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Abstract
We assessed the utility of quantitative features of colon cancer nuclei, extracted from digitized hematoxylin and
eosin-stained whole slide images (WSIs), to distinguish between stage II and stage IV colon cancers. Our discovery
cohort comprised 100 stage II and stage IV colon cancer cases sourced from the University Hospitals Cleveland Med-
ical Center (UHCMC). We performed initial (independent) model validation on 51 (143) stage II and 79 (54) stage IV
colon cancer cases from UHCMC (The Cancer Genome Atlas’s Colon Adenocarcinoma, TCGA-COAD, cohort). Our
approach comprised the following steps: (1) a fully convolutional deep neural network with VGG-18 architecture
was trained to locate cancer on WSIs; (2) another deep-learning model based on Mask-RCNN with Resnet-50 archi-
tecture was used to segment all nuclei from within the identified cancer region; (3) a total of 26 641 quantitative
morphometric features pertaining to nuclear shape, size, and texture were extracted from within and outside tumor
nuclei; (4) a random forest classifier was trained to distinguish between stage II and stage IV colon cancers using the
five most discriminatory features selected by the Wilcoxon rank-sum test. Our trained classifier using these top five
features yielded an AUC of 0.81 and 0.78, respectively, on the held-out cases in the UHCMC and TCGA validation sets.
For 197 TCGA-COAD cases, the Cox proportional hazards model yielded a hazard ratio of 2.20 (95% CI 1.24–3.88)
with a concordance index of 0.71, using only the top five features for risk stratification of overall survival. The
Kaplan–Meier estimate also showed statistically significant separation between the low-risk and high-risk patients,
with a log-rank P value of 0.0097. Finally, unsupervised clustering of the top five features revealed that stage IV
colon cancers with peritoneal spread were morphologically more similar to stage II colon cancers with no long-term
metastases than to stage IV colon cancers with hematogenous spread.
© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

A critical unmet need in gastrointestinal oncology is to
identify colorectal cancer patients at high risk of tumor
recurrence after potentially curative surgery [1,2].
Although AJCC tumor, node, metastasis (TNM) staging
remains the bedrock of patient risk stratification [3], it is
widely recognized that better systems are needed. This is

highlighted by the fact that up to 25% of stage II colon
cancer (CC) patients will develop distant metastases
within a 10-year period [4–6].
Multiple morphological and molecular parameters are

predictive of patient outcomes, including poor differen-
tiation, lymphovascular or perineural invasion, and
tumor infiltration pattern [7–9]. Tumor-infiltrating lym-
phocyte density and tumor budding, along with other
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parameters, have also been identified as promising
prognostic features in CC [10–17]. However, prob-
lems pertaining to the lack of workable quantitative
classification schemes and inter-pathologist reproduc-
ibility make implementation of morphology-based
patient risk stratification difficult to achieve [13,18–
22]. Numerous studies have identified molecular
markers that are associated with CC patient outcomes
[23,24]. However, apart from mismatch repair/
microsatellite status and BRAF mutation status in
microsatellite-stable CC, none of these markers have
proven robust enough to warrant inclusion into stan-
dard clinical care pathways [24].
In the past decade, the availability of digital whole

slide imaging (WSI) has paved the way for computerized
assessment of tissue pathology through quantitative his-
tomorphometric analysis (QHA) for disease characteri-
zation. QHA uses computer-extracted features to
decrypt sub-visual differences of tumor morphology in
digital tissue images. Recently, several deep-learning-
based approaches composed of multiple processing
layers to learn feature representations with multiple
levels of abstractions [25] have been developed to learn
the feature representations for QHA in both supervised
[26] and unsupervised [27] approaches from WSI. Such
approaches have been widely used for predicting patient
outcomes, mutational profiles, and microsatellite insta-
bility across tumors of various organs [28–33]. An alter-
nate, but more interpretable, approach is to use
explainable handcrafted features that relate to specific
structures in pathology images, e.g. cancer nuclei for
predicting disease outcomes [34,35]. QHA with hand-
crafted features has demonstrated an ability to reproduc-
ibly define patient outcomes in multiple cancer systems
[21,36,37], to correlate with molecular classifications
[36,38], and tumor–host responses [36]. Recently, it
has been shown that nuclear architecture including
nuclear shape, size, and texture is useful in cancer diag-
nosis, grading, prognostication, and prediction of
response to therapy in a number of cancer types
[35,39–43].
Approximately 25% of CC patients will have distant

disease at initial diagnosis and about 50% of all CC
patients will develop distant metastases – most com-
monly to the liver. These are assumed to be via venous
hematogenous spread [44]. The peritoneal cavity is the
third most common site of metastases – after the lung –

and is likely to be caused by direct peritoneal extension
of the primary cancer in the majority of cases. Apart
from definition of involvement of the visceral perito-
neum, there are no known morphological or molecular
features that separate primary colon cancers with hema-
togenous metastases from those with peritoneal
metastases.
In this study, we investigated the hypothesis that stage

II CCs of standard histologic type with no evidence of
long-term recurrence are morphologically distinguish-
able through QHA from stage IV CCs which present
with hematogenously derived metastases (typically to
the liver and lung). We also investigated whether CCs

that recurred via intraperitoneal spread had different
QHA profiles to those with hematogenous dissemina-
tion. QHA results were generated via ‘handcrafted’ com-
putational image analyses to evaluate the role of CC
nuclear shape and texture features from a pathological
spectrum of N = 527 WSIs of stage II and stage IV
CCs, with 200 cases in a discovery set and 327 cases in
a validation set.

Materials and methods

Brief overview
The main steps adopted in our approach were as follows.
First, WSIs of hematoxylin and eosin (H&E)-stained
surgical pathology slides of formalin-fixed, paraffin-
embedded (FFPE) CC specimens were obtained. Sec-
ond, a deep convolutional neural network was trained
to separate tumor regions from non-tumor regions.
Third, segmentation of nuclei was performed using
another deep-learning algorithm trained on a publicly
available dataset containing 29 000 manually annotated
nuclei, spanning several organs, patients, disease states,
and tissue source sites [45]. Fourth, we extracted sev-
eral features pertaining to architecture, shape, texture,
and spatial arrangement of tumor nuclei. These were
used in conjunction with our machine learning classi-
fier to distinguish between stage II and stage IV CC
and independently validated on the TCGA-COAD
cohort cases. Finally, we interrogated the nuclear fea-
tures of stage IV CC with peritoneal metastases and
compared these with both stage II CC and stage IV
CC with hematogenous spread through unsupervised
clustering (Figure 1).

Dataset description
Figure 1 shows a flow chart of the patient inclusion and
exclusion criteria for this study.We obtained H&EWSIs
for 151 stage II CCs with long-term disease-free survival
and 179 stage IV CCs with hematogenous spread
(mostly the liver and lung) from University Hospitals
Cleveland Medical Center (UHCMC). The UHCMC
cases were divided into two subsets: a training dataset,
Str, of 100 stage II and 100 stage IV CCs, and a UHCMC
validation set, Sv, containing 51 stage II and 79 stage IV
CCs for performance evaluation of the trained model.
Another independent validation set, St, from the
TCGA-COAD cohort with WSIs of 143 stage II and
54 stage IV CCs (FFPEs) was used for external perfor-
mance evaluation. All stage IV CCs included in the
study had evidence of hematogenous metastases. An
expert gastrointestinal pathologist (JW) reviewed all
the UHCMC and TCGA-COAD cases, and only CCs
with standard (not otherwise specified)-type adenocarci-
noma were included in the study. All the UHCMC cases
included in this study were scanned at 40� microscopic
magnification on a Ventana iScan HT scanner (Roche,
Nutley, NJ, USA). An additional 28 UHCMC stage IV
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CCs (FFPEs) with peritoneal metastases (21 without
documented hematogenous metastases) were added to
the validation set (Sv) to assess the efficacy of the trained
classifier to distinguish between stage IV CC with peri-
toneal metastases and stage IV CC with hematogenous
metastases. The number of WSIs used in the training,
validation, and test sets is also presented in supplemen-
tary material, Table S1.

Tumor segmentation
To localize the tumor region within theWSI, a fully con-
volutional neural network (FCN) with VGG-18 architec-
ture [46] was employed for tumor segmentation (see
supplementary material, Table S2 for hyperparameter
settings). Vahadane et al’s [47] approach for color nor-
malization was applied to each WSI before feeding it
to the tumor segmentation network. For training,
50 images per class (stage II and stage IV CC) were ran-
domly selected from Str and an expert pathologist per-
formed manual tumor annotations. For validation, an
expert pathologist marked the tumor regions in 50 ran-
domly selected cases from the UHCMC validation set
Sv. Comparison of the ground-truth (pathologist
marked) and algorithm-computed tumor segmentation
masks for these 50 cases yielded an average

intersection-over-union (IoU) value of 0.81. The tumor
segmentation network predicted the probability of each
input patch (size 512 � 512 pixels) belonging to the
tumor or not, and cross-entropy loss function for binary
classification (tumor versus non-tumor) was employed
during the training phase. An illustration of the tumor
segmentation convolutional neural network is shown in
the top row of Figure 2. The trained model was then
applied to segment tumor regions in both UHCMC (Sv)
and TCGA-COAD (St) cases used in this study.

Segmentation of nuclei
Following tumor segmentation, another convolutional
neural network to segment nuclei within the tumor
region was trained. The training and validation data
for segmentation of nuclei were obtained from an inter-
national competition on multi-organ nuclei segmenta-
tion – MoNuSeg [45]. The advantage of using the
MoNuSeg dataset was that it was sourced from several
organs and covered a wide range of nucleus morphol-
ogies across cancer types and stages. The nucleus seg-
mentation module used in the current project obtained
an average aggregated Jaccard index (AJI) of 0.70 on
the challenge’s validation dataset –which is on par with
the winning entry of the challenge [45]. Although

Figure 1. Patient inclusion criteria and distribution of cases in the training and validation cohorts.
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details of the nucleus segmentation module appear in
the Supplementary materials and methods, an illustra-
tion of our Mask R-CNN [48]-based nucleus segmenta-
tion is shown in the bottom row of Figure 2.

Feature extraction
A total of 26 641 nuclear features were extracted from
the segmented tumor nuclei per 1000 � 1000 patch,
where each patch contained around 30 (�10) nuclei on
average. The quantified nuclear features extracted were
size, shape, texture, orientation, architecture, and spatial
organization. Shape features included invariant moment,
Fourier descriptor, and length/width ratios. Nuclear tex-
ture was captured using the Haralick texture features.
We also computed cell cluster graphs (CCGs) to extract
the local neighborhood-based basic shape features as
previously described [43]. Disorder in the orientation
of tumor nuclei was captured using cell graph tensors
(CGTs) defined over the local CCG [49]. A more
detailed description of the extracted nuclear features is
provided in Supplementary materials and methods.

Feature selection and classifier construction
The most relevant nuclear features for discriminating
between stage II and stage IV CC were identified using
the Wilcoxon rank-sum test (WRST). We limited the
number of candidate features to 5 to avoid

dimensionality and overfitting in the subsequent classi-
fier. The top five WRST-identified features were then
used to construct a random forest (RF) classifier to dis-
tinguish between stage II and stage IV CC. The RF clas-
sifier was trained on the UHCMC training data (see
Dataset description) by keeping 80% of the data for
training and the remaining 20% for initial model evalua-
tion. The classifier was trained on a per-patch basis,
where patient level classification decision (stage II ver-
sus stage IV) was obtained by tallying the number of
patches identified as stage II or stage IV CC and classify-
ing the patient based on which stage had the majority.
This voting method was used to classify the features cor-
responding to each patient’s known tumor stage in the
training set. The per-patient patch voting accuracy was
defined as the percentage of patients whose tumor stage
was classified correctly using this method.

Statistical analyses
We evaluated the classification accuracy of the dichoto-
mous machine learning classifier, for stage II versus
stage IV classification, in terms of precision-recall
receiver operating characteristics area under the curve
(ROC-AUC). We also assessed the distribution of the
top five most relevant and discriminative tumor nuclear
features using violin plots. A supplementary survival
analysis was performed on overall survival data avail-
able for TCGA-COAD using Kaplan–Meier plots and

Figure 2. Illustration of the tumor and nucleus segmentation modules.
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a Cox proportional hazards model. No survival analysis
was carried out for UHCMC cases, as survival informa-
tion was not available for those patients.

We also employed uniform manifold approximation
and projection (UMAP) embeddings and violin plots to
illustrate the clustering of stage II, peritoneal stage IV,
and hematogenous stage IV CC in the nuclear feature
space to highlight the separation between these cases
according to the top discriminatory features obtained
from the supervised classification analysis. We also
assessed the groupings of stage II and stage IV CC with
both peritoneal and hematogenous metastases using an
unsupervised hierarchical clustering-based heatmap.

To assess the effectiveness of the trained models, the
model with the highest performance in terms of AUC
was tested on an external validation set (TCGA-COAD
cohort). Models were trained over the entire primary
cohort (UHCMC training set) before being applied,
without any retraining to the external validation set.

Results

Patient characteristics
The data in the UHCMC cohort comprised 53% women
and 47% men, with an average age of 69 years. Around
72% of patients were Caucasian, while the rest were
African Americans. The TCGA-COAD cohort consisted
of 48% women and 52% men, with an average age of
66 years, who were predominantly Caucasian. The
tumors of all but one patient included in this study were
microsatellite-stable.

Experiment 1: evaluating the ability of nuclear
histomorphometric features to distinguish stage II
from stage IV colon cancers
Following feature extraction, the Wilcoxon rank-sum
test (WRST) was employed to select the top five discrim-
inatory features in the UHCMC training set (Str). The
selected feature set comprised (1) nuclear area,
(2) nuclear perimeter, (3) major-axis length of nuclei,
(4) variance of nuclear contrast, and (5) entropy of
nuclear orientation as the most statistically significant
discriminatory features. An RF classier with these fea-
tures on the UHCMC validation set (Sv) and the
TCGA-COAD independent validation set (St) yielded
AUCs of 0.81 and 0.78. The AUC-ROC plots of the
combined model with the top five discriminatory fea-
tures are shown in supplementary material, Figure S1.

Figure 3 shows an illustrative example of the quantita-
tive nuclear features extracted to distinguish between
stage II and stage IV CC. Features pertaining to nuclear
shape and orientation were identified as the most impor-
tant ones for distinguishing between stage II and stage
IV CC. From Figure 3, we can deduce that the nuclei
of stage II CC were in general smaller and had less var-
iation in the directionality of their principal axis com-
pared with the nuclei of stage IV CC with

hematogenous spread. Further, the nuclei of stage IV
CC with peritoneal metastases had an intermediate
nuclear size and less variation in their orientation than
the stage IV CC with hematogenous metastases.
Additional comparative strategies involving feature

selection and machine classifiers are provided in supple-
mentary material, Table S3. Additional comparisons
were conducted using other nuclear features including
cell run length and graph features, and the corresponding
results are provided in supplementary material, Table S4
and Figure S2.

Experiment 2: assessing the survival characteristics
of the histomorphometrically determined staging
groups
Survival analysis was conducted on the independent
TCGA validation set to evaluate the efficacy of the
model-generated classification labels for individual
tumors to see if there were differences in the survival
probabilities across the cases labeled as stage II or IV
by the model. The Kaplan–Meier (KM) survival curves
of overall survival for the two categories are shown in
Figure 4A. The Cox proportional hazards model yielded
a hazard ratio of 2.196 (95% CI 1.24–3.88) with a con-
cordance index of 0.71 when only the top five features
were used to compute the hazards for high-risk tumors,
treating low-risk tumors as the baseline. Figure 4B
shows the KM curves when unsupervised hierarchical
clustering was used to categorize patients into two
groups based on the top five quantitative nuclear fea-
tures. The Cox proportional hazards model yielded a
hazard ratio of 1.951 (95% CI 1.18–3.23) with a concor-
dance index of 0.68 when the top five features were used
to compute the hazards for the two risk groups identified
by the hierarchical clustering. Finally, the KM curves
generated from the true stage labels available in the
TCGA data are shown in Figure 4C. From Figure 4, it
is evident that the top five quantitative nuclear features
were able to group the CCs accurately into two catego-
ries in both a supervised (low risk versus high risk) and
an unsupervised learning framework (class 1 versus
class 2).

Experiment 3: assessing the similarity of stage IV
peritoneal versus hematogenous tumors versus stage
II CC in terms of nuclear histomorphometric features
To examine the quantitative resemblance of stage IV CC
with peritoneal spread to the stage II CC, we created a
two-dimensional embedding of the top five quantitative
features that we extracted from each of the stage II CCs
(n = 51) and stage IV CCs with either peritoneal
(n = 28) or hematogenous (n = 79) metastases using
the UMAP algorithm. This embedding is shown as a
scatter plot in Figure 5A. From Figure 5A, it is clear that
the stage IV CCs with peritoneal metastases adhered
more closely to the stage II CCs, which did not progress,
than the stage IV CCs with hematogenous spread. It
should be noted, however, that stage IV CC with

Computational pathology separates poor from good outcome colon tumors 21

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 17–28
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


peritoneal spread was used neither for training nor for
testing of the classifiers, and that only quantitative
nuclear features were extracted from stage IV CC with
peritoneal spread.
Another way to examine the closeness of stage II CC

and stage IV CC with peritoneal metastases is through
unsupervised hierarchical clustering of the quantitative
nuclear features. We obtained quantitative nuclear fea-
tures from all validation cases and performed hierarchi-
cal clustering in the nuclear feature space. The
hierarchical clustering dendogram was cut at three

clusters, and the corresponding heatmap is shown in
Figure 6B. Due to the large feature space (>25 000 fea-
tures), the heatmap is shown only for the top five features
that generated the maximum cluster separation. These
features were nuclear area, nuclear perimeter, major-axis
length of nuclei, variance of nuclear contrast, and
entropy of nuclear orientation – which are similar to
those obtained from our previously explained supervised
analysis. This indicates that these features are the most
relevant features to distinguish between stage II and
stage IV CC. It is also evident from Figure 5B that stage

Figure 3. Illustration of the features extracted from the segmented tumor nuclei for stage II CC and stage IV CC with both peritoneal and
hematogenous metastases. (A) Patches of size 1000 � 1000 pixels were extracted from the tumor region of the input WSI. (B) An input patch
to the nuclei segmentation module. (C) Output of the nuclei segmentation module, where each nucleus is shown using different colors to
show the separation of touching and overlapping nuclei. (D) Nuclear shape features quantifying attributes such as circumference, area,
length of major axis, etc. and (E) nuclear orientation features quantifying the direction (in red arrows) of the major axis of each of the seg-
mented nuclei are shown as an illustration.

Figure 4. K–M curves for overall survival on the independent validation set of the TCGA-COAD cohort. (A) The Cox proportional hazards model
generated low-risk and high-risk categories using the top five quantitative features. (B) Classes generated using unsupervised hierarchical
clustering based on the top five quantitative nuclear features. (C) Original stage labels available in the TCGA-COAD cohort’s clinical data.

22 N Kumar et al

© 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

J Pathol 2022; 257: 17–28
www.thejournalofpathology.com

http://www.pathsoc.org
http://www.thejournalofpathology.com


Figure 5. Comparison of hematogenous and peritoneal metastases of stage IV CC with stage II CC. (A) UMAP illustration of hematogenous
versus peritoneal metastases of stage IV CC. (B) Unsupervised clustering-based heatmap of the top five features that generated maximum
cluster separation. True class labels are shown on the left vertical bar beside the heatmap – stage II CCs are shown in green, while blue
and red represent stage IV CC with peritoneal and hematogenous metastases, respectively.

Figure 6. Violin plots of the top discriminatory features between stage II and stage IV CC with both peritoneal and hematogenous metastases.
The best-performing feature from each of the top feature families is shown in this illustration – average nuclear area from nuclear shape
features, variance of nuclear orientation from cell-graph tensor (CGT) features, and variance in local nuclear contrast from local cell-cluster
co-occurrence nuclear morphology matrix (cCCM) based features.
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IV CCs with peritoneal metastases cluster closer to stage
II CC, while stage IV CCs with hematogenous metasta-
ses form a separate cluster.
To further examine the differences between the top

discriminatory features between stage II and stage IV
CC, we analyzed the distributions of normalized feature
values (0–1) using violin plots, as shown in Figure 6. It
should be noted that the distributions of the most statis-
tically significant features, between stage II and stage
IV CC, within each of the top feature families are shown
in Figure 6. From Figure 6, it is evident that the nuclei in
stage IV CC were larger on average than their stage II
counterparts (0.61 versus 0.26, p < 0.01). Additionally,
the distribution of nuclear area for stage IV CCwas more
concentrated around the mean, with a heavy tail, com-
pared with the nuclear area distribution of stage II CC,
which was more spread out. Similar trends were
observed for the other two discriminatory nuclear fea-
tures. These trends indicate that the nuclei in stage IV
CC were uniformly larger, while the nuclei in stage II
tumors were smaller and had a higher degree of variance
in their sizes. Furthermore, the entropy of the distribu-
tion of the nuclear orientation was higher for stage IV
nuclei than for stage II nuclei (0.59 versus 0.40,
p < 0.01), indicating that the nuclei in stage IV tumors
have a higher degree of orientation disorder, while stage
II nuclei were more uniformly oriented. Finally, stage IV
nuclei show higher variance in local nuclear contrast
compared with stage II nuclei (0.30 versus 0.60,
p < 0.01), according to the features obtained from the
local cell-cluster co-occurrence nuclear morphology
matrix (cCCM; see Supplementary materials and
methods for details) shown in Figure 6. Conclusively,
nuclear area, perimeter, major-axis length, nuclear con-
trast, and entropy of nuclear orientation were the most
discriminatory features for distinguishing between stage
II and stage IV colon tumors.

Discussion

A number of studies have sought to define clinically
useful prognostic markers in CC, although apart from fea-
tures related to stage and grade, along with determination
of microsatellite stability and BRAF status, no other
markers have been universally incorporated into clinical
practice [24]. The need for improved predictive markers
in CC is obvious. For example, although most patients
with stage II CC are cured by surgery alone, approxi-
mately 25% recur – the majority without having received
post-operative adjuvant therapy [1]. Also, 30% of all CCs
present as stage III, which has an approximately 40–50%
recurrence rate [50]. Even ‘low-risk’ stage III CC (defined
as having 1–3 positive lymph nodes) has a recurrence rate
of at least 20%. The majority of CC recurrences are lethal
[51]. Thus, a reliable CC prognostication scheme would
define patients for whom intense monitoring and potential
changes for management could be considered. Quantita-
tive histomorphometric analysis (QHA) methods may

play a role in better defining these patients, facilitating
enhanced clinical decision support for their treating
physicians.

In this study, we developed and validated a quantita-
tive, histomorphometric-based image risk classifier to
accurately segregate stage II with at least 5-year
recurrence-free survival from stage IV CC from digital
WSIs of H&E tumor sections. We identified nuclear size
features including area, perimeter, and major-axis length
along with nuclear orientation, and local variance in
nuclear contrast as the top five discriminatory features
that successfully distinguished between stage II and
stage IV CC in a single institution validation cohort.
These top five tumor nucleus features were indepen-
dently validated on the TCGA-COAD cohort cases for
stage II versus stage IV classification and were also asso-
ciated with patients’ overall survival outcomes for
respective classes. Finally, in a unique study of the sub-
types of stage IV CC, CC with dissemination into the
peritoneal cavity via direct extension had nuclear fea-
tures in between those of stage II CC with no evidence
of recurrence and CC with hematogenous spread.

Nuclear changes are integral to cancer biology, being
one of the earliest recognized features of cancer [52].
Oncogenesis, in themajority of cancer types, is associated
with increasing abnormality of nuclear size and shape
accompanied by chromatin and nuclear envelope irregu-
larities. These changes are directly related to molecular
events of cancer progression and are often specific for
individual cancer types [53]. Routine pathological assess-
ments of cancer nuclei are fundamental to cancer classifi-
cation schemes and are incorporated into prognosis
assessments in many cancers. Use of artificial intelligence
for computer aided image analysis and classification has
revealed important nuclear features that correlate with
molecular profiles and clinical outcomes in multiple can-
cer types [28,54–58]. Our findings support these general
concepts and specifically identify quantifiable changes
in nuclear features of size, entropy of orientation, and
local cellular diversity, which are highly correlative with
patient outcomes and are likely to be additive to currently
accepted prognostic and potentially predictive markers
currently used in managing CC patients.

The study appears to support the concept that cumula-
tive molecular abnormalities, which are linked to
increasing nuclear disorganization, play a pivotal role
in CC patient outcomes. Previous studies have failed to
identify driver gene mutation accumulation to be associ-
ated with CC metastasis [59]. However, it is now recog-
nized that a more complex interaction of oncogenic
pathways, such as activated stem-cell programs, is asso-
ciated with the likelihood of metastases – though these
mechanisms need to be further elucidated [60,61]. The
CC nuclear changes, which are more prominent in stage
IV than in stage II CC, are reflective of these molecular
processes, although not reproducibly identifiable by a
pathologist.

Peritoneal cavity seeding, as opposed to hematoge-
nous metastases, requires different molecular events –

such as tumor microenvironment interactions – though
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this has not been well studied. CC with direct local
extension to the serosa is a known high-risk feature of
peritoneal cavity recurrence. Our data, using QHA, dem-
onstrating that CCs with peritoneal metastases have an
intermediate nuclear phenotype between CCs that do
not metastasize and those with hematogenous spread is
consistent with this concept.

While a number of studies have recently been reported
on the use of machine learning for prognosticating sur-
vival for colon cancer from WSIs [58], our study was
different from these studies in several ways. Specifically,
unlike previous black-box deep-learning models, our
approach used interpretable handcrafted features for
quantitative histomorphometric analysis to develop
explainable models for downstream digital pathology
analysis. As demonstrated through our extensive exper-
iments, the ‘handcrafted’ feature-based approach
showed satisfactory performance on both the initial val-
idation set (UHCMC, Sv) and the independent TCGA-
COAD validation set (St). These results indicate that
our approach is not biased to a particular dataset and
could be used on external datasets without retraining,
which is well-suited to clinical adoption with further
validation.

We do acknowledge that our study does have some
limitations, the foremost of which being that our analysis
was retrospective in nature and was performed on a lim-
ited number of patients. Furthermore, additional clinical
variables (such as patient age, race, tumor grade) were
not combined with image-derived quantitative histomor-
phometric features for a comprehensive multivariate
analysis. Future efforts will be made to investigate our
model on a large patient cohort with multi-institutional
validation. Furthermore, we plan to address some of
the critical questions around predictive analytics such
as identifying the need for adjuvant chemotherapy for
stage II CCwith poor prognosis through quantitative his-
tomorphometric analysis.

Despite the aforementioned limitations, our study
demonstrated that quantitative features pertaining to
nuclear area, perimeter, major-axis length, orientation
diversity, and local texture variance are useful in distin-
guishing between stage II CC with no long-term metas-
tases and stage IV CC with hematogenous spread. We
validated these findings on an independent validation
set obtained from the publicly available TCGA-COAD
cohort and also found an association of the identified
nuclear features with patients’ survival outcomes.
Finally, we also found that stage IV CCs with peritoneal
carcinomatosis resemble the stage II CCs with no long-
term metastases more closely than their stage IV CC
counterparts with hematogenous metastases in the
selected feature space. Further studies to validate these
findings on independent multi-institutional datasets and
also for potentially prospective validation are warranted.

In conclusion, this study enabled the identification of
quantifiable changes in nuclear features of size, entropy
of orientation, and local cellular diversity of CC WSI
using QHA which are highly correlative with patient
outcomes and are likely to be additive to currently

accepted prognostic and potentially predictive markers
used currently in managing CC patients. Furthermore,
this study demonstrates the utility of artificial
intelligence-enhanced ‘handcrafted’ nuclear segmenta-
tion image analysis to accurately differentiate between
CCs which do and do not metastasize. As opposed to
‘deep-learning’ platforms, the ‘handcrafted’ approach
allows for the translation of image analysis results into
oncology and diagnostic pathology practice by defining
the abnormalities being measured and allowing for
seamless integration of other image analysis pipelines.
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