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GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with
extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high
degree of plasticity. In selective brain regions they are expressed on specific principal cells
and interneurons (INs), and generate a tonic conductance that controls neuronal excitability
and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states
of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and
the postpartum period, with direct consequences on neuronal excitability and network
dynamics.The defining network events implicated in cognitive function, memory formation
and encoding are γ oscillations (30–120 Hz), a well-timed loop of excitation and inhibition
between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can
modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters
γ frequency recorded in vitro. The ovarian cycle is another physiological event with large
fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in
memory performance, cognitive function, and mood in both humans and rodents. Here
we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types,
with enhanced expression during diestrus in principal cells and specific INs. The plasticity
of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded
in area CA1 throughout several days in vivo during diestrus and increases it during estrus.
Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT)
females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd−/−), and in male
mice during a time course equivalent to the ovarian cycle. Our findings may explain the
impaired memory and cognitive performance experienced by women with premenstrual
syndrome (PMS) or premenstrual dysphoric disorder (PMDD).

Keywords: ovarian cycle, PMS, PMDD, gamma oscillations, GABAA receptor, delta subunit, tonic inhibition,

parvalbumin

INTRODUCTION
There are numerous reports about women experiencing fluctu-
ating cognitive and neuropsychological functions during specific
stages of the menstrual cycle. During the luteal phase, when pro-
gesterone levels are high, some women may experience different
levels of dysthymia, irritability, anxiety, impaired working and
emotional memory. All of these symptoms are inevitably aggra-
vated in patients with premenstrual dysphoric disorder (PMDD;
Man et al., 1999; Sveindóttir and Bäckstrøm, 2000; Bäckström
et al., 2003; Reed et al., 2008; Ertman et al., 2011; Rapkin and
Akopians, 2012; Yen et al., 2012; Bayer et al., 2014). Although all
of these conditions can be hardly ascribed to a single mechanism,
ovarian cycle-linked plasticity of δ-GABAARs and resulting effects
on tonic inhibition have been implicated in modifications in anx-
iety and memory performance in rodents (Maguire et al., 2005;
Cushman et al., 2014). Moreover, patients with PMDD seem to be
less sensitive to GABAergic modulation during their luteal phase,
which led to hypothesize a luteal deficit of GABAARs plasticity
(Bäckström et al., 2003; Maguire et al., 2005).

The δ-GABAARs are high affinity, low efficacy non-synaptic
GABAA receptors with a high sensitivity to neurosteroids (NS;
Brickley and Mody, 2012). During times of altered NS lev-
els, δ-GABAARs expression changes in a direction that seems
to depend on the timing of NS fluctuations. For instance,
δ-GABAARs plasticity has been observed during the ovarian cycle,
pregnancy, the postpartum, puberty and acute stress, with direct
effects on neuronal excitability and network activity. In particular,
δ-GABAARs plasticity has been reported in both principal cells
and INs in different rodent brain areas including the hippocam-
pus, different nuclei of the thalamus and the periaqueductal gray
(Lovick et al., 2005; Brack and Lovick, 2007; Maguire and Mody,
2007, 2008; Maguire et al., 2009; Ferando and Mody, 2013a; Smith,
2013; MacKenzie and Maguire, 2014).

The tonic conductance mediated by δ-GABAARs constitutes a
powerful constraint over gain of neuronal signal transmission in
both principal cells and INs (Mody and Pearce, 2004; Semyanov
et al., 2004; Farrant and Nusser, 2005; Walker and Semyanov,
2008; Song et al., 2011). The δ-GABAARs of hippocampal INs
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modulate γ oscillations frequency in vitro (Mann and Mody, 2010;
Ferando and Mody, 2013a). The γ oscillations are a periodic net-
work activity (30–120 Hz) that can be recorded in different brain
areas during certain wakefulness states and REM sleep, and arise
from a synchronized excitation and inhibition loop between prin-
cipal cells and PV-INs, which have a critical role in initiating
and maintaining local oscillations (Sohal et al., 2009; Wulff et al.,
2009; Korotkova et al., 2010; Carlén et al., 2011; Zheng et al., 2011;
Lasztoczi and Klausberger, 2014). These oscillations are thought
to enable encoding and memory formation in discrete neuronal
network, to facilitate spike-time dependent plasticity, and are
considered to play an important role in the physiology of learn-
ing and memory (Colgin and Moser, 2010; Uhlhaas et al., 2011;
Buzsáki and Wang, 2012; Uhlhaas and Singer, 2012). Because in
this study we were interested in more gradual alterations in oscil-
latory activity (expected with the hormonal changes linked to the
ovarian cycle) we focused on REM sleep which is characterized
by prominent and regular θ – γ episodes, and is unaffected by
instantaneously changing “external” parameters such as running
speed (McFarland et al., 1975; Shin and Talnov, 2001; Ahmed and
Mehta, 2012); instead, the θ – γ episodes during REM sleep rely
on “internal” mechanisms such as emotional information process-
ing and memory consolidation which are known to be affected by
ovarian/menstrual cycle (Montgomery et al., 2008; Walker, 2009;
Scheffzük et al., 2011).

In a recent study in mice we showed a homeostatic pregnancy-
related down-regulation of δ-GABAARs in CA3 stratum pyra-
midale (SP) INs which led to an increase in the frequency of
γ oscillations recorded in vitro (Ferando and Mody, 2013a), in
a manner similar to what has been observed in Gabrd−/− mice
(Mann and Mody, 2010). However, the effects of δ-GABAAR plas-
ticity of INs on network activity and dynamics in the intact brain
remain to be elucidated. In this study we show ovarian cycle-
linked alterations in δ-GABAAR expression in hippocampal CA1
and CA3 SP INs, on dentate gyrus granule cells (DGGCs) and
pyramidal cells of the CA1, with increased expression during the
high progesterone stage of diestrus, and decreased expression in
estrus. These changes correlate with periodic modifications in the
magnitude of γ oscillations recorded in vivo in CA1 SP of freely
moving mice.

Previous studies showed increased anxiety and memory per-
formance in female WT but not in global Gabrd−/− mice during
estrus (low progesterone phase), while the behavior during
diestrus in WT mice closely resembled that of male mice (Maguire
et al., 2005; Moore et al., 2010; van Goethem et al., 2012; Cushman
et al., 2014). However, δ-GABAARs are plastic in both hippocam-
pal principal cells and INs, so that behavioral correlates in global
Gabrd−/− mice cannot distinguish between receptor changes in
specific neuronal subtypes. By using a recently engineered floxed-
Gabrd mouse (Lee and Maguire, 2013) and the PV-IRES-Cre line
(JAX Stock # 008069), we specifically deleted the δ dubunits of
GABAARs from PV + INs (PV-Gabrd−/−) to examine poten-
tial changes in ovarian cycle-linked modifications in γ oscillations
magnitude in the absence of δ-GABAARs on PV-INs. Our find-
ings identify a possible underlying cause for the different degrees
of cognitive impairment experienced by some women at various
phases of the ovarian cycle.

MATERIALS AND METHODS
ANIMAL HANDLING
In this study we used adult (15–20 week-old) female and male
C57BL/6J mice, WT (Cre−/−) or mice lacking δ-GABAARs specif-
ically on PV-INs (PV-Gabrd−/−), generated by crossing PV-Cre
(PV-IRES-Cre line; JAX Stock # 008069) and Gabrd-flox mice
(generous gift of Dr. Jamie Maguire, Tufts University; Lee
and Maguire, 2013) both back-crossed for >10 generations on
C57BL/6J background. The δ-GABAARs ablation from PV-IN was
confirmed with immunohistochemical fluorescent double labeling
(Ferando and Mody, in preparation, data not shown). Mice were
housed with ad libitum access to food and water and kept on a 12-h
light/dark cycle, under the care of the UCLA Division of Labora-
tory Animal Medicine (DLAM). All experiments were performed
during the light period and according to a protocol (ARC # 1995-
045-53B) approved by the UCLA Chancellor’s Animal Research
Committee. Genotyping was performed by Transnetyx (Memphis,
TN, USA).

SURGERY
Surgeries were performed under aseptic conditions on mice weigh-
ing 25–30 g. Under isoflurane anesthesia (2–2.5% in O2 alone)
the animal was mounted into a standard Stoelting instrument
stereotaxic frame with blunt ear bars. Body temperature was
maintained at 37◦C using a rectal probe and a water circulated
heating pad. The cranium was exposed through a small mid-
line scalp incision. The bone was dried and three holes were
drilled (0.5 mm diameter) in the cranium. With the aid of
a micromanipulator, two sterilized recording electrodes (Plas-
ticsOne, stainless steel, 125 μm diameter) were lowered into
hippocampal CA1 region SP, bilaterally (at stereotaxic coordi-
nates: anteroposterior, AP, 5.5 mm; mediolateral, ML, 1.45 mm;
dorsoventral, DV, 1.2 mm from brain surface). The third hole was
drilled above the cerebellum to insert the ground/reference elec-
trode. The skull surface was covered by thin layer of cyanoacrylate
based glue (Insta-Cure+, Bob Smith Industries) and then den-
tal acrylate (Ortho-Jet, Lang Dental Manufacturing Co., Inc.)
was used to attach the electrode sockets to the skull surface.
Immediately after surgery, the mouse was continuously moni-
tored until recovered, as demonstrated by their ability to maintain
sternal recumbency and to exhibit purposeful movement. Dur-
ing the recovery period after surgery, warm saline solution
(0.01–0.02 ml/g/twice/day) was administered subcutaneously to
prevent dehydration. To prevent any infection around the implant
we topically administered Neosporin for 7 days. For analgesia,
0.1 mg/kg of buprenorphine was injected subcutaneously prior to
surgery. Buprenorphine injections were continued following the
surgery every 12 to 48 h.

OVARIAN CYCLE INDUCTION AND MONITORING
Female virgin mice are generally anovulatory or have irregular
cycles, unless exposed to male pheromones. In the present study
ovarian cycle was induced in previously anovulatory virgin adult
mice (15–20 week-old) by a single exposure to male bedding,
and monitored by means of vaginal impedance measurements
and vaginal smears cytological analysis, as previously described
(Ramos et al., 2001; Maguire et al., 2005; Jaramillo et al., 2012;
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Cushman et al., 2014). Briefly, vaginal impedance was measured
daily (Estrus cycle monitor EC40, Fine Science Tools). Daily vagi-
nal smears were fixed in methanol and stained (Giemsa Staining,
Fisher Diagnostics). Diestrus and estrus were defined as 3 days
prior and 1 day after vaginal impedance peak, respectively, and
by vaginal cytology profile (e.g., Figure 5A). Mice were tested in
either diestrus (high plasma progesterone) or estrus (low plasma
progesterone) phase of their ovarian cycle.

IN VIVO CHRONIC SIMULTANEOUS VIDEO AND LOCAL FIELD
POTENTIAL RECORDINGS
Seven to ten days after the animals had fully recovered from
the surgery, chronic simultaneous video and local field poten-
tial recordings were carried out continuously (24 h a day) for
1–3 weeks. Video observation was performed through an infrared
USB camera mounted on the top of the recording cage. The
video was recorded using the open source iSpy software, which
calculates in real time the percentage deviation between consec-
utive frames and generates a text file (activity data) containing
time-stamped information on the percentages of frame-to-frame
deviation values.

Local field potentials were recorded with a custom-made minia-
ture dual headstage amplifier connected to the electrode sockets
mounted on the animal’s head and then wired to an electrical com-
mutator (Dragonfly Inc., or Pinnacle Technology Inc.). The signals
from the commutator were fed through a 16-channel extracellular
amplifier (A-M Systems model 3500) with a gain of 1,000. Signals
were low-pass filtered at 1,000 Hz and sampled at 2,048 s−1 per
channel, using a National Instruments A/D board.

Continuous data acquisition was carried out using Igor NIDAQ
tool (Wavemetrics, Lake Oswego, OR, USA) and data were saved
into separate files every week. Activity graphs deriving from the
video recordings and corresponding local field potentials were
loaded into a custom made software (written in Igor64, Wave-
metrics, Lake Oswego, OR, USA) that aligned the two recordings
to determine sleep and wake cycles.

IMMUNOHISTOCHEMISTRY AND MICROSCOPY
Brains were processed and tissue stained as previously described
(Ferando and Mody, 2013a). Briefly, mice were transcardially per-
fused with 4% paraformaldehyde in 0.12 M phosphate buffer,
pH 7.3. Fixed brains were sectioned at –16◦C with a cryostat
(coronal, 35 μm). All sections used for the same analyses (e.g.,
Figures 4C,D) were processed in parallel.

For diaminobenzidine (DAB) δ-GABAARs stain: quenching of
endogenous peroxidases was done in H2O2 (3% in methanol,
30 min). Slices were blocked in 10% normal goat serum (NGS),
2 h, incubated with anti-δ-GABAAR antibody (1:500; generous gift
from Dr. Werner Sieghart, Medizinische Universität, Wien, Aus-
tria) overnight, then with biotinylated goat anti-rabbit antibody
(1:200; Vector Laboratories), 4 h. Amplification was done with
HRP-conjugated avidin enzyme complex (ABC Elite; Vector Lab-
oratories), 30 min. Signal was developed with DAB (Vector Lab).
All steps were done at room temperature.

Bright field microscopy: digital images were collected with an
Axioskop 2 Microscope, AxioCam digital camera system and Axio-
Vision 4.8 software (Zeiss). For the same magnification images

were taken under identical conditions of brightness and expo-
sure time. Intensity of labeling was measured as optical density
(OD) of the region of interest (ROI) using NIH ImageJ soft-
ware. For CA1 and CA3 INs the ROI was the soma of all visually
identified INs within 30 μm of the pyramidal cell layer, for
DGML, CA1 stratum oriens (SO) and radiatum (SR), areas of
approximately the same size of identified INs were circled and
OD was measured. Reported OD values (represented in arbitrary
units, AU) are mean ± SEM (Table 1). Statistical significance
was determined with the use of statistical tests specified in each
section.

ELECTROPHYSIOLOGY DATA ANALYSIS
Video and local field potential recordings were started after 2–
3 days of habituation to the recording home cage. Data were
analyzed in 24 h long epochs. Local field potential recordings
were filtered in the δ range (1–4 Hz) and the δ magnitude was
calculated using the Hilbert transformation. Both activity values
deriving from the video data and delta magnitudes were binned
at 1 s bin width. The binned activity values were plotted against
the binned delta magnitudes for a 24 h-long session. Based on
the point clouds, 3 clusters were separated (low δ + high activ-
ity, low δ + low activity, high δ + low activity) and thresholds
for δ and activity values between the clusters were determined
(Figure 1A).

Using these thresholds a custom made software (written in
Igor64, Wavemetrics, Lake Oswego, OR, USA) categorized every
second of the long local field potential recording into one of the
following 4 groups: movement (activity + low δ), NREM sleep
(zero activity + high δ), REM sleep (zero activity + low δ) and
a fourth category which consisted of segments that could not be
determined (ND; Figure 1B).

The definition of REM sleep was further narrowed by accept-
ing only zero activity + low δ segments longer than 20 s that
were adjacent to a segment characterized by high δ + zero activity
(putative NREM sleep) phase. The detected REM segments were
filtered in the θ (5–12 Hz) and high γ (63–120 Hz) range and θ

phases and γ magnitudes were calculated using Hilbert transforms
(Figure 2C). θ phase coupled γ amplitudes were determined by
calculating the difference between the min and max values of the
θ phase triggered average γ magnitude. On Figures 2, 3, and 5 the
γ amplitudes were normalized to the mean values across all days
and then plotted as a function of days. For male and non-cycling
female mice the differences in γ amplitudes were determined at
3 day intervals that approximated the time difference between the
estrus and diestrus phases of cycling female mice.

Time-frequency representation of the signal (Figure 2C) was
performed using the Morlet wavelet transform. The magni-
tude of the wavelet transform was plotted as a function of
time and frequency, with warmer colors representing increasing
magnitude.

STATISTICS
Data are expressed as mean ± SEM. For group comparisons
we used one-way ANOVA with Tukey’s post hoc test corrected
for multiple comparisons. p < 0.05 were accepted as significant
differences.
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RESULTS
THE AMPLITUDE OF HIPPOCAMPAL γ OSCILLATIONS RECORDED IN
VIVO FLUCTUATES WITH PHASES OF THE OVARIAN CYCLE
In light of current evidence about cognitive performance fluctu-
ations over the ovarian cycle in both women and rodents, it is
remarkable that γ oscillations, a network activity that has been
implicated in memory and encoding (Singer, 1993; Colgin and
Moser, 2010; Uhlhaas et al., 2011; Buzsáki and Wang, 2012), have
not been examined in relationship to the menstrual cycle in women
or to the ovarian cycle in rodents. We therefore sought to measure
γ oscillations coupled to θ rhythms in cycling female WT mice.
We focused on REM θ – γ episodes, because this state is relatively
easy to identify, shows consistent θ phase γ amlpitude coupling
and appears to be linked to emotional information processing and
memory consolidation (Montgomery et al., 2008; Walker, 2009;
Scheffzük et al., 2011).

To test possible ovarian cycle related changes in γ activity dur-
ing REM θ-γ episodes, in the first set of experiments continuous
video local field potential recordings were performed for 2–3 weeks
in cycling female WT mice. REM phases were detected and the
average θ phase coupled γ amplitudes were calculated for each
consecutive day. Plotting the normalized γ amplitudes revealed
a characteristic fluctuation, which correlated with the stage of
the ovarian cycle determined by vaginal impedance or cytology
(Figure 2A).

Comparing the distribution of γ amplitudes for a large number
(n > 10/day) of REM segments in estrus and diestrus indicated
a shift toward higher γ amplitudes during estrus (averages of
normalized γ amplitudes across animals: 1.21 ± 0.04 for estrus,
0.82 ± 0.04 for diestrus, n = 2 mice). Comparing the wavelet
spectrogram of sample REM segments of a representative estrus
and a diestrus day, revealed a more prominent presence of higher
γ frequencies during estrus (Figure 2C). The average FFT spectra
of all REM phases during an estrus and diestrus day showed a
clear shift toward higher γ frequencies (Figure 2D). To investigate

this alteration in γ oscillations throughout the study we focused
on the θ phase coupled γ activity (γ amplitude) in the frequency
range (63–120 Hz) where the largest shifts were found in the FFT
spectra.

THE AMPLITUDE OF γ OSCILLATIONS IS CONSTANT IN WT MALE AND
NON-CYCLING FEMALE MICE
To ensure that the dependence of the observed γ rhythm fluc-
tuations on the stages of the ovarian cycle was not a random
phenomenon, we also investigated possible alterations in γ oscil-
lation magnitude over several days in WT males (averages of
normalized γ amplitudes across animals: 1.00 ± 0.01, 0.98 ± 0.01
for the first and last days of a shifting 3-day window, n = 2 mice;
Figure 3B) and non-cycling females (averages of normalized γ

amplitudes across animals: 1.02 ± 0.02, 0.98 ± 0.03 for the first
and last days of a shifting 3-day window, n = 2 mice; Figure 3B).
During REM, θ coupled γ amplitudes did not reveal fluctuations
over similar temporal windows in these 2 groups, demonstrating
that in the absence of ovarian cycle-linked hormonal fluctuations
there are no periodic changes in γ activity.

THE OVARIAN CYCLE IS ASSOCIATED WITH δ-GABAAR SUBUNIT
EXPRESSION CHANGES IN PRINCIPAL CELLS AND INTERNEURONS OF
THE HIPPOCAMPUS
We have previously shown how γ oscillations dynamics in vitro
are controlled by δ-GABAARs expressed on PV-INs (Mann and
Mody, 2010) and plasticity of these receptors during pregnancy
alters network excitability and γ oscillations frequency (Maguire
et al., 2009; Ferando and Mody, 2013a). δ-GABAARs expression
modulation during the ovarian cycle has been described in hip-
pocampal DGGCs with direct consequences on the tonic GABA
conductance, anxiety and cognitive performance (Maguire et al.,
2005; Maguire and Mody, 2007; Cushman et al., 2014). Specif-
ically, δ-GABAARs expression is decreased in the hippocampus
of WT mice during estrus, when plasma progesterone levels

FIGURE 1 | Separation of behavioral states based on synchronous video

and local field potential recordings. (A) Activity values plotted against the
Hilbert magnitudes in the δ frequency range (1–4 Hz) for each 1 s long epoch
(total: 86,400 epochs) during a full day of synchronous video-local field
potential recording. Note the appearance of three clusters in the point cloud.
The red rectangle delineates the point cluster corresponding to the putative
REM sleep. (B) Separation of behavioral states based on combined activity

and electrographic thresholds over an ∼12 min period. Bottom: local field
potential recording, above: 1 s binned Hilbert magnitude of the δ-frequency
range, above: activity graph, top: step function showing behavioral states
based on activity and δ magnitude values (see text for details; REM,
REM-sleep; NREM, NREM-sleep; Mvmt, movement; ND, not determined).
For the detailed explanation of the applied calculations please refer to the
Sections “Materials and Methods,” and “Electrophysiology Data Analysis.”

Frontiers in Cellular Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 222 | 4

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Barth et al. δ-GABAAR plasticity, γ oscillations and the ovarian cycle

FIGURE 2 | Fluctuations in REM sleep γ oscillation magnitudes

correlate with stages of the ovarian cycle in WT mice. (A) Diagram
showing average normalized θ phase coupled γ amplitudes during REM
sleep on consecutive days in a WT cycling female mouse. Red and blue
triangles indicate estrus and diestrus days, respectively. (B) Distribution of γ

amplitudes (binned at 2 μV) recorded in all REM phases of a single day of
estrus (red) and one of diestrus (blue). The same days are indicated on
(A) with red (estrus) and blue (diestrus) arrows. Note the shift of the
distribution toward larger values during estrus. Colored numbers indicate
mean ± SEM of the corresponding histograms. (C) Top rows: 4 s long local
field potential recordings with the corresponding wavelet spectra during
REM sleep of estrus (top) and diestrus (bottom). (A) and (B): θ phase and γ

magnitude components of local field potential segments indicated by

dashed rectangles. Below : Hilbert phases of the θ (5–12 Hz) frequency
range, filtered trace in the γ frequency range (63–120 Hz, black) with the
corresponding Hilbert magnitudes (red). (D) FFT spectra of local field
potential recordings of all REM phases during an estrus (leftmost diagram)
and a diestrus day (second from left). Gray traces indicate the FFT spectra
of individual REM phases, thick lines are the average FFT spectra on an
estrus (red) or diestrus (blue) day. Third diagram from left shows the
superimposed two average FFT spectra (estrus: red, diestrus: blue) for
comparison. The area marked by dotted lines is enlarged on the diagram on
the right to show the segments of the average FFT spectra where the
largest deviation appears in γ activity. For the detailed explanation of the
applied calculations please refer to the Sections “Materials and Methods,”
and “Electrophysiology Data Analysis.”
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FIGURE 3 | Fluctuations in γ oscillation amplitudes recorded during

REM sleep are absent in males and non-cycling WT females. (A) Left :
diagram showing normalized γ amplitudes during REM sleep on
consecutive days in a WT male mouse. Right : distribution of γ amplitudes
(binned at 2 μV) in all REM phases recorded on two separate
measurements taken 3 days apart. The 2 days are indicated on the left with
red and blue arrows. Colored numbers indicate mean ± SEM of the
corresponding γ amplitude histograms. (B) Summary data showing the

absolute values of the differences between the normalized γ amplitudes
during REM sleep in different groups of mice. In the cycling WT females
the difference was calculated between days of diestrus and estrus. In WT
males and non-cycling females the differences in γ amplitudes were
determined at 3-day intervals that approximated the time difference
between the estrus and diestrus of cycling female mice. Asterisks indicate
significant difference from all other groups in a Tukey’s multiple comparison
test following a one-way ANOVA.

are low. The tonic GABA conductance recorded in DGGCs
is also decreased, and mice exhibit higher degrees of anxi-
ety and trace fear conditioning during this stage of the ovar-
ian cycle, indicating the functional nature of the observed
GABAAR plasticity. In these studies, the plasticity of δ-GABAARs
over the ovarian cycle has been demonstrated in whole hip-
pocampal western blot analyses, and by immunohistochem-
istry in the periaqueductal gray region (Lovick et al., 2005).
In the hippocampus, δ-GABAARs are expressed by most prin-
cipal cells and some INs, and in both cell types they show
high levels of plasticity during states of altered NS produc-
tion (Maguire et al., 2009; Shen et al., 2010; Ferando and Mody,
2013a).

Here, in a broad manner, we addressed the hippocampal
neuronal cell-type specificity of ovarian cycle-linked fluctuating
expression of δ-GABAARs. With the use of δ-GABAARs specific
antisera, we stained brains of WT female mice perfused at dif-
ferent stages of their ovarian cycle. The cycles were induced and
determined as previously described (Maguire et al., 2005). In a sep-
arate staining we also compared δ-GABAARs expression in CA1
and CA3 SP-INs in cycling WT females to males and non-cycling
WT females. All sections were processed in parallel to allow for
accurate staining intensity comparisons.

In the hippocampus δ-GABAARs are found in the dendritic
compartments of DGGCs and to a lesser extent in CA1 PCs, but not
CA3 PCs. Moreover, δ-GABAARs are expressed by different types
of IN, including neurogliaform cells of the DG and lacunosum
molecular and CA3, CA1 and DG PV + INs (Ferando and Mody,
2013a,b; Yu et al., 2013). INs expressing δ-GABAARs with their
somata located in the SP or within 30 μm around the SP have
been shown to have over a 95% chance of being PV+ (Ferando
and Mody, 2013a; Yu et al., 2013).

We found that δ-GABAARs expression fluctuates over the
ovarian cycle in DGGCs, CA1 PCs, and CA1 and CA3 SP INs
(Figures 4A–C; Table 1). In particular, during times of low plasma
progesterone (estrus), staining for δ-GABAARs is significantly

lower compared to times of high plasma progesterone (diestrus),
which is suggestive of a downregulation of δ-GABAARs expression
during estrus. We found that δ-GABAARs expression on CA1 and
CA3 SP-INs is similar between diestrus female and male mice,
while non-cycling females have a slightly increased expression
selectively in CA1 SP-INs (Figure 4D; Table 1).

OVARIAN CYCLE-LINKED FLUCTUATIONS IN γ OSCILLATIONS
AMPLITUDES DEPEND ON THE PRESENCE OF δ-GABAARS ON PV-INs
Since more than 95% of SP INs that express δ-GABAARs also
express PV (Ferando and Mody, 2013a), the observed plasticity
in δ-GABAARs through the ovarian cycle is likely to influence the
functioning of PV-INs. Oscillations induced in brain slices in the
γ frequency have been shown to be controlled by δ-GABAARs of
INs (Mann and Mody, 2010).

In order to address possible functional correlates to the
observed δ-GABAARs plasticity on CA1 and CA3 SP INs, we
generated mice that lack the δ subunit of the GABAAR selec-
tively in PV + INs. These mice lose the great majority of
δ-GABAARs staining in CA1 and CA3 SP and its close prox-
imity (within 30 μm), which confirms the previously described
preferential distribution of δ-GABAARs on PV-INs in these areas
(Ferando and Mody, in preparation, data not shown). How-
ever, the mice have normal ovarian cycles as indicated by the
vaginal smears of WT and PV-Gabrd−/− mice in diestrus and
estrus. When induced with litter carrying the smell of male urine,
PV-Gabrd−/− females exhibit regular ovarian cycling that can
be ascertained with the use of both vaginal impedance mea-
surements and cytological analysis of vaginal smears (Maguire
et al., 2005). Their smears are indistinguishable from those of
WT mice; i.e., the diestrus phase is characterized by small parabasal
cells, large intermediate cells and abundant mucus, while estrus
is characterized by large cornified anucleated superficial cells
(Figure 5A).

Once we established that PV-Gabrd−/− females have regular
ovarian cycles, we went on to measure γ oscillations coupled to θ
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FIGURE 4 | Continued
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FIGURE 4 | Continued

Hippocampal δ-GABAAR plasticity at different stages of the ovarian

cycle. Representative bright field images of hippocampal DAB staining
showing δ-GABAAR expression patterns in WT cycling females at different
stages of the ovarian cycle. In the hippocampus, δ-GABAARs are heavily
expressed in the molecular layer of the dentate gyrus (DGML) and on
numerous INs including neurogliaform cells and PV-INs CA1 strata oriens
and radiatum (CA1 SO and SR). Expression in CA1 PC dendrites in the SR is
less prominent, but noticeable. (A) δ-GABAAR expression in DGGCs and
CA1 pyramidal cells is lower in estrus compared to diestrus, and this is
reflected in the staining intensity in the DGML and CA1 SO and SR. Scale
bar 200 μm. (B) In CA1 and CA3 SP INs are strongly labeled with
δ-GABAAR. Optical densities of δ-GABAAR expression were measured only
in these INs (black arrowheads). Labeling of INs is weaker during estrus,
which suggests lower δ-GABAARs expression on SP-INs (95% of which are
PV-INs) during this stage of the ovarian cycle. Scale bar 50 μm. (C) Optical
density measurements are in AU. Box plots represent the 25th and 75th
percentile, the line in the middle is the median, and the 10th and 90th
percentile are indicated by the error bars. ***p < 0.0001 difference from all
other groups. (D) Optical density measurements of CA1 and CA3 SP INs in
slices of cycling WT female mice (C ) in diestrus (D) or estrus (E), male mice
( ) and non-cycling WT female mice (NC ). δ-GABAARs expression on
SP-INs during estrus is lower than any other group in both CA1 and CA3
(***p < 0.0001); in the CA1 the two NC groups are both higher than any
other group in CA1 (∗p < 0.0001). Significance levels were established by
one-way ANOVA followed by Tukey’s multiple comparisons test. All sections
for the separate measurements in (C) and (D) were processed together to
allow for densitometric comparisons.

rhythms during REM sleep periods during the estrus and diestrus
stages of the ovarian cycle, as we have done for WT females.
Interestingly, we could not observe any fluctuations in γ oscil-
lation magnitude in cycling PV-Gabrd−/− female mice (averages
of normalized γ amplitudes across animals: 1.02 ± 0.04 for estrus,
0.97 ± 0.03 for diestrus, n = 2 mice) indicating the requirement
of intact δ-GABAARs on PV + INs for the observed fluctuations
in γ amplitudes. Comparing the difference in γ amplitudes calcu-
lated between diestrus and estrus or between measurements taken
3 days apart (for explanation, see Materials and Methods) in the
4 groups revealed significant fluctuation in the γ amplitudes in
cycling WT mice (based on 6 estrus – diestrus days for cycling
WT and 4 estrus – diestrus days for cycling PV-Gabrd−/− mice, 2
animals in each group F(3,21) = 3.072, p < 0.0001).

DISCUSSION
In this study we describe fluctuations of γ oscillation amplitudes
recorded during REM sleep in vivo that are coupled to distinct
phases of the ovarian cycle. Such periodic fluctuations in γ oscil-
lation amplitudes were not present in male or non-cycling female
mice. The γ amplitude fluctuations are inversely related to the
level of expression of δ-GABAARs hippocampal INs located in
the SP, and critically depend on the presence of δ-GABAARs on
PV-INs. Although the broad shape of oscillation frequency spec-
tra recorded in vivo makes it difficult to detect a precise shift in
a single coherent frequency peak, we nevertheless noted a shift
to the right of the recorded spectra during estrus in WT females,
so that higher frequencies became more powerful. This finding
is consistent with previous in vitro studies describing higher γ

oscillations frequency during periods of low δ-GABAARs expres-
sion on PV-INs (Mann and Mody, 2010; Ferando and Mody,
2013a). Our findings are also consistent with our previous in vivo

results showing increased γ oscillatory power in the olfactory
bulb, after selective ablation of GABAARs on INs (Nusser et al.,
2001).

As NS fluctuate over the cycle, so does the expression of the
highly NS sensitive δ-GABAARs in different neurons of the hip-
pocampus. Interestingly, levels of δ-GABAARs in hippocampal
SP-INs at diestrus are comparable to those found in male mice,
whereas δ-GABAARs expression decreases during estrus. Non-
cycling females appear to have slightly higher δ-GABAARs levels
than males, selectively on CA1 SP INs. Specific genetic and opto-
genetic manipulations of PV-INs have cemented their role in the
local generation of γ oscillations (Sohal et al., 2009; Wulff et al.,
2009; Korotkova et al., 2010; Carlén et al., 2011; Zheng et al., 2011;
Lasztoczi and Klausberger, 2014). In line with these findings,
our observations merely point out that hippocampal γ oscilla-
tion magnitude also depends on the expression of δ-GABAARs
on these neurons. These receptors are extremely plastic, dramat-
ically changing their expression levels within a few days during

Table 1 | Details of δ-GABAARs expression levels in different cell types

of the hippocampus over the ovarian cycle, detected by

immunohistochemistry.

ROI or INs Status OD (Mean ±
SEM; AU)

ROI or

INs (n)

Sections

(n)

Mice

(n)

DGML Diestrus 157 ± 2 20 6 2

Estrus 147.7 ± 1.1* 20 6 2

CA1 SO Diestrus 122.4 ± 1.4 20 6 2

Estrus 97.8 ± 1.3* 20 6 2

CA1 SR Diestrus 109 ± 1.6 20 6 2

Estrus 86.9 ± 1.5* 20 6 2

CA1 SP INs Diestrus 132.6 ± 1.4 67 6 2

Estrus 102 ± 1.4* 64 6 2

CA3 SP INs Diestrus 112.7 ± 2.1 44 6 2

Estrus 88 ± 1.7* 55 6 2

CA1 SP INs Diestrus 145.5 ± 1.4 100 8 2

Estrus 121.5 ± 1.8* 104 8 2

Males1 149.5 ± 1.2 107 8 2

Males2 147.6 ± 1.4 109 8 2

NC females1 155.8 ± 1.2* 114 8 2

NC females2 177.7 ± 1.6* 113 8 2

CA3 SP INs Diestrus 119.6 ± 2 63 8 2

Estrus 84.4 ± 2* 64 8 2

Males1 120 ± 1.9 63 8 2

Males2 120.2 ± 2.1 74 8 2

NC females1 119.7 ± 2.1 59 8 2

NC females2 124.1 ± 2.5 66 8 2

Summary by hippocampal region of interest (ROI) or INs of optical density mean
values in arbitrary units (AU) ± SEM, and n’s for diestrus and estrus in WT cycling
females, WT non-cycling females and males. Asterisks denote significance (see
Figure 4 for statistical tests).
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FIGURE 5 | Female PV-Gabrd−/− mice cycle regularly but lack ovarian

cycle-dependent modulation of REM phase γ oscillation amplitudes.

(A) Ovarian cycle stage was determined by vaginal impedance
measurements and cytological analysis of vaginal smears. PV-Gabrd−/−
mice had a similar cytological panel to WT mice at different stages.
Diestrus was determined by the presence in the smear of abundant
mucus, small parabasal cells (red arrowheads) and large intermediate cells
(yellow arrowheads). Both cell types are absent in estrus, when smears are
typically characterized by large polygonal superficial cells, mostly fully
cornified. Scale bar 5 μm. (B) Left: diagram showing normalized γ

amplitudes during REM sleep on consecutive days in a regularly cycling
PV-Gabrd−/− female. Red and blue triangles indicate estrus and diestrus,
respectively. Right : distribution of γ amplitudes (binned at 2 μV) recorded
during all REM sleep episodes for an entire day of estrus (red) and one of
diestrus (blue). The 2 days are marked on the left with red (estrus) and blue
(diestrus) arrows. Colored numbers indicate mean ± SEM of the
corresponding histograms. Note the narrow variance of the γ amplitude
distributions during both phases of the ovarian cycle.

hormonal alterations of the ovarian cycle. The precise conse-
quences of fluctuating γ oscillations on memory and cognitive
performances may not always be easily predictable, although
reports suggest enhanced memory performance to be correlated
with higher γ frequency band magnitude (Lu et al., 2011).

A prediction based on our studies would be that cogni-
tive processes in females would be enhanced during the low
progesterone phase of the ovarian cycle (estrus) when γ oscil-
lations are increased. Indeed, several studies reported higher
hippocampus-mediated learning and memory performance and
increased anxiety levels in female rodents during the estrus phase
of the ovarian cycle, whereas animals in diestrus performed similar

to males (Maguire et al., 2005; Walf et al., 2006; Moore et al.,
2010; van Goethem et al., 2012; Cushman et al., 2014). Although
at present it is unknown whether similar alterations in PV-IN
δ-GABAARs also take place in humans, menstrual cycle-dependent
variations in memory performance are not uncommon (Bayer
et al., 2014). It also remains to be determined whether a higher
cognitive capacity during the preovulatory phase may provide any
evolutionary advantage.

In addition to INs, δ-GABAARs are also expressed on most
principal cells of the hippocampus (Sperk et al., 1997; Glykys
et al., 2007; Milenkovic et al., 2013; Ferando and Mody, 2013a).
Although δ-GABAARs expression on CA1 PCs is modulated across
the ovarian cycle (Figure 4C), this does not seem to result in
appreciable changes in network level activity, as also supported
by previous studies reporting comparable CA1 PC tonic con-
ductances in diestrus and estrus (Maguire et al., 2005). This is
not surprising as in these cells 70% of the total tonic inhibition
is mediated by α5-GABAARs, which have been shown to easily
compensate for δ-GABAARs loss (Glykys et al., 2008). In contrast,
the tonic GABA conductance of hippocampal INs seems to be
solely mediated by δ-GABAARs (Glykys et al., 2008). It is inter-
esting to note the narrow variance of γ oscillation amplitudes in
PV-Gabrd−/− mice. This phenomenon will need further investi-
gation, as it is possible that complete lack or insufficient levels
of δ-GABAARs on PV-INs may allow for restricted degrees of
modulation of the γ oscillatory amplitudes, resulting in poten-
tially disruptive effects on cognitive function. Unfortunately, our
study using simple single site recordings does not permit accu-
rate comparisons of the γ oscillation amplitudes across animals.
Future multi-site recordings and current source density analyses
will be required to ascertain any potential regional differences in
the magnitude of γ oscillations between WT and PV-Gabrd−/−
animals.

The molecular mechanisms responsible for δ-GABAARs plas-
ticity during the ovarian cycle, or following steroid fluctuations in
general, are unknown but may involve protein phosphorylation,
and transcriptional modifications (Choi et al., 2008; Jacob et al.,
2008; Abramian et al., 2010; Saliba et al., 2012). Recently, intra-
cellular Cl− itself has been proposed to function as a messenger
for plasticity of different GABAARs subunits (Succol et al., 2012).
Nonetheless, NS synthesis is a necessary event for δ-GABAARs
modulation over the ovarian cycle (Maguire and Mody, 2007).

The lack of γ oscillation modulation in PV-Gabrd−/− in vivo
suggests that pathological alteration in the normal phsyiology of
IN-δ-GABAARs through the ovarian cycle may have important
consequences on how information is processed at the network
level, and may predispose to pathological conditions if combined
with aggravating events that lead to altered NS production or inad-
equate IN δ-GABAARs plasticity. Therefore, the development of
δ-GABAARs specific drugs to selectively control IN function may
be a novel future approach to the treatment of these symptoms in
women with premenstrual syndrome (PMS) and PMDD.
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