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ABSTRACT

Clustering is an essential step in the analysis of sin-
gle cell RNA-seq (scRNA-seq) data to shed light on
tissue complexity including the number of cell types
and transcriptomic signatures of each cell type. Due
to its importance, novel methods have been devel-
oped recently for this purpose. However, different ap-
proaches generate varying estimates regarding the
number of clusters and the single-cell level cluster
assignments. This type of unsupervised clustering
is challenging and it is often times hard to gauge
which method to use because none of the existing
methods outperform others across all scenarios. We
present SAME-clustering, a mixture model-based ap-
proach that takes clustering solutions from multiple
methods and selects a maximally diverse subset to
produce an improved ensemble solution. We tested
SAME-clustering across 15 scRNA-seq datasets gen-
erated by different platforms, with number of clus-
ters varying from 3 to 15, and number of single cells
from 49 to 32 695. Results show that our SAME-
clustering ensemble method yields enhanced clus-
tering, in terms of both cluster assignments and num-
ber of clusters. The mixture model ensemble cluster-
ing is not limited to clustering scRNA-seq data and
may be useful to a wide range of clustering applica-
tions.

INTRODUCTION

Recent technological advances in single-cell RNA sequenc-
ing (scRNA-seq) have allowed researchers to catalog the
transcriptomes across a large number of individual cells,
empowering us to systematically study the heterogeneity at

the cellular level. scRNA-seq has transformed the paradigm
of genomic studies by investigating biology down to the
single-cell resolution, which unveils information masked
from the commonly used bulk RNA sequencing (RNA-
seq). scRNA-seq analysis has led to, among others, the iden-
tification of existing and novel cell types, characterization
of cells, prediction of cell fate, classification of tumor sub-
populations, and investigation of cellular heterogeneity (1–
3). Single cell clustering is a crucialstep to achieve above-
mentioned utilities (4). For example, only after clustering
the single cells, the following analyses can be meaningfully
and conveniently carried out: identification and examina-
tion of cell type specific gene expression signatures, adjust-
ment of cell type compositions for differential expression,
and deconvolution of bulk RNA-seq expression data. Due
to its importance, it is not surprising to find many exist-
ing scRNA-seq clustering methods (5–10). Unfortunately,
we find that clustering results from different methods are
rather dissimilar (Supplementary Figure S1), which is con-
sistent with literature (11,12) and not surprising because
different methods employ different strategies for essential
components of clustering (including choice of distance met-
ric, dimension reduction, clustering approach and estima-
tion of number of clusters) (Supplementary Table S1). Each
scRNA-seq clustering approach has its own strengths and
limitations. Thus, the use of two or more clustering meth-
ods is recommended for more accurate and comprehen-
sive overview of cell clustering. However, when true (‘gold-
standard’) cluster labels are not available, it is difficult to
select the best method(s), either before or after clustering
analysis.

To address the challenging issue of selecting the op-
timal method(s) when true cell types are unknown,
combining information from multiple individual meth-
ods becomes an appealing alternative. We present Single-
cell Aggregated Clustering via Mixture Model Ensemble
clustering (SAME-clustering), a well-grounded statistical
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Figure 1. Overview of SAME-clustering. Normalization and transformation of scRNA-seq data are executed as specified by SC3, CIDR, Seurat, t-SNE + k-
means, and SIMLR. From the five sets of clustering solutions, we take a subset of four diverse sets of clustering solutions. Then the n × 4 matrix, where
nrepresents the number of single cells, is combined using SAME-clustering. Maximum likelihood estimation is achieved through EM algorithm and the
optimal number of clusters is determined according to the BIC criterion, to provide the final consensus clustering solution. Notations are detailed in main
text.

model to solve the problem of consensus clustering. We use
a cluster ensemble method because it is known to provide
robust and improved quality solutions (13). Moreover, the
multinomial mixture model cluster ensemble approach un-
derlying SAME-clustering accommodates varying numbers
of clusters from individual solutions, addresses the issue re-
garding correspondence of cluster labels across different so-
lutions, and solves the issue of missing labels from some
solution(s) (13,14). Furthermore, mixture model is a maxi-
mum likelihood-based approach where we can conveniently
leverage model selection criterion to determine the optimal
number of clusters for the final ensemble solution.

MATERIALS AND METHODS

Overview of SAME-clustering

In the current implementation of SAME-clustering, we first
input a gene expression matrix into five individual cluster-
ing methods, SC3 (5), CIDR (6), Seurat (8), t-SNE (15) +
k-means and SIMLR (9), to obtain five sets of clustering
solutions. Of the five sets of solutions, we choose a maxi-
mally diverse subset of four according to variation in pair-
wise adjusted Rand index (ARI). The four individual solu-
tions selected are then combined into a n × 4 matrix, where
nrepresents the number of single cells. Inferred cell labels
from the four sets of solutions are then used as input for
the essential ensemble module of SAME-clustering, which
assumes that these labels are drawn from a mixture of mul-
tivariate multinomial distributions (14) to build an ensem-
ble solution by solving a maximum likelihood problem us-
ing the expectation-maximization (EM) algorithm. Figure
1 shows the overview of our SAME-clustering method.

Benchmark datasets

We assembled a total of 15 published datasets (1,3,7,16–
22) that have ‘gold-standard’ (deemed as true) cluster la-
bels assigned to each single cell. For the Li dataset (7), there
were seven cell lines, two of which have two batches per
cell line. Since the individual clustering methods used in
SAME-clustering, except for Seurat, do not have an op-
tion for batch effect correction, we kept only the larger
batch for each of the two cell lines with two batches. We
created our two large datasets by mixing single cells from

purified peripheral blood mononuclear cells (PBMC) gen-
erated by 10X genomics (21), following Sun et al (10).
Specifically, the simple case consists of three highly distinct
cell types: CD56+ natural killer cells, CD19+ B cells and
CD4+/CD25+ regulatory T Cells. In contrast, single cells
from three similar cell types, namely CD8+/CD45RA+
naı̈ve cytotoxic T cells, CD4+/CD45RA+/CD25- naı̈ve T
cells and CD4+/CD25 regulatory T cells, are combined
to form the challenging case dataset. Supplementary Ta-
ble S2 shows the wide variety of published datasets that we
adopted and tested SAME-clustering on.

Implementation of the five individual clustering methods

SC3 filters out genes/transcripts that are expressed in
<10% or >90% of cells to remove rare and ubiquitous
genes/transcripts. We applied SC3 with this default gene fil-
tering step to all datasets to reduce dimensionality and with-
out substantial impact on clustering results (Supplementary
Table S3). For the simple and challenging PBMC mixture
datasets, SC3 estimated 906 and 943 clusters respectively.
As the number of clusters determined by the default method
in SC3 performs unsatisfactorily for large datasets, we run
principal component analysis (PCA) on the 1000 most vari-
able genes, based on log2 transformed counts per million
(CPM) data, to visually estimate the number of clusters.
PCA plot shows three clear clusters for the simple case and
two vague clusters for the challenging case (Supplementary
Figure S2). We therefore used these numbers when applying
SC3 to these PBMC mixture datasets.

For Seurat, dimension was reduced according to the
number of principal coordinates (PCo) determined by
CIDR implementation because CIDR provides an auto-
matic way to select the number of PCos and SAME-
clustering performs robustly across different number of PCs
selected (Supplementary Figure S3, Supplementary Table
S4). When applying t-SNE + k-means, we added an inter-
mediate step to automatically detect the number of clusters
and cluster centroids using ADPclust (23), which we have
found previously to stabilize the performance of t-SNE + k-
means (12). Although this automatic detection of centroids
may affect cluster results for t-SNE + k-means when com-
pared with manual inspection of centroids (Supplementary
Figures S4 and S5, Supplementary Table S5), SAME en-
semble results remained stable (Supplementary Table S5).
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For SIMLR, we set the number of clusters at the true values
for the simple and challenging datasets, because the compu-
tational costs are high for SIMLR to determine the number
of clusters for such large datasets.

Unlike SC3 and Seurat, CIDR, t-SNE + k-means and
SIMLR do not perform gene filtering. In order to test
the potential impact of gene filtering on clustering perfor-
mance, we adopted the method used by SC3. Specifically, we
assessed the impact of different levels (ranging 0–10%) of
filtering on individual methods (Supplementary Table S6)
and the extent to which gene filtering affects SAME ensem-
ble clustering (Supplementary Table S7). Our results sug-
gest that gene filtering tends to improve clustering and we
therefore conducted all our analysis with the 10% filtering
criterion. More details on the implementation of these indi-
vidual methods can be found in the Supplementary Data.

SAME-clustering method

We adopted the notation laid out by Topchy (14). Suppose
that we have n single cell data points X = {x1, . . . , xn}. X
serves as input to various (five in SAME by default) individ-
ual clustering methods to return a set of labels. Let H be the
number of individual clustering methods (by default, H = 4
as SAME selects four out of five), then for each data point
xi there would be H elements in the set of inferred cluster
labels.

xi → {π1 (xi ) , . . . , πH (xi )}
π j (xi ) is the label assigned to single cell data point xi

by the j th clustering method with i = 1, 2, . . . , n and
j = 1, 2, . . . , H. We make no assumption for the corre-
spondence of labels across the H methods. Hereafter, we
will use the notation yi j = π j (xi ) or yi = π (xi ), which is
the dataset used to generate our final consensus partition
πC. This problem can now be considered as a categorical
clustering problem, where we find a partition πC of a set of
vectors Y = {yi }.

We define

δ (a, b) =
{

1, i f a = b
0, i f a �= b

Then we model yi
′s as random variables from a mixture

of M multivariate densities. Each component m is parame-
terized by θm, where M is the resulting number of clusters
in the final consensus clustering and m = 1, 2, . . . , M. αm
is the prior probability of the mth cluster. The model as-
sumes that yi

′s are generated from first drawing from a clus-
ter according to probabilities αm

′s, then sampling a point
from the cluster-specific density Pm(yi |θm). Taken together,
we have:

P (yi |�) =
M∑

m=1

αm Pm(yi |θm) (1)

Assuming i.i.d. for yi
′s, the log likelihood function for

{α1, . . . , αm, θ1, . . . , θm)can be written as:

logL (�|Y) = log
n∏

i=1

P(yi |�)=
n∑

i=1

log
M∑

m=1

αm Pm(yi |θm) (2)

And now to find the best fitting mixture density for data
Y, we need to maximize this likelihood function.

�∗ = argmax� logL (�|Y) (3)

To simplify the problem, we assume conditional inde-
pendence among individual clustering methods with each
method weighted equally, so the conditional probability of
yi can be represented as the following:

Pm (yi |θm) =
H∏

j=1

P( j )
m

(
yi j |θ ( j )

m

)
(4)

Since yi j are nominal values reflecting cluster labels from
partition π j , the probability density can be represented as a
multinomial distribution:

P( j )
m

(
yi j |θ ( j )

m

) =
K( j )∏
k=1

ν jm(k)δ(yi j ,k) (5)

In (Eq. 5), K( j ) is the number of clusters from partition
π j , clustering result from the jth method. The cluster label
k in π j therefore takes values from {1, . . . , K( j )}, and the
probabilities of cluster labels are defined as θ

( j )
m = ν jm (k),

with the constraint that these probabilities sum to 1.

K( j )∑
k = 1

ν jm (k) = 1, ∀ j ∈ {1, . . . , H} , ∀m ∈ {1, . . . , M} (6)

For a concrete example, when individual clustering
method SC3 produced three clusters, (Eq. 5) can be repre-
sented as:

P(SC3)
m

(
yi j |θ (SC3)

m

) = νSC3,m (1)δ(yi,SC3,1)νSC3,m(2)δ(yi,SC3,2)

(1 − νSC3,m (1) − νSC3,m (2))δ(yi,SC3,3)

Note that each component m has a corresponding set of
ν ′s, ∀m ∈ {1, . . . , M}.

One cannot analytically solve the maximum likelihood
function in Eq. 3, when all the parameters (α’s and ν’s) are
unknown. Fortunately, however, we can optimize Equation
(1) via the EM algorithm. Specifically, we introduce hidden
data Z, the distribution of which should be consistent with
the observed values Y:

log P (Y|�) = log
∑
z∈Z

P (Y, z|�) (7)

The values zi
′s represent the mixture components used

to generate data points yi
′s. zi = {zi1, . . . , zi M} ,such that

zim = 1 if yi belongs to the m-th component and zim =
0,otherwise. The complete data (Y, Z) likelihood can be
written as:

log L (�|Y, Z) = log
n∏

i=1
P (yi , zi |�)

= log
n∏

i=1

M∏
m=1

αm Pm(yi |θm)zim

=
n∑

i=1

M∑
m=1

zim log αm Pm(yi |θm)

(8)

Following the general EM approach, the following func-
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Figure 2. Benchmarking of SAME-clustering in fifteen published datasets. Similarity between estimated and ‘gold-standard’ cluster labels is measured
through Adjusted Rand Index (ARI), for 15 benchmark datasets.

tion is defined, serving as the lower bound of the observed
data likelihood:

Q (�; �′) = ∑
z

log (P (Y, z|�)) p (z|Y,�′)

= ∑
z

n∑
i=1

M∑
m=1

zim log αm Pm(yi |θm)p (z|Y,�′)

=
n∑

i=1

M∑
m=1

E[zim] log αm Pm(yi |θm)

(9)

Maximizing Q(�; �′) is equivalent to maximizing the
observed likelihood function in Equation (2) where � =
{α1, . . . , αm, θ1, . . . , θm} (24,25). We optimize Q via the fol-
lowing Expectation (E) and Maximization (M) steps. In the
E step, we compute E[zim] with current estimates of the pa-
rameters. In the M step, we apply the Lagrange multiplier
along with the constraint

∑
m

αm = 1,and
∑
k

ν jm(k) = 1 to

estimate the parameters with updated expected values of the
hidden variables.

Expectation (E) Step:

E [zim] =
α′

m

∏H
j=1

∏K( j )
k=1

(
ν ′

jm(k)δ(yi j ,k)
)

∑M
l=1 α′

l

∏H
j=1

∏K( j )
k=1

(
ν ′

j l (k)δ(yi j ,k)
) (10)

Maximization (M) Step:

αm =
∑n

i=1 E [zim]∑n
i=1

∑M
m=1 E [zim]

(11)

ν jm (k) =
∑n

i=1 δ
(
yi j , k

)
E [zim]∑n

i=1

∑K( j )
k=1 δ

(
yi j , k

)
E [zim]

(12)

Each run of SAME initializes α′s and ν ′s according
to a Dirichlet prior with a vector of 1′s. We repeat the
E and M steps until convergence criterion is met. The
convergence criterion we used for our implementation is
loglikelihoodIteration − loglikelihoodIteration−1 < 0.0001. Af-
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Figure 3. Method ranking across 15 datasets. Each method is ranked ac-
cording ARI for 15 datasets. Lower rank represents better performance (1
is the best and 6 is the worst). Ties are replaced by the mean of their ranks.

ter convergence is achieved, yi is assigned to the compo-
nent that has the largest expected value for the hidden label
zi = {zi1, . . . , zim}, as E[zim] denotes the probability that yi
is drawn from the mth mixture component. This results in
our final consensus partition πC. Since EM Algorithm does
not guarantee reaching the global maximum (26,27), we run
three chains of EM with random initializations by default in
SAME as we observe ARI results stabilize with three chains
of EM (Supplementary Figure S6).

EM with missing labels

Some clustering methods, such as Seurat, give missing clus-
ter labels for some of the data points. Therefore, our EM
algorithm needs to be modified to accommodate such miss-
ing data. Now yi = (yobs

i , ymis
i ). For the E-step, E[zi ] is

computed over the observed yi
′s, denoted as E[zi |yobs

i , θ ′],

which means the product changes from
H∏

j = 1
to

∏
j :yobs

. For the

M-step, complete data log likelihood function is maximized
to obtain estimates for parameters ν jm(k) with E[zi |yobs

i , θ ′]
and E[zi ymis

i |yobs
i , θ ′] calculated and substituted into the M-

step Equations (11) and (12) (28). For missing observations
in Equation (12), δ(yi j , k)would be replaced by the current
estimate of ν jm(k).

Determining the final estimated number of clusters

To determine the final number of clusters/ components,
we run the multinomial mixture ensemble method multiple
times over a range of M values. In our implementation,
we run our ensemble SAME-clustering method for M =
2 . . . max(k̂opt−SC3, k̂opt−CIDR , k̂opt−Seurat, k̂opt−tSNE+kmeans,
k̂opt−SI MLR). We calculate MLE by maximizing the follow-
ing log likelihood function until convergence criterion is

met.

log L (�|Y) = log
n∏

i=1

P(yi |�) =
n∑

i=1

log
M∑

m=1

αm Pm(yi |θm)

=
n∑

i=1

log
M∑

m=1

αm

H∏
j=1

K( j )∏
k=1

(
ν ′

jm(k)δ(yi j ,k)
)

Next, we calculate AIC or BIC for each Mwe attempt the
ensemble method, where n is the number of single cells, p is
the number of parameters and L̂ is the maximized value of
the likelihood function.

AIC = 2p − 2ln
(
L̂
)

BIC = ln (n) p − 2ln
(
L̂
)

For the number of parameters, we have M − 1parameters

for the mixture weights, plus
H∑

j = 1
(K( j ) − 1) for each of the

M component, leading to the total p = (M − 1) + M ×
H∑

j = 1
(K( j ) − 1). k̂optimal would be the M value that gives the

lowest BIC or lowest AIC, depending on our choice of the
model selection criterion. We found that BIC either outper-
forms AIC, or is merely slightly inferior to AIC in terms of
ARI for the benchmark datasets (Supplementary Figures
S7–S9). Therefore, we choose BIC as our default model se-
lection criterion.

Diversity of individual cluster results to improve SAME-
clustering

Existing literature has pointed out the importance of diver-
sity in partitions from individual methods to enhance the
performance of ensemble solution (29–32). To assess the
diversity of the five individual clustering methods, we cal-
culate pairwise ARI’s to quantify similarity between any
two individual clustering solutions. Note that a low pair-
wise similarity represents a higher diversity. After attaining
all the pairwise similarities, which can be represented as a
heatmap, we calculate the variance for the vector of similar-
ities with each method, including the similarity of value 1
for the method to itself. Due to the inclusion of this value 1
(self-similarity), this method-specific variance-based statis-
tic tends to be larger for methods that are dissimilar to oth-
ers. In comparison, the method with the lowest variance is
most similar to other methods, with evidence aggregated
from all pairwise comparisons. We, therefore, removed the
method with the lowest variance, since the method would
contribute the least in terms of diversity. We observed that
this diversity-filtering approach results in improved perfor-
mance in six datasets (Darmanis, Deng, Li, Baron human1,
Baron human2, and Baron human 3), same performance in
two datasets (Ting and Yan), and impaired performance in
five datasets (Supplementary Figure S10). The average in-
crease in ARI for the six datasets (0.048) is slightly higher
than the average decrease in the five datasets (0.038). Taking
the reduced computational costs also into consideration, we
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Figure 4. Accuracy of estimated number of clusters for non-rare cell types. Correlations between estimated and true number of clusters across 15 benchmark
datasets, for SC3 (A), CIDR (B), Seurat (C), t-SNE + k-means (D), SIMLR (E) and SAME-clustering (F) respectively. Rare (<1% of total single cells) cell
types are removed.

proceeded with removing the method that contributes the
least diversity.

RESULTS

We benchmarked our SAME-clustering method and the
five individual methods on 15 published datasets that rep-
resent a wide variety of sequencing technologies, tissue
of origins, data units, numbers of single cells and num-
bers of cell types (Supplementary Table S2). Figure 2
summarizes clustering results, gauged by ARI. Among

the 15 attempted datasets, SAME-clustering produces the
best results in eight datasets (Darmanis, Baron human1,
Baron human3, Baron human4, Baron mouse1, Goolam,
Zeisel and the challenging case), and the second best in
four datasets (Biase, Baron human2, Li, Yan). Addition-
ally, SAME-clustering outperforms at least three individ-
ual methods in all 15 datasets. To further support con-
sistency of SAME in producing reliable results we rank
each method from 1st to 6th for all datasets, where ties
are replaced by their mean rank. Figure 3 clearly shows
that SAME-clustering outperforms all other methods rank-
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Figure 5. Identification of a novel cluster in the simple PBMC dataset.
Expression of two known NK cell-type marker genes in cells labeled
as NK cells by both “gold-standard” annotation and SAME-clustering
(NK cluster) vs cells in the novel cluster (new cluster).

wise. The worst rank of 5.5 came from the Biase dataset,
where only one cell was misplaced by SAME, leading to a
high ARI but did not perform well rank-wise because there
were three methods that achieved perfect clustering when
compared to the ‘gold-standard’. We also compare our re-
sults to our previously published SAFE method (12), which
performed overall second best and remains an attractive al-
ternative (33), particularly when analyzing large datasets to
save computation time.

We further investigated the performance of SAME-
clustering in terms of estimating the number of clusters,
compared to the five individual methods. Generally speak-
ing, SC3 tends to overestimate the number of clusters,
while CIDR, t-SNE + k-means, and Seurat underesti-
mate the number of clusters. SIMLR performs reasonably
well in most datasets achieving the best estimates. SAME-
clustering also tends to underestimate the number of clus-
ters, especially for the Baron datasets where the true num-
ber of clusters are either 13 or 14 (Supplementary Figure
S11). For the five Baron datasets, there are five to eight rare
cell types (defined as <1% of total single cells, with actual
number of single cells ranging from 1–36). Individual clus-
tering methods and SAME-clustering are not able to clas-
sify rare clusters accurately, which is a common problem
with clustering methods. When we focus on the non-rare
cell types, it becomes more apparent that SAME-clustering
outperforms all other methods (Figure 4). Additionally, we
have also assessed the several other computing and perfor-
mance aspects of SAME-clustering, including the potential
factors that may influence SAME’s performance, comput-
ing time and performance for large datasets, and simulation
evaluation. Details are given in the Supplementary Materi-
als (Supplementary Figures S12–S23).

Interestingly, SAME-clustering demonstrates its capabil-
ity to identify novel clusters. Figures 5 and 6 show an ex-
ample from the simple case PBMC dataset, where SAME-
clustering separates a novel cluster of single cells. According
to the ‘gold-standard’ labels defined by cell surface mark-
ers used in the original FACS experiments (34), there are
three clusters in this dataset: CD56+ natural killer (NK)
cells, CD19+ B cells and CD4+/CD25+ regulatory T Cells.
The new fourth cluster is comprised of only 72 cells out of
a total of 27 733 cells. Of these 72, 67 are a priori annotated
as NK cells, 1 as a B cell, and 4 as regulatory T cells. NKG7
and GNLY, which are known NK cell marker genes (21),
are highly expressed in NK cells (as expected) but not in
the new cluster of cells identified by SAME (Figure 5). Al-
though most cells in the novel cluster are annotated as NK
cells, the low expression of the known marker genes suggests
that these cells have transcriptomic profiles deviating from
the ‘gold-standard’ NK cells. The remaining three clusters
correspond to B cells, T cells, and NK cells. We feed cluster
labels from SAME into Seurat to find the top ten cell type
marker genes that are expressed in at least 70% of cells of
the corresponding cell type. Figure 6 shows that, when sam-
pling cells that have concordant labeling between the a priori
annotation and SAME clustering, there is an apparent sep-
aration of B, T and NK cells (Figure 6: left panel). In con-
trast, when we examine the expression profiles of cells in the
new cluster, they separate into three groups. The first and
third sub-groups (Figure 6: right panel: left most and right
most columns) express marker genes of both regulatory T
and NK cell types, and the second sub-group of single cells
(Figure 6: right panel: middle columns) do not clearly ex-
press marker genes for any of the three cell types. These
findings suggest that single cells in this new cluster, most
(67/72) of which had ‘gold-standard’ NK cell labeling from
the original publication (21), are different from the typical
NK cells and may represent intermediate cell type(s) that
warrants further investigation.

Additionally, our SAME-clustering discovers limitations
in ‘gold-standard’ cell type annotations. We will illustrate
with one example in the Darmanis (18) dataset. We com-
bined top 40 cell-type markers of astrocytes, oligodendro-
cytes, and neurons from an independent study (35) and in-
tersected them with Seurat to identify marker genes for each
corresponding ensemble cluster, resulting in 24 astrocyte
markers, 15 oligodendrocyte markers, and 7 neuron mark-
ers. Figure 7 (rightmost three columns) shows three discor-
dant cells: one was annotated as an astrocyte but was identi-
fied as an oligodendrocyte by SAME (‘true astro ens oligo’
in Figure 7); one was annotated as a neuron but was iden-
tified as an astrocyte by SAME (‘true neuron ens astro’ in
Figure 7); and one as annotated as an oligodendrocyte but
was identified as a neuron by SAME (‘true olig ens neuron’
in Figure 7). The first two discordant cells express marker
genes from both their annotated cell type and the SAME-
classified cell type. Such transcriptomic profile indicates
that these single cells, containing mRNAs from signature
genes of multiple cell types, may derive from a transient
state, a doublet, or present a novel cell type. The last cell,
although annotated as an oligodendrocyte, predominantly
expresses neuron markers, suggesting that the original an-
notation might be problematic. In contrast, three randomly
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Figure 6. Marker gene expression for 30 selected single cells with concordant cell labels and 72 single cells in the novel cluster (simple PBMC dataset).
Expression of marker genes specific to B, regulatory T, and NK cells. Left: expression heatmap of 30 single cells for which SAME cluster labeling agrees
with gold-standard annotations. Right: heatmap of 72 single cells belonging to the new cluster identified by SAME.

selected single cells from each of the three cell types, whose
cluster labels by SAME agree with ‘gold-standard’ annota-
tions, show rather clean expression of marker genes from
one single cell type.

DISCUSSION

We propose and implement SAME-clustering, a mixture
model based probabilistic framework, that performs en-
semble clustering for scRNA-seq data. Results across 15
real datasets show that SAME-clustering provides accu-
rate and robust clustering. The ensemble method is flexi-
ble and users may choose to use different individual cluster-
ing methods. Not only does SAME-clustering provide im-
proved clustering performance for labeling individual single
cells, it also attains more accurate estimates for the num-
ber of clusters through the BIC model selection criterion.
Overall, SAME-clustering offers an appealing solution to
the scRNA-seq clustering problem, where individual clus-
tering methods show substantial discrepancy (Supplemen-
tary Figure S1) with no method being an apparent winner
across all datasets (Figure 2).

Ensemble modeling using mixture of multivariate multi-
nomial distribution provides a well-grounded statistical
framework that resolves the problem of lacking correspon-
dence in labels across methods and naturally addresses the
issue of missing cluster labels. SAME-clustering provides

accurate, either the best or close match to the best, clus-
tering results through combining diverse sets of clustering
solutions obtained through varied dimensional reduction
methods, distance metrics, and clustering methods. In ad-
dition, SAME-clustering provides more accurate estimate
of the number of clusters compared to all individual meth-
ods examined through the well-established BIC statistical
model selection criterion. Furthermore, SAME-clustering
results are stable when parameters are changed for indi-
vidual methods (Supplementary Tables S4 and S5). Our
method is flexible and can easily accommodate additional
sets of clustering solutions, as new clustering methods con-
tinue to be proposed (36). Supplementary Figure S10 shows
that adding one more set of cluster results may improve en-
semble results. We hypothesize that quality and added di-
versity of the additional contributing solution(s) influence
whether the ultimate ensemble solution improves. However,
these characteristics of individual cluster solutions are un-
known a priori. Therefore, it is hard to gauge whether to
include additional sets of cluster results. Our results (Sup-
plementary Figure S10) suggest that diversity filtering of
individual methods before ensemble leads to slightly im-
proved ensemble clustering. The diversity filtering strategy
is likely more useful when investigators choose to ensem-
ble results from a larger number of individual methods,
both in terms of clustering performance and computational
costs. Our extensive evaluations demonstrate that SAME-
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Figure 7. Revealing limitations in cell type annotations in the Darmanis
Dataset. Expression of marker genes for Astrocytes, Oligodendrocytes,
and Neurons. First 9 columns correspond to 9 single cells, by randomly
selecting 3 cells from each cell type, for which SAME inferred labels agree
with the ‘gold-standard’ annotations. Last 3 columns correspond to single
cells for which SAME disagree with the ‘gold-standard’ annotations.

clustering provides robust and accurate clusters for scRNA-
seq data. Batch effect can potentially heavily influence clus-
tering results. Although SAME has demonstrated satisfac-
tory performances across real datasets, it is prudent and
highly recommended to perform batch effect correction us-
ing customized batch effect correction methods (37) before
running individual clustering methods and subsequently
SAME. In addition, implementation of our SAME method
provides a general and statistically rigorous framework for
ensemble clustering using the mixture model-based method.
We therefore expect SAME-clustering to be a helpful tool
not only for single-cell clustering, but for other datasets that
benefit from ensemble clustering approaches.

DATA AVAILABILITY

SAME-clustering, including source codes and tutorial, is
available at https://yunliweb.its.unc.edu/same/ and https://
github.com/yycunc/SAMEclustering.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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33. Duò,A., Robinson,M.D. and Soneson,C. (2018) A systematic
performance evaluation of clustering methods for single-cell
RNA-seq data [version 2; peer review: 2 approved]. F1000Research,7,
1141.

34. Zheng,G.X., Terry,J.M., Belgrader,P., Ryvkin,P., Bent,Z.W.,
Wilson,R., Ziraldo,S.B., Wheeler,T.D., McDermott,G.P., Zhu,J. et al.
(2017) Massively parallel digital transcriptional profiling of single
cells. Nat. Commun., 8, 14049.

35. Cahoy,J.D., Emery,B., Kaushal,A., Foo,L.C., Zamanian,J.L.,
Christopherson,K.S., Xing,Y., Lubischer,J.L., Krieg,P.A. and
Krupenko,S.A. (2008) A transcriptome database for astrocytes,
neurons, and oligodendrocytes: a new resource for understanding
brain development and function. J. Neurosci., 28, 264–278.

36. Sun,Z., Chen,L., Xin,H., Jiang,Y., Huang,Q., Cillo,A.R., Tabib,T.,
Kolls,J.K., Bruno,T.C. and Lafyatis,R. (2019) A Bayesian mixture
model for clustering droplet-based single-cell transcriptomic data
from population studies. Nat. Commun., 10, 1649.

37. Stuart,T. and Satija,R. (2019) Integrative single-cell analysis. Nat.
Rev. Genet., 20, 257–272.


