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Abstract
The population is ageing worldwide, thus increasing the burden of common age-related disorders to the individual, society and
economy. Cerebrovascular diseases (stroke, dementia) contribute a significant proportion of this burden and are associated with
high morbidity and mortality. Thus, understanding and promoting healthy vascular brain ageing are becoming an increasing
priority for healthcare systems. In this review, we consider the effects of normal ageing on two major physiological processes
responsible for vascular brain function: Cerebral autoregulation (CA) and neurovascular coupling (NVC). CA is the process by
which the brain regulates cerebral blood flow (CBF) and protects against falls and surges in cerebral perfusion pressure, which
risk hypoxic brain injury and pressure damage, respectively. In contrast, NVC is the process bywhich CBF ismatched to cerebral
metabolic activity, ensuring adequate local oxygenation and nutrient delivery for increased neuronal activity. Healthy ageing is
associated with a number of key physiological adaptations in these processes to mitigate age-related functional and structural
declines. Through multiple different paradigms assessing CA in healthy younger and older humans, generating conflicting
findings, carbon dioxide studies in CA have provided the greatest understanding of intrinsic vascular anatomical factors that
may mediate healthy ageing responses. In NVC, studies have found mixed results, with reduced, equivalent and increased
activation of vascular responses to cognitive stimulation. In summary, vascular and haemodynamic changes occur in response
to ageing and are important in distinguishing “normal” ageing from disease states and may help to develop effective therapeutic
strategies to promote healthy brain ageing.
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Introduction

The population is ageing, and by 2050, one in six people will
be aged over 65 worldwide [75]. Cerebrovascular disease is a
prominent cause of morbidity and mortality, and the preva-
lence of the cerebrovascular disease is increasing with the

ageing population [123]. Indeed, 15million people worldwide
are affected by stroke, 60% of whom are aged over 70 [123]
and 46.8 million affected by dementia [98]. Many research
studies have focussed on the vascular and haemodynamic
changes involved in cerebrovascular disease. However, it is
important to first understand the haemodynamic changes as-
sociated with normal ageing, in order to delineate these from
pathological changes that may occur in disease states.

There are multiple techniques that can be employed to as-
sess the vasculature and haemodynamics of the brain.
Transcranial Doppler ultrasonography (TCD) allows for the
assessment of cerebral haemodynamics in a non-invasive
manner, by continuous monitoring of beat-to-beat cerebral
blood flow (CBF) velocity as an approximation of CBF
[85]. Near-infrared spectroscopy (NIRS) exploits the differ-
ences in infrared spectra absorption between oxygenated
(oxyHb) and deoxygenated haemoglobin (dexoyHb) to mea-
sure relative changes in their concentration [23]. NIRS can
therefore be used to measure tissue oxygenation and as an
indirect measure of CBF [23]. Furthermore, functional
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magnetic resonance imaging (fMRI) and positron emission
tomography (PET) can be used indirectly to measure neural
activation [3].

An important factor of vascular ageing is arterial stiffness,
which is known to increase with age and can be a predictor of
end-organ damage [52]. Arterial stiffness is most commonly
assessed using pulse wave velocity (PWV), directly at the
level of the aorta, or between the carotid-femoral or brachial-
ankle arterial sites [131]. Longitudinal epidemiological stud-
ies have shown arterial stiffness can progress at the average
rate of 0.2 to 0.7 m/s for every 5 years of life [52]. Studies of
note include theWhitehall II, which measured carotid-femoral
PWV in 3789 men and 1383 women free from cardiovascular
disease, every 4 years [2]. Results showed an increase in arte-
rial stiffness, with an exponential increase in the progression
with age [2]. Similar results were found in the SaridNIA study
[107]. Increasing arterial stiffness may be due to a disturbance
in the regulatory pathways involved in sustaining the arterial
extracellular matrix [107]. For example, upregulation of the
renin-angiotensin system results in an increase in activation of
pro-inflammatory pathways and thus increased destruction of
the vessel wall [107]. Furthermore, fragmentation of elastin
fibres, alongside increased collagen production, results in re-
duced elasticity of the vessel wall and ultimately arterial stiff-
ness [107]. Chronic hypoperfusion as a result of narrowed,
less responsive vessels leads to microvascular ischaemia,
which can result in brain atrophy and tissue damage over time
[43, 45]. The changes with age in PWV and central pulse
pressure result in a reduced ability of the larger cerebral ves-
sels to dampen pulsatile energy, which is transmitted directly
to the smaller brain vasculature [52]. This combined with
elevated vascular risk factors (e.g. hypertension, raised cho-
lesterol), results in progressive damage to smaller vessels [52].
Small vessel disease can lead to chronic conditions such as
vascular dementia, as well as acute incidents such as lacunar
infarctions [52].

In addition to arterial stiffness, endothelial dysfunction is
thought to be a significant contributor to cerebrovascular age-
ing and results from a reduction in nitric oxide (NO) availabil-
ity, oxidative stress and chronic inflammation [108].
Endothelial cells are important in the regulation of vascular
tone, and thus CBF, through the release of NO (a potent va-
sodilator) [50]. Furthermore, endothelial dysfunction may
contribute to age-related disorders, such as dementia [50,
130], and can be improved with healthy lifestyle interventions
[108].

The brain relies on CBF to sustain neuronal metabolism
due to its high level of metabolic activity and limited capacity
for storage [118]. The cerebrovasculature has a low inherent
ability to cope with the high volume blood supply, making the
brain vulnerable to changes in CBF [118]. Therefore, cerebral
autoregulation (CA) is important in sustaining a relatively
constant CBF despite changes in arterial blood pressure

(ABP) [53]. Lassen described a segmental autoregulatory
curve to conceptualise CA (Fig. 1) [53]. The curve describes
a lower limit, below which there is a risk of hypoperfusion, a
plateau phase in which changes in perfusion pressure are un-
likely to cause damage, and an upper limit above which risks
structural damage to the brain [53]. The Rotterdam study
followed 1730 participants aged over 50 years without cardio-
vascular disease and found CBF declined with normal ageing
and to a higher degree in men than women [103]. This reduc-
tion in CBF can be associated with a decrease in cerebral
metabolic rate, affecting neuronal activities in the brain [55].

Neural processing is highly resource intensive, requiring ~
20% of the body’s resting energy demands, making the brain
one of the most metabolically active organs in the body [57,
117]. Under normal physiological conditions, CBF is tightly
coupled to neuronal activity through the process of NVC [32],
ensuring rising metabolic needs are met during times of in-
creased neuronal activity [23, 57, 117]. NVC must occur in a
coordinated fashion, ensuring that CBF is increased in a
region-specific manner, diverting flow to areas involved with
specific neuronal processes and functions (functional
hyperaemia) [32, 117]. This coordination is achieved through
the neurovascular unit, which is formed structurally and func-
tionally by neuronal, vascular endothelial, smooth muscle and
supporting cells (astrocytes, glia) [32, 117, 137].

The framework for this review is based on the theory that
the structural and cellular changes outlined above will result in
functional changes in vascular physiology. In particular, CA
and NVC are two functional vascular processes critical for the

Fig. 1 Schematic representation of the concept of static CA as originally
proposed by Lassen [53], showing the lower and upper mean blood
pressure limits of CA. Arterioles are maximally vasodilated at and
below the lower limit and maximally constricted at the upper limit, as
represented by the cross sections in the diagram. Recent studies have
suggested that the regions where static CA is active show a slope
greater than zero and that this could be different for increases or
reductions in mean blood pressure [77]
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maintenance of adequate brain function. Figure 2 conceptual-
ises the framework and basis of age-related vascular changes
leading to impairments in vascular function. This review will
now focus on these two key processes in further detail below.

Neurovascular coupling

NVC is mediated by three main mechanisms [97, 113].
Firstly, metabolic activity generates vasoactive metabolites
(e.g. CO2, lactate) which provide “feedback” resulting in ves-
sel dilation and thus increased flow [38, 40, 97, 113, 137].
However, a “feedforward” model has also been proposed,
whereby neuronal signalling drives NVC through the release
of mediators resulting from synaptic activity (e.g. K+, NO)
and prostanoids [40]. Recently, astrocytes have been found to
be sensitive to local changes in oxygen, CO2, lactate, pH and
neurotransmitter release as a result of metabolic activity and
may act as an intermediary between tissue pressure and neural
activity through mechanosensors [38, 40]. Shear wall stress
occurs when flow increases through a vessel, applying a phys-
ical stress to the vessel wall, resulting in the release of vaso-
active mediators, such as nitric oxide, resulting in vasodilation
[113]. Finally, the autonomic nervous system is able to con-
strict and dilate arteriolar smooth muscle by altering the level
of sympathetic and parasympathetic tone, respectively [97,
113, 137]. Glutamate stimulates neurones and astrocytes to
release chemical mediators (i.e. NO, prostaglandin, potassi-
um), which act on vascular smooth muscle to cause

vasodilation [39, 40, 67]. Figure 3 shows the integration of
feedforward and feedback mechanisms proposed in NVC pro-
cesses resulting in increased CBF.

A recent development in our understanding of NVC has
been the identification of pericytes, which are located in close
proximity to capillaries in the brain [35]. Pericytes are con-
tractile cells that may have the ability to regulate capillary
vessel diameter and thus influence flow at the capillary bed
[35]. However, in vivo studies are less clear about the role of
pericytes in modulating NVC, and their role may be more to
re-distribute flow at a local level [39].

A number of age-related changes occur in NVC processes,
but the shift from normal age-related change to that associated
with age-related diseases (e.g. Alzheimer’s dementia,
Parkinson’s disease) is less well understood. Thus, under-
standing the changes that occur under normal ageing, and
how these may subsequently evolve into age-related disor-
ders, is imperative to develop effective treatments for the
maintenance and promotion of healthy brain ageing.

Measurement of NVC in humans

NVC can be measured indirectly using a number of non-
invasive neuroimaging techniques [39], where individuals
are stimulated using visual, auditory, motor, sensory or cog-
nitive paradigms to elicit a rise in metabolic activity [33, 115].
Traditionally, functional magnetic resonance imaging (MRI)
used blood oxygen level-dependent (BOLD) signal to

Fig. 2 The vascular changes and
mechanisms seen with ageing that
may lead to functional alterations
in cerebral autoregulation (CA)
and neurovascular coupling
(NVC). NO, nitric oxide; CA,
cerebral autoregulation; NVC,
neurovascular coupling
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measure changes in the concentration of deoxygenated
haemoglobin (dexoyHb) in response to cognitive stimulation,
as a proxy for metabolic activity [11, 33, 39]. Where partici-
pants are cognitively stimulated, deoxyHb levels rise initially
as the limited oxygen stores are consumed [25, 33]. This is
followed by a fall in deoxyHb concentration as NVC process-
es work to deliver oxygen, usually in excess of the amount
which has been utilised [33]. However, BOLD fMRI is limit-
ed to measurement of oxygen concentration and cannot pro-
vide any information on the haemodynamics of the NVC re-
sponse [11, 33]. Arterial spin labelling (ASL) fMRI, which
magnetically labels water as an endogenous tracer, rather than
measuring changes in blood oxygenation, does allow for
quantification of flow measurements [11, 33, 37]. However,
widespread adoption of ASL techniques has been hampered
by low signal to noise ratio, and lack of standardisation in
methods and techniques between centres, although recent ef-
forts have been made to overcome these limitations [33, 37].
BOLD and ASL fMRI have an excellent spatial resolution (1–
2 mm) but lack the temporal resolution (1–2 s vs. 5 ms) of
alternatives, such as TCD [39]. Furthermore, BOLD fMRI is
susceptible to misinterpretation in older adults given a number
of age-related effects on the signal including increased signal
variability [46], lower resting CBF [23], reduced grey matter
volume and altered vascular structure and function [46].
Importantly, baseline measurements prior to task activation
are important in studies of ageing. Given that older adults
are more likely to have lower resting flow measurements,
task-activated responses can appear greater compared to

younger adults as a result of lower resting values, if baseline
differences are not accounted for [25]. ASLmeasurements can
be useful in this setting to clarify the difference in resting and
activated flow states that can only be measured by change
from baseline using other techniques (e.g. BOLD-MRI)
[25]. Correction for partial volume effects is not undertaken
by all studies and may also account for differences in hyper-
and hypoactivation [46].

NIRS measures the relative fluctuations of deoxyHb and
oxygenated haemoglobin (oxyHb) to determine changes in
CBF mediated via NVC processes [23]. Where participants
are cognitively stimulated, the relative concentration of
oxyHb will rise as CBF increases and the change in oxyHb/
deoxyHb can be measured through their different absorption
wavelengths in the infrared spectra (~ 700–900 nm) [23, 49].
Whilst NIRS can measure the change in oxygenation, it can-
not directly measure the change in CBF [23]. Furthermore,
NIRS has a limited penetration depth and thus can only mea-
sure superficial and not deeper cortical changes in response to
stimulation [49].

TCD uses ultrasound to measure changes in CBF velocity
(CBFv) following cognitive stimulation [6, 115]. CBFv is
measured as a proxy for CBF on the assumption that the vessel
diameter remains relatively constant under small fluctuations
in CO2 and blood pressure [15, 85]. TCD can be used to
measure NVC in the middle, anterior and posterior cerebral
arteries (MCA, ACA and PCA, respectively) [85]. Thus, as
TCD measure changes in larger cerebral vessels, it has excel-
lent temporal, but limited spatial, resolution [85]. Similar to

Fig. 3 Feedforward and feedback mechanisms that may result in NVC-mediated increases in cerebral blood flow following neural activation. NO, nitric
oxide
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ASL, TCD is advantageous in its ability to provide a measure
of haemodynamic changes, rather than relying on indirect
measures of changes in oxy/deoxyHb. In the context of age-
ing, NIRS and TCD are advantageous in their portability,
relative lower cost and use in patients with pacemakers and
metal implants [23, 49].

Dynamic retinal vessel analysis (DVA) is a relatively newer
technique which examines the change in retinal arteriolar vessel
diameter following light exposure using a retinal camera [57].
Retinal vessels are both structurally and functionally similar to
their cerebral counterparts, but non-invasive imaging of the
retinal vessels can be achieved relatively easily and cheaply
when compared to cerebral vessel imaging [57]. NVC process-
es in the retinal vessels can be measured following light stimu-
lation and invoke similar processes to those occurring in cere-
bral tissue (glial cell activation, vasodilation) [57]. Furthermore,
retinal vessels are susceptible to similar pathological processes
as cerebral vessels and abnormalities in the retinal vasculature
are predictive of cerebrovascular pathology (stroke, vascular
dementia) [24, 57].

NVC in ageing

Studies have found conflicting effects of ageing on NVC pro-
cesses. We consider these under three major headings: hyper-
activation, neutral activation and hypoactivation. Table 1 and
Fig. 4 summarise the characteristics, techniques and major
findings of the studies in this review.

Hyperactivation

In a recent study by this group, TCD-measured task activation
using memory and visuospatial cognitive paradigms resulted
in increased CBFv responses, relative to baseline, in older
compared to younger individuals [7]. This is in keeping with
a previous TCD study of varying cognitive exercises [26].
Similarly, Sorond et al. found greater TCD-measured CBFv
responses in older adults, in response to word-stem comple-
tion and visual search tasks compared to younger adults [112].
These findings were not task specific, but the regional activa-
tions seen in the younger group were lost in the older group for
the word-stem completion task [112]. Csipo et al. demonstrat-
ed larger NIRS-measured haemodynamic responses to finger
tapping in the contralateral motor and prefrontal cortices in
older adults [23]. Furthermore, the deoxyHb signal was de-
layed and reduced (effectivity of washout), with loss of the
early oxyHb signal which is thought to represent mental prep-
aration for the activity [23]. Jamardar recently demonstrated
hyperactivation at four levels of difficulty in a working mem-
ory and task-switching paradigms in older adults using fMRI
[42]. Hyperactivation may be a compensatory mechanism,
where increased neuronal recruitment can maintain cognitive

performance in line with that of healthy younger adults [106].
This is supported by a number of cognitive theories of ageing
including the hemispheric asymmetry reduction in older
adults (HAROLD) [8] and compensatory-related utilisation
of neural circuits hypothesis (CRUNCH) [106].

Hypoactivation

In contrast to the findings outlined above, Kannurpatti et al.
found reduced BOLD-MRI NVC responses to cognitive and
motor paradigms in older adults [46]. Reduction in grey mat-
ter volume accounted for the majority of this difference, but
age-related vascular and neural changes differentially affected
the responses to motor and cognitive paradigms, respectively
[46]. In a review of TCD-measured task activation by
Stroobants and Vingerhoets, one study demonstrated lower
CBFv responses to motor and cognitive paradigms, with less
lateralisation [80, 115]. In three studies of visually evoked
TCD-measured CBFv responses in the PCA, older adults
showed lower CBFv responses to visual stimulus compared
to younger adults [30, 76, 138]. Furthermore, the calculation
of an index of NVC (evoked flow/evoked potential) showed a
reduction in NVC responses in the older group [138]. This is
in keeping with two BOLD-MRI studies, demonstrating re-
duced neuronal and haemodynamic responses [29, 132], and
delayed time to peak response and return to baseline [132].
Using dynamic retinal vessel analysis, ageing was associated
with a 45–51% reduction in retinal vessel response to light
stimulation [51, 57]. This reduction may be as a result of
endothelial dysfunction, which has been shown to occur with
ageing, resulting in a reduced ability of vessels to increment
flow appropriately when stimulated [57, 60, 117]. Finally, in a
NIRS-measured study using a working memory task at two
difficulty levels, oscillations at low and very low frequencies
were reduced in older compared to younger adults during task
performance [129]. In younger adults only, this increased with
cognitive load [129].

Neutral activation

Contrary to the studies described above which demonstrated
hyper- and hypoactivation of NVC responses in ageing, a num-
ber of studies have not been able to demonstrate any discernible
effects of ageing on NVC. In a study of 29 healthy older adults
aged over 60 and 29 younger adults aged under 30, Stefanidis
et al. did not identify age-related differences in CBFV response
to ten blocks of 40 s of reading [114]. Similarly, Madureira et al.
found no differences in TCD-measured NVC using a working
memory task [61]. Grinband et al. found no differences in
BOLD-MRI measured responses to two audio-visual tasks be-
tween older and younger adults [34]. The authors concluded that
age-related changes in the haemodynamic response activation
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are more likely to be related to neural-cognitive rather than vas-
cular changes [34].

Summary of NVC changes in ageing

The inconsistent findings on the effects of ageing on NVC
could be due to methodological differences, such as the type
of neuroimaging technique used, the nature of the participants
in the study, the paradigm used for neuro-activation and the
number of times the paradigm was presented. For example,
sex and handedness can have a significant effect on the
lateralisation patterns of NVC responses as measured by TCD
[115]. The upper cutoff for what is considered “old” varies
considerably between studies [109]. Traditionally, older adults
have been considered anyone over the age of 65 [109], but from
a vascular perspective, changes are seen from the fourth decade
onwards [25], and the age at which changes in NVC begin to
occur remains unknown. Studies investigating NVC tend to be
limited by small sample sizes [23] and employ case-control
designs which are prone to selection bias, particularly where
changes are compared at the extremes of the ageing spectrum
[63, 115]. Studies may elect to use a block trial design with
responses averaged over repeated trials or event-related design
where single-event trials are used [20, 96]. Block designs im-
prove signal to noise ratio, but responses can be accommodated
with repeated stimulation [20, 96]. Therefore, results may vary
between studies using block or single-event designs.
Depending on whether studies investigate localised or broader
haemodynamic responses may affect whether increases or de-
creases are seen in NVC responses. For example, whilst local-
ised responses may be impaired, compensatory rises may be
seen in other brain regions as a result of upregulation of existing
processes, recruitment of additional neural circuits (selection)
or the generation of novel neural circuits (re-organisation) [8,
16, 101]. Certainly, this has been highlighted as a key feature of
the CRUNCH hypothesis of ageing, whereby neural circuits are
re-organised to utilise wider brain resources to compensate for
declining processing efficiency and maintain cognitive perfor-
mance [8, 101].

Hyperactivation of NVC responses has been demonstrated by
a number of studies and was traditionally thought to occur as a
result of rising metabolic demands due to compensatory recruit-
ment or upregulation to maintain behavioural performance [8,
27, 42, 101]. However, recent work has challenged the notion
of compensatory hyperactivation, which may instead be a mal-
adaptive process due to inefficient resource utilisation and pro-
cessing [16, 70, 73]. In true compensatory hyperactivation, there
should be a demonstrable correlation with improvement in cog-
nitive performance [16]. It is important to distinguish haemody-
namic task activation as a result of sympathetic stimulation (caus-
ing rises in BP and heart rate), metabolic or O2 feedback and that
due to central command due to neuronal signalling [62]. Maggio
et al. demonstrated the presence of a small rise in CBF to elbowT
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flexion during hypercapnia despite CBF far in excess of theNVC
demand as a result of the increased supply from CO2-induced
vasodilation [62]. This finding suggests that central command
through neuronal signalling may be driving the NVC response,
rather than via a feedback mechanism from metabolic or O2

demand [62]. In support of this, a recent review identified up to
30% of the NVC response remains unaccounted for in terms of
mechanistic pathways [38]. However, the effects of ageing on
NVC in hyper- and hypocapnic states have not yet been investi-
gated. Hyperactivation in response to cognitive stimulation is
also seen inmild cognitive impairment (MCI) [5], where patients
have an 80% chance of developing dementia over five years
[95]. Thus, although hyperactivation may be present in cogni-
tively healthy individuals, it may not represent a normal physio-
logical adaptation to ageing. Longitudinal fMRI studies
predicting cognitive decline from task activation have shown
mixed results, with some demonstrating hyperactivation [134]
and others demonstrating hypoactivation [10, 36, 78, 94] as pro-
tective of cognitive function. The differences in these findings are
likely due to heterogeneity introduced by small sample sizes,
inclusion of those with genetic risk factors (i.e. APOe4 allele),
and the choice of cognitive paradigm [134]. Hypoactivation may
occur in the context of vascular ageing, due to increasing arterial
stiffness and reduced compliance, reducing the ability of arteries
to rapidly dilate in response to stimulation [25, 29, 137, 138].
Therefore, specific patterns of response may not always be
“healthy” despite intact cognitive function and can be indicative
of future cognitive impairment risk. Further work is required to

investigate the relationship between neuroimaging features of
ageing and future risk of cognitive decline to identify protective
versus maladaptive haemodynamic ageing patterns.

According to the CRUNCH hypothesis, more cogni-
tively challenging paradigms (i.e. episodic memory) are
more likely to result in hypoactivation than less challeng-
ing paradigms (i.e. semantic memory), due to a ceiling at
which compensation is no longer effective [101, 134].
Thus, hypo- or hyperactivation may be seen depending
on the level of difficulty introduced by the cognitive par-
adigm [42]. In addition, the type of cognitive paradigm
could also be important, given that ageing disproportion-
ately affects the speed of processing, working memory
and executive functioning [71]. Thus, tasks involving
these elements may result in hyperactivation, whereas
those less affected by ageing may result in neutral or
hypoactivation. In Table 1, the majority of tasks demon-
strating hypoactivation used a visual stimulus, focusing
on the posterior cortex, rather than more complex higher
cortical functions. However, this notion was recently chal-
lenged by Jamadar, who demonstrated hyperactivation in
older adults at all levels of task difficulty [42], exceeding
that which was tested in the original CRUNCH model
[101]. For future studies, a range of paradigms and diffi-
culties may be required that test different aspects of cog-
nitive function but also different functional and structural
brain regions. In this regard, combining neuroimaging
techniques with good spatial and temporal resolution will

Fig. 4 Tasks showing changes in NVC responses in ageing using various
measurement techniques. fMRI, functional magnetic resonance imaging;
BOLD-MRI, blood oxygenation level-dependant magnetic resonance

imaging; NIRS, near-infrared spectroscopy; TCD, transcranial Doppler
ultrasonography; fNIRS, functional near-infrared spectroscopy; RVA,
retinal vessel analysis
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provide important insights into the physiological changes
that occur in NVC in ageing, and whether there is region
specific or time dependent [23].

Cerebral autoregulation

Relevance of haemodynamics and the healthy brain

CA is a measure of haemodynamic integrity of myogenic
mechanisms with co-existing metabolic and neurogenic com-
ponents [100, 133]. It allows the cerebral perfusion and brain
tissue oxygenation to be buffered against BP changes [124]. In
most studies of CA, CBF has been measured using CBFv as a
surrogate [56].

CA can be expressed as a static or dynamic mechanism.
Static CA regulates CBF over long-term changes in cerebral
perfusion pressure (CPP) (minutes to hours) [92]. Cerebral
vasculature may have the more efficient autoregulatory ability
when mean arterial pressure (MAP) is increased than when
decreased [77]. Static CA can be measured by manipulating
blood pressure (BP) and measuring the autoregulatory re-
sponse by the change in CBF. CA is intact if blood flow is
maintained at or near the baseline level [121], where static CA
demonstrates a nearly constant CBF for MAP changes from
60 to 150 mmHg [84]. If a change in BP leads to a significant
change in CBF, CA is impaired [121, 133]. Although the static
approach can evaluate the overall effect (efficiency) of CA, it
does not reflect the latency of the response and it is also very
difficult to implement, due to the need to use vasoactive drugs
to achieve stable changes in MAP [1, 121].

Dynamic CA (dCA) is the pressure-flow relationship seen
during transient changes in mean arterial BP, over a period of
seconds [1]. Measuring dynamic CA involves inducing rapid
changes in MAP caused by BP manoeuvres such as the sud-
den release of compressed thigh blood pressure cuffs (as an
autoregulatory stimulus) and comparing BP and CBFV during
the autoregulatory response [121]. dCA measurement gives
information about the latency, as well as efficiency and can
be studied with a number of different manoeuvres to induce
rapid changes in MAP [121].

Introduction to cerebral haemodynamic indices in the
healthy brain

The dynamic relationship between mean BP and CBF (or
CBFv) has been modelled in the time or frequency domain
[22, 81, 127], giving rise to a number of different parameters
or indices that reflect the efficiency and/or latency of the CA
response [22, 81, 127]. Examples of dCA indices obtained in
the time domain are the correlation coefficient Mx or the
autoregulatory index ARI. Frequency domain representation
of the BP-CBFv relationship is often obtained with transfer

function analysis (TFA), which generates measures of coher-
ence, gain and phase, often used as indices of dCA efficiency
[22, 127]. Table 2 summarises the most common indices used
to measure dCA; for a more complete description of dCA
indices, we direct the reader to a number of excellent reviews
and papers [19, 54, 59, 84, 104, 105, 110, 125–127].

Methods of assessing dCA in healthy individuals and
association with ageing

dCA can be assessed in healthy individuals by a variety of
methods. These include manoeuvres to induce rapid changes
in MAP, such as the thigh-cuff manoeuvre, hand-grip, squat-
stand or sit-to-stand protocols. Spontaneous fluctuations in
MAP can also be used, normally in conjunction with TFA.
Here we will give an overview of these methods with rele-
vance to studies of ageing.

TFA

TFA is widely used across studies of autoregulation to allow
the estimation of dCA parameters from spontaneous rather
than induced BP fluctuations [127]. For research studies fo-
cusing on older participants, this is particularly advantageous
as this can be better tolerated than the thigh-cuff and squat-
stand manoeuvre [4]. In a longitudinal study of ten subjects
who were followed for 10 years, ARI measured by TFA was
found to decrease, suggesting dCA became less efficient with
age [13]. As measures were repeated in the same individuals,
this study was able to overcome inter-subject variability that
confounds studies of dCA [13, 104, 105]. Carey et al. used
multiple methods (spontaneous, thigh-cuff release, Valsalva
manoeuvre) to determine the ARI in older and younger adults
[17]. Across all methods, there was no effect of age on ARI
[17]. In a study of three age groups (20 young (~ 24 years), 20
older (~ 66 years) and 18 older old (~ 78 years)), only phase in
the very-low-frequency range was higher in the younger com-
pared to older but not older old adults [82]. The gain was
increased in the high-frequency range of the older old com-
pared to younger adults, but there were no other differences
between other age groups [82]. Similarly, in a large database
study of 129 adults (median age 57), the gain was significantly
associated with age (gain increased with age) but not phase or
ARI parameters [91]. In contrast to these findings, Vermeij
et al. did not find any significant effect of age on NIRS-
measured phase and gain [129], and Teixeira et al. found no
effect of age on TCD-measured phase and gain parameters
[119].

Thigh-cuff manoeuvre

The thigh-cuff manoeuvre can be used to rapidly alter BP.
Bilateral thigh cuffs are inflated to above systolic BP.
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Parameters are measured throughout, including MAP and
TCD of the MCA. The thigh cuffs are then rapidly deflated,
which induces step decreases in MAP [1]. The CBFv and BP
values after the cuff release can be used to calculate ARI [1,
121]. Furthermore, change in CVR per second, in relation to
the change in BP, is referred to as the rate of the regulation
(RoR) and can be used as an index of CA [1, 121]. In a study
of 27 subjects ≤ 40 years and 27 subjects ≥ 55 years, an
association between increasing age and dCA was not seen
during transient and induced BP stimuli [17]. Specific inves-
tigations of the cerebrovascular effects of the thigh-cuff ma-
noeuvre in older adults have demonstrated a dominance of
myogenic mechanisms, largely influenced by associated
EtCO2 changes with components of the autonomic nervous
system and baroreflex exerting concomitant effects [89].

Hand-grip manoeuvre

The hand-grip manoeuvre (HG) uses the contraction of fore-
arm muscles to induce changes in HR, BP and CO2 [99]. It
causes changes in CBF, possibly due to bilateral activation of
cortical brain areas involved in muscle contraction and

autonomic regulation [44]. However, the use of the hand-
grip manoeuvre to assess dCA assumes that the handgrip itself
would not disturb dCA [48]. Jorgensen et al. found that there
was not an increase in cerebral perfusion caused by the in-
crease in BP induced by handgrip [44]. In addition, ARI is not
constant during the hand-grip manoeuvre, with significant
dips at the beginning and the end [86]. In a study by Carey
et al. described above, there were no differences in ARI as
measured by HG in older compared to younger adults [17]. In
keeping with this finding, Bronzwaer et al. did not demon-
strate a significant effect of ageing on dCA assessed by HG or
lower body negative pressure [14].

Squat-stand manoeuvre

Large changes in BP can be produced from squatting from the
standing position [9]. Birch et al. asked volunteers to perform
cycles of squatting and standing, as indicated by a computer,
which then allows changes in MCA velocity and dCA to be
measured. They found that oscillations in BP led to induced
oscillations in the MCA velocity, which may indicate function-
ing autoregulation [9]. In the squat-stand manoeuvre, there are

Table 2 A summary of the most commonly measured indices for dCA

dCA Index Measurement Interpretation

ARI Measures response of CBF to rapid changes in BP
Second-order linear differential equation, with 3

main coefficients that are then tabulated to
correspond to 10 different values of ARI [121]

Range from 0–9
Higher ARI = better autoregulation,

so faster return to baseline after
MAP increase

Healthy controls = 5 ± 1

Mx, Mxa Measures dCA by calculating a time-average Pearson
correlation coefficient between slow fluctuations in
CBFV and CPP (Mx) or mean arterial BP (Mxa),
over a given time period

0 or less suggests CA intact
0.3–0.5 suggests impaired CA

PRx Correlation between slow-wave changes in MAP and ICP Coefficient ranging from − 1 to + 1
Positive PRx indicates passive behaviour of

cerebral vessels, so reduced CA
Negative PRx indicates normally reactive

vascular bed, so intact CA

RAP Index of CVR.A
CVR.A = BP/CBFV
It is the inverse of the regression slope of CBFV vs BP
The dynamic autoregulatory response occurs

through adjustments in RAP [87]

More indicative of myogenic activity and
cerebrovascular resistance [88]

RoR Measures the rate of change in CVR, which is
dependent on the change in ABP

RoR = (ΔCVR/Δtime)/ΔABP
Full restoration of CBF where ΔCVR = ΔABP

Increasing RoR represents an increased per
second adjustment of the change in CVR to
fully compensate for the change in ABP [1]

Higher RoR = better autoregulation

TFA gain Ratio of amplitude of oscillations in CBFv (output)
and the amplitude of oscillations in
MAP (input) at each frequency

Higher gain = poorer autoregulation (i.e. reduced
ability of dCA to dampen the effects
of BP on CBFv)

TFA phase Phase measures the delay of CBFv oscillations,
relative to corresponding oscillations in MAP
at each frequency [127].

Higher phase = better autoregulation (i.e. changes
in CBFv recover faster than those in BP) [127]

ARI, autoregulation index; PRx, pressure reactivity index; Mx, mean flow index; RAP, resistance area product; RoR, rate of regulation; TFA, transfer
function analysis
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relatively large changes in BP and hence, repeated squat-stand
manoeuvres can be used to investigate the directional sensitivity
of CA [90]. However, in the older population, squat-stand ma-
noeuvres may not always be practical, with concomitant osteo-
arthritis, reduced exercise tolerance and comorbidities [82, 128].
Thus, many studies of older adults instead use the sit-to-stand
manoeuvre, which also generates a transient response of CBF to
changes in BP, if measurements are taken immediately after
standing up [64, 128]. Recently, an older group of individuals
(aged 50–71 years) as compared to a younger group (20–34
years) demonstrated lower ARI during maximal depth squats
as compared to shallower squats—thereby suggesting less effi-
cient dCA in older individuals during maximal depth squats as
compared to rest or the shallower approach [4]. Similarly, reduc-
tions in NIRS-measured frontal cortex oxygenation were seen in
27 healthy older adults during sit-to-stand [65, 66], and high-
frequency dCA was impaired in older adults during sit-to-stand
[74]. However, in a study of repeated sit-to-stand manoeuvres in
58 participants (20 young, 20 older and 18 older old), there was a
small reduction in phase and rise in gain with increasing age, but
the authors conclude that dCA remains intact with ageing [82].
Similarly, a study of 136 adults between 21 and 89 years of age
using sit-to-standmanoeuvres demonstrated higher gain at rest in
older adults compared to younger and middle-aged adults but no
difference in gain between age groups during sit-to-stand ma-
noeuvres [135]. These findings were in keeping with that at
Sorond et al., who also found no age-related changes in dCA
with sit-to-stand in either theMCAor PCAbut did demonstrate a
smaller vasodilatory response in the PCA territory of older adults,
suggesting it may be more vulnerable to hypoperfusion [111]. In
two studies of head tilt to 30 and 70 degrees, neither showed a
significant effect of ageing on cerebral haemodynamics, before,
during or after tilting [18, 28]. Finally, in a study by Lipsitz et al.,
older normotensive and hypertensive older adults both demon-
strated intact dCA during a sit-to-stand manoeuvre, as measured
by TFA gain and phase [58].

The various methods of assessing CA described above
have provided mixed evidence of haemodynamic changes
during ageing as assessed using non-respiratory paradigms.
The majority of studies using sit-to-stand manoeuvres and
resting TFA do not show any demonstrable effects of ageing
on dCA, but there are some exceptions, specifically, the thigh-
cuff manoeuvre [89] and the squat-stand measurement [4].
These conflicting findings may be due to methodological dif-
ferences (resting vs induced and squat-stand vs sit-stand), and
differences in the age ranges and population characteristics
studied. Figure 5 summarises the changes in key dCA param-
eters with ageing.

PaCO2, cerebral haemodynamics and brain ageing

In the context of respiratory paradigms, a large study (150
participants) recently suggested that ageing is associated

with lower CBFv, greater cerebrovascular resistance and
reduced vasoconstriction during hypocapnia, though in-
creased vasodilatory responsiveness during hypercapnia
[122]. Despite a longstanding acceptance that healthy age-
ing associates with lower CBFv [3, 127], our confidence in
concluding the specific behaviours of CA indices has been
more contentious. In particular, previously mentioned hae-
modynamic parameters are pertaining to cerebrovascular
tone (critical closing pressure—CrCP), cerebrovascular re-
sistance (RAP) [68, 69] and the ARI. Firstly, assessment of
normative values and the influence of age within a large
haemodynamic database demonstrated a lack of an associ-
ation between increasing age and ARI during normocapnia
[17, 91]. Secondly, during normocapnia, older normoten-
sive individuals have greater RAP than younger individ-
uals, though, during posture change, there is a greater rel-
ative change in CrCP during upright posture in younger
adults [83, 102]. There is some suggestion of heightened
sensitivity to postural changes through CrCP in younger
compared to older individuals [102]. Thirdly, tangible
changes in CVR are thought to occur in those over 50 years
with the very old (> 80 years) seemingly exhibiting similar
responses to those over 50 years of age; this is an important
consideration when determining vascular neurological risk
assessment [47].

Despite the contention generated through studies on the
influence of ageing during normocapnic conditions, great-
er clarity has been gained through aligned hypocapnic

Fig. 5 Representation of how each dCA index changes with age. ARI,
autoregulation index; PRx, pressure reactivity index; Mx, mean flow
index; RAP, resistance area product; RoR, rate of regulation; TFA,
transfer function analysis
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studies of the influence of PaCO2 changes and healthy
ageing.

Carbon dioxide and cerebral blood flow

Carbon dioxide (CO2) has a profound effect on mediating
CBF. The relationship between the partial pressure of carbon
dioxide in arterial blood (PaCO2) and CBF has been described
as a sigmoid curve with lower and upper plateaus [116].
Elevated PaCO2 causes vasodilatation, increasing CBF, and
reduced PaCO2 causes vasoconstriction, decreasing CBF.
This is thought to be due to increased CO2 leading to increased
[H+] resulting in vascular smoothmuscle relaxation [21]. This
cerebral vasomotor reactivity (CVMR) is an important mech-
anism that regulates brain pH levels and affects respiratory
central chemoreceptors. Additionally, there are thought to be
other agents involved such as prostaglandins and nitric oxide
[12, 93].

CVMR and ageing

As discussed, ageing is associated with lower CBF and CBFv
[3, 139]. However, research has yielded conflicting results
regarding ageing and CVRM (i.e. response of CBF to changes
to PaCO2) [31, 41, 136].

Zhu and colleagues found that older participants had lower
CBF velocities and higher cerebrovascular resistance index in
resting conditions [139]. Older participants had a reduced va-
soconstrictor response to hypocapnia but increased
vasodilatory response to hypercapnia [139]. This may suggest
that ageing is associated with increased cerebral vasoconstric-
tor tone at rest, thus reducing the capacity of vessels to con-
strict in response to hypocapnia and increasing the capacity of
vessels to dilate in response to hypercapnia. However, re-
search remains inconsistent, with further studies finding no
significant difference in CVRM or decreased response to hy-
percapnia [30, 72, 120]. In contrast to Zhu et al. [139], Galvin
and colleagues found increased CVR to hypocapnia, correlat-
ed with increasing age, suggesting that increased CVR to
hypocapnia may be contributory to the increased risk to cere-
bral ischaemia in ageing [31]. The varying response to CO2

may be related to the differences in study protocols employed
in these studies, with variations in stimulus, protocols for
CVR assessment and analysis. However, convergent findings
do exist, though the key influencing parameter is debated.
Minhas et al. (2019) did not demonstrate an alteration in
ARI with CO2 change and increasing age, confirming prior
large database findings [68]. However, an elevation in RAP,
and not CrCP, was seen during a hypocapnic stimulus in older
(> 50 years) as compared to younger individuals (≤ 49 years)
[68]. These findings align with Ogoh and colleagues who
showed in older normotensive adults that RAP is elevated
but not CrCP [79]. Specifically, the data suggest that RAP

and CrCP maintain CVMR during hypocapnic challenge dur-
ing healthy ageing.

Summary

Taken together, the majority of studies do not show a signif-
icant effect of ageing on dCA, despite differences in tech-
niques and methodologies, populations and outcome mea-
sures. This poses a number of important questions.
Particularly for the mechanisms of orthostatic hypotension,
given that dCA remains intact during postural changes in
many studies, but remains a significant contributor to falls
and morbidity in the older populations. Importantly, the chal-
lenge provided by the unique influence of CO2 on the cerebral
vasculature has arguably provided the greatest information,
allowing us to differentiate the individual effects of CVMR,
tone and autoregulation. Several studies have found a varying
CVMR response to CO2 with both reduced and increased
CVMR to hypercapnia and hypocapnia noted. Further re-
search is required to elucidate the relationship between CO2

and CBF in the healthy brain and ageing. Developing a further
understanding of the effects of ageing on the CBF dependence
on PaCO2 in the healthy brain may help to differentiate age-
related variations from abnormal changes and thus help to
identify those at higher risk of cerebrovascular disease.

Studies of ageing-related NVC changes have found mixed
results of hyper-, hypo- or neutral activation. These differ-
ences are likely to be due to significant heterogeneity in neu-
roimaging techniques and methods, paradigm selection, pres-
ence of vascular ageing and genetic risks, and small sample
sizes. Aligning methodologies and techniques through the es-
tablishment of guidelines for the conduct of studies investigat-
ing NVC will facilitate comparisons and meta-analyses of
findings. Where possible, studies should use multiple imaging
techniques to quantify flow measurements and provide infor-
mation on the spatial and temporal nature of the response.
Despite these limitations, alterations in NVCwith ageing have
been demonstrated and correlate with cognitive performance
and can predict future dementia risk. Thus, understanding
“healthy” ageing patterns in cerebral haemodynamics is im-
perative to promoting and maintaining brain health in later
life.
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