a particular MHC 
molecule (29, 52), indicating involvement of ~ chain CDR3 
and/or o~ chain CDRs. These results indicate a dose prox- 
imity between TCR ol/fl CDR.s and MHC during SAg rec- 
ognition and could mean that interactions between the side 
chains of certain amino acids in the MHC and TCR odfl 
contribute to binding. However, they are just as easily inter- 
preted to mean that these side chain interactions are irrele- 
vant except when they sterically interfere with docking of 
the HV4-binding site on Vfl with the SAg bound to MHC. 
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