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Segmentation of molecular images is a difficult task due to the low signal-to-noise ratio of images. A novel two-dimensional fuzzy
C-means (2DFCM) algorithm is proposed for the molecular image segmentation. The 2DFCM algorithm is composed of three
stages. The first stage is the noise suppression by utilizing a method combining a Gaussian noise filter and anisotropic diffusion
techniques. The second stage is the texture energy characterization using a Gabor wavelet method. The third stage is introducing
spatial constraints provided by the denoising data and the textural information into the two-dimensional fuzzy clustering. The
incorporation of intensity and textural information allows the 2DFCM algorithm to produce satisfactory segmentation results
for images corrupted by noise (outliers) and intensity variations. The 2DFCM can achieve 0.96± 0.03 segmentation accuracy for
synthetic images under different imaging conditions. Experimental results on a real molecular image also show the effectiveness of
the proposed algorithm.
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1. INTRODUCTION

Molecular imaging techniques such as positron emission
imaging, fluorescent imaging, and isotope radiation imaging
have undergone explosive growth over the past few decades.
It will allow clinicians not only to measure concentrations
of interesting molecules quantitatively, but also to visualize
the interactions of molecular markers in vivo, thus extending
the emphasis of radiological imaging beyond the anatomi-
cal and functional levels [1]. Integrations of molecular infor-
mation specific to each patient with anatomical information
obtained by conventional imaging methods such as the mag-
netic resonance imaging (MRI), X-ray computed tomogra-
phy (CT), and ultrasound (US) will undoubtedly enhance
the ability to fight disease. Image segmentation is a prelimi-
nary and crucial step for subsequent image applications such
as quantification of molecular concentration, image registra-
tion, and integration. However, molecular images often suf-
fer from a low signal-to-noise ratio (SNR); this will lead to
difficulties with its segmentation.

The fuzzy clustering algorithm, more widely used as
fuzzy C-means algorithm (FCM) [2], has been successfully
utilized in medical image segmentation [3–6]. The most im-
portant feature of the FCM is that it allows each pixel to be-
long to multiple clusters according to its degree of member-

ship in each cluster, which makes the clustering methods able
to retain more information from the original image as com-
pared to the case of hard segmentation. FCM works well on
images with low levels of noise, but there are two disadvan-
tages of the FCM used in segmentation of noise-corrupted
images. One is that the FCM does not incorporate the infor-
mation about the spatial context, which makes it sensitive to
the noise and other imaging artifacts. The other is that the
cluster assignment is based solely on the distribution of the
pixel intensity, which makes it sensitive to intensity variations
due to the illumination or the object geometry [7]. In order
to improve the robustness of conventional FCM, many algo-
rithms have been presented in the literatures. These meth-
ods can be divided into two main groups: imposing spatial
constraints to clustering algorithms [3, 5–7] and introduc-
ing other features or dissimilarity index that is insensitive to
intensity variations in the objective function of FCM [5, 7].

This paper presents a novel algorithm based on fuzzy
logic for molecular image segmentation. In this algorithm,
two factors to improve the robustness of conventional FCM
are considered. Due to the low SNR of molecular images,
image denoising is taken for a prelude to the segmentation.
A denoising method which combines a Gaussian noise filter
with an anisotropic diffusion (AD) technique is presented to
alleviate noise in molecular images. Since the Gabor wavelet
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representation of molecular images is relatively robust to in-
tensity variations, a texture characterization method derived
from Gabor filters bank is presented to extract texture infor-
mation from images. Spatial constraints provided by the de-
noising data and texture information provided by the Gabor
wavelet are embedded in the objective function of a novel
two-dimensional fuzzy clustering (2DFCM) algorithm.

The remainder of this paper is organized as follows.
Section 2 proposes the denoising method. Section 3 intro-
duces the multichannel Gabor filters and the texture feature
characterization. In Section 4, we present in detail the new
two-dimensional FCM algorithm (2DFCM) which integrates
both intensity information and texture information. The ex-
perimental comparisons are presented in Section 5. Section 6
concludes the paper.

2. MOLECULAR IMAGE DENOISING

Gaussian noise is the most common noise broadly existed
in signal processing sciences. Ling and Bovik [8] proposed a
method to smooth molecular images by assuming that the
noise follows an additive Gaussian model. Following Ling
and Bovik’s notion, we also assume that molecular images
are corrupted by a zero-mean Gaussian white noise.

The FIR filter is well known for its ability to remove
Gaussian noise from signals but it does not work very well
in the image processing since it blurs edges within the image.
The Gaussian noise filter (GNF) [9], combining a nonlinear
algorithm and a technique for automatic parameter tuning,
is a valid method for estimation and filtering of Gaussian
noise. The GNF used in this paper can be summarized as fol-
lows. Let X = {x1, x2, . . . , xn} be a set of n data points in the
noisy image. The output Y = {y1, y2, . . . , yn} is defined as
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where Ni stands for the neighborhood configuration with re-
spect to a center pixel xi, and NR is the cardinality of Ni. The
automatic tuning of the parameter p is a key step in GNF.
Let MSE(k) denote the mean square error between the noisy
image filtered with p = k and the same image filtered with
p = k − 1. A heuristic estimate of the optimal parameter
value is

p̂ = 2
(
km − 2

)
, (3)

where

MSE
(
km

) = MAX
{

MSE(k)
}
. (4)

The GNF can remove intensity spikes due to the Gaussian
noise. However, it has limited effect on suppressing little
intensity variations caused by the neighboring smoothing.

Since the conventional FCM is a method based on the sta-
tistical feature of the image intensity, a piecewise-smooth in-
tensity distribution will be greatly beneficial to it. We pur-
sue a more desirable denoising result by following the GNF
with an anisotropic diffusion filter. Yu and Acton [10] pro-
vided an improved anisotropic diffusion filter called speckle
reducing anisotropic diffusion (SRAD) which outperforms
the traditional Perona-Malik nonlinear diffusion [11]. Al-
though SRAD is proposed for the speckle reduction in syn-
thetic aperture radar (SAR) or ultrasound images, its ad-
vantages in mean preservation, variance reduction, and edge
localization are also preferable for molecular images. The
SRAD used in this paper can be formulated as a diffusive pro-
cess:

c(q) = 1
1 +

[
q2(x, y; t)− q2

0(t)
]/[

q2
0(t)

(
1 + q2

0(t)
)] , (5)

where c(q) represents the diffusion coefficient, q(x, y; t) is
the instantaneous coefficient of variation served as the edge
detector in the noise image. q(x, y; t) combines a normal-
ized gradient magnitude operator and a normalized Lapla-
cian operator:

q(x, y; t) =

√√√√√ (1/2)
(|∇Y |/Y)2 − (

1/42
)(∇2Y/Y

)2

[
1 + (1/4)

(∇2Y/Y
)]2 , (6)

where ∇ is the gradient operator and Y is the image filtered
by GNF. q0(t) is the scale function serving as the diffusion
threshold which can be approximated by using a heuristic
constant q0 with the exponential decay function

q0(t) ≈ q0 exp [−ρt]. (7)

Here ρ is a constant typically set to 1/6. Suppose that the out-
put of the SARD with Y = {y1, y2, . . . , yn} as the input can
be represented by X∗ = {x1

∗ , x2
∗ , . . . , xn∗}.

To clearly illustrate the denoising effect of GNF plus
SRAD, Figure 1 shows a group of filtering results of GNF
alone, SRAD alone, GNF plus SRAD, and the anisotropic
median-diffusion (AMD) [8] on a synthetic molecular im-
age. From the filtering results comparison, it is seen that the
denoising method of integrating GNF with SRAD can over-
come the intensity fluctuation effect of GNF and the “blocky”
effect of SRAD and MAD.

3. TEXTURE CHARACTERIZATION

A molecular image illustrates the distribution of a certain
molecule [8]. Since the photon has different transportation
characteristics in different turbid tissues, a molecular image
can be divided into several separate regions with each re-
gion showing similar intensity (implying similar molecular
concentration) and certain kind of textural pattern. Because
the photon distribution in a turbid tissue is not usually uni-
form, the intensity within a region usually changes gradually.
This intensity variation can cause errors when attempting to
segment images using intensity-based classification methods.
Intuitively, if a feature insensitive to the slowly varying in-
tensity can be introduced into the classification, the perfor-
mance of the image segmentation could be improved. Here,
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(a) (b) (c) (d) (e)

Figure 1: Denoising effect comparison among GNF, SRAD, and GNF plus SRAD: (a) original image; (b) filtering result of GNF; (c) filtering
result of SRAD; (d) filtering result of GNF plus SRAD; (e) filtering result of anisotropic median-diffusion (MAD) [8].

a texture characterization method based on the Gabor
wavelet is utilized to obtain this desirable feature.

A large number of texture classification techniques have
been proposed in the past two decades [12]. Gabor wavelet
has been a popular method because it can capture the local
structure corresponding to spatial frequency, spatial localiza-
tion, and orientation selectivity. As a result, Gabor wavelet
representation of an image should be robust to intensity vari-
ations [13, 14]. A Gabor function in the spatial domain is a
sinusoidal modulated Gaussian. The real impulse response of
Gabor filter is given by

h(x, y;μ, θ) = exp
{
− 1

2
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+
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σ2
y

]}
· cos(2πμx), (8)

where x = x′cosθ+ y′sinθ, y = −x′sinθ+ y′cosθ, (x, y)
represent rotated spatial-domain rectilinear coordinates, u is
the frequency of the sinusoidal wave along the direction θ
from the x-axis, σx and σ y define the size of the Gaussian
envelope along x- and y-axes, respectively, which determine
the bandwidth of the Gabor filter. The frequency response of
the filter is given by
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where σu = 1/2πσx, σv = 1/2πσ y . By tuning u and θ, mul-
tiple filters that cover the spatial frequency domain can be
obtained. In our study, Gabor wavelets with four different
scales, μ ∈ {π/4√2,π/4,π/2

√
2,π/2}, and eight orientations,

θ ∈ {0π/8, 1π/8, . . . , 7π/8}, are used. Let X(x, y) be the in-
tensity level of an image. The Gabor wavelet representation
is the convolution of X(x, y) with a family of Gabor kernels:

Gμ,θ(x, y) = X(x, y)∗h(x, y;μ, θ), (10)

where ∗ denotes the convolution operator, and Gu,θ is the
convolution result corresponding to the Gabor kernel at the
scale μ and the orientation θ. The next step is to compute
the textural energy in Gu,θ . The textural energy is a mea-
sure widely used to characterize the image texture. The en-

ergy that corresponds to a square window of the image Gu,θ

centered at x and y is defined as

Eμ,θ(x, y) = 1
M2

∑

(i, j)∈Wxy

∣∣F
(
Gμ,θ(i, j)

)∣∣, (11)

where M2 is the total number of pixels in the window, and
F(.) is a nonlinear, sigmoid function of the form

F(t) = tanh(αt) = 1− e−2αt

1 + e−2αt
, (12)

where α equals 0.25. The texture feature image is finally given
by

T(x, y) = 1
32

∑

μ,θ

Eμ,θ(x, y). (13)

As an example, Figure 2(a) shows a synthetic image with the
intensity inhomogeneity. Figure 2(b) gives the texture energy
bank (Eμ,θ) illustration. Figure 2(c) shows the texture feature
image. From this example, it is seen that the texture feature
characterization using Gabor wavelet is insensitive to the in-
tensity inhomogeneity.

4. 2DFCM

4.1. FCM

Let X = {x1, x2, . . . , xn} be a set of n data points, and let c
be the total number of clusters. The objective function of the
FCM [2] for partitioning X into c clusters is given by

JFCM =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
, (14)

where m j , j = 1, 2, . . . , c, represent the cluster prototypes and
μi j gives the membership of pixel xi in the jth cluster m j . The
parameter b is the fuzzy index that satisfies b ∈ (1,∞) and
controls the degree of “fuzziness” in the resulting classifica-
tion. The fuzzy partition matrix satisfies

U=
{
μi j∈[0,1]

∣∣∣∣∣

c∑

j=1

μi j=1∀i, 0<
N∑
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μi j <N ∀ j

}
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Figure 2: Illustration of the texture feature characterization: (a) original image with the intensity inhomogeneity; (b) texture energy bank
illustration; (c) texture feature image.

Under the constraints condition of (15), taking the first
derivations of (14) with respect to μi j and m j and setting
those equations to zero yield necessary conditions for (14) to
be minimized. Performing iteration through these two nec-
essary conditions leads to an iterative scheme for minimizing
the objective function. The objective function (14) is min-
imized when high membership values are assigned to pix-
els whose intensities are close to the centroid of its particu-
lar class, and low membership values are assigned when the
pixel data is far from the centroid [2]. After FCM clustering, a
segmentation of the image can be obtained by assigning each
pixel solely to the class that has the highest membership value
for that pixel.

Although the membership allows a pixel to deviate from
multiple cluster prototypes, the spatial correlation between
adjacent pixels is not considered.

4.2. FCM with spatial constraints

A popular method to introduce the local spatial context into
the pixel classification is the spatial constraint. The spatial
constraint is to let the spatial information influence the clas-
sification of the pixel of interest [5, 6]. Let Ni denote the con-
figuration of neighbors that exists in a window around xi.
According to the assumption that real-world images usually
have strong correlation among neighboring pixels, if the pixel
xi belongs to the cluster with the prototype m j , then pixels in
Ni and the center pixel xi should have similar and high mem-
bership values in m j . This original idea of incorporating local
spatial constraints in the FCM is formulized as [15]

JFCM S =
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∥∥xi −mj

∥∥2
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∥∥2
)

,

(16)

where Ni stands for the neighborhood configuration with
respect to a center pixel xi, NR is the cardinality of Ni, α

controls the effect of the neighboring penalty. The second
term on the right side of (16) allows the labeling of a pixel
to be influenced by the labels in its immediate eight neigh-
borhoods and aims at keeping continuity in the neighboring
window. The problem with (16) is that computing the neigh-
borhood terms will cost much more time than clustering.
In order to reduce the complexity of computing the neigh-
borhood terms, the dissimilarity measurements between the
whole neighborhood configuration and the prototype m j can
be replaced by a distance from a feature data of Ni to m j . The
feature data of the neighborhood configuration can be ob-
tained by several kinds of neighboring window filters, such
as the linear filter or the median filter. This approach is ex-
pressed in the following objective function [5]:

JFCM S′ =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1

n∑
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μbi j
∥∥x∧i −mj

∥∥2
,

(17)

where x∧i is a mean or median of neighboring pixels lying
within a window around xi. Here, we modify (17) by substi-
tuting x∧i with denoising molecular image data x∗i . The ob-
jective function for the FCM with spatial constraints (called
FCM S later) is given by

JFCM S =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1

n∑

i=1

μbi j
∥∥x∗i −mj

∥∥2
.

(18)

4.3. 2DFCM

Equation (18) introduces spatial constraints into the clus-
tering procedure. However, the classification result of (18)
still solely depends on the intensity distribution of the im-
age, which makes it sensitive to intensity variations within
a turbid tissue. With the texture information obtained by
the Gabor wavelet bank, the two-dimensional fuzzy C-Means
(2DFCM) algorithm is constructed by integrating both the
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intensity and the texture information. Suppose that the tex-
ture feature image is T = {t1, t2, . . . , tn}, the objective func-
tion of 2DFCM can be expressed as

J2DFCM =
c∑

j=1

n∑

i=1

μbi j
∥∥xi −mj

∥∥2
+ α

c∑

j=1
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∥∥2
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μbi j
∥∥ti − vj

∥∥2
.

(19)

The influence of the texture characterization imposed on the
clustering procedure can be controlled by a constant vector
βi(i = 1, . . . ,n); the prototype of texture image data is rep-
resented by v j( j = 1, . . . , c). The choice of βi is based on the
following principle. If ti is large, implying the texture energy
is dominant, and βi should be large; if ti is small, implying
the texture energy is weak, and βi should be also small. The
βi is determined by βi = (Bti)/max(T), where B is a constant
and its optimized value is determined by “trial-and-error”
technique (see Section 5 for details).

The optimization problem under the constraint of U as
stated in (15) can be solved using one Lagrange multiplier:
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)
.
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Taking the derivative of F with respect to μi j and setting the
result to zero, we can obtain an equation for μi j with un-
known

μi j=
{
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Utilizing the constraint of U can be solved as
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Substituting (22) into (21), a necessary condition for (19) to
be at a local minimum will be obtained:
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Similarly, zeroing the derivative of F with respect to m j and
v j , we have

mj =

n∑

i=1
μbi j

(
xi + αx∗i

)

(1 + α)
n∑

i=1
μbi j

, vj =

n∑

i=1
μbi j ti

n∑

i=1
μbi j

. (24)

4.4. Implementation of 2DFCM

For the 2DFCM, the number of prototypes (c) and the ini-
tial centroids (M = {(mj , vj) | j = 1, . . . , c}) ought to be
known at the beginning of iterative procedures. A maximum
likelihood approach by processing and analyzing the two-
dimensional (2D) histogram of X and T is used to estimate c
and M. The number of prototypes (c) and initial prototypes
(M ) is estimated by following steps.

(1) Count the number of peaks in the 2D histogram and
record it as PeakNumprev.

(2) Filter the histogram using a five-by-five Gaussian filter
with zero mean and a standard deviation of 0.6.

(3) Pick peak points in the 2D histogram and record
the number of peaks using PeakNumnext. Then
calculate PeakSub=PeakNumnext−PeakNumprev, and
PeakNumprev=PeakNumnext.

(4) If PeakSub < 1, then go to step (5); if PeakSub≥ 1, then
go to step (2);

(5) The c is estimated as the number of peaks existing in
the filtered 2D histogram and the locations of c peaks
found are used as the initial centroids M.

The procedure of 2DFCM can be summarized in the fol-
lowing steps.

(1) Filter the image using GNF followed by SRAD to gen-
erate the denoising data X∗.

(2) Filter the image using Gabor wavelet band and com-
pute the texture feature image T.

(3) Formulate the 2D histogram using the denoising data
X∗ and the texture feature image T. Estimate the num-
ber of clusters (c) and initial prototypes (M).

(4) Repeat the following steps until the centroids variation
is less than 0.001.

(a) Update the membership function matrix using
(23).

(b) Update the centroids using (24).
(c) Calculate the centroids variation between before

updating and after updating.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

We perform experiments on a PC with 2.0 GHz Pentium pro-
cessor using Visual C++ 6.0. To illustrate the performance of
the 2DFCM, we first test it using simulated molecular im-
ages from which the ground truth data is available. Simu-
lated molecular images are obtained by using MOSE (Monte
Carlo optical simulation environment) [16–18] developed
by Bioluminescence Tomography Lab, Department of Radi-
ology and Department of Biomedical Engineering, Univer-
sity of Iowa (http://radiology.uiowa.edu/). MOSE is based on
Monte Carlo method to simulate bioluminescent phenom-
ena in the mouse imaging and to predict bioluminescent sig-
nals around the mouse.

The optimized α and B in the 2DFCM should be ob-
tained by “trial-and-error” technique. We first choose an ap-
propriate value for α based on the segmentation performance
of the FCM with spatial constraints (FCM S) (the objective

http://radiology.uiowa.edu/
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function is formularized as (18). We take a group of values
for α ranging from 0.25 to 6 to test the misclassification rate.
With the increasing of α, the number of misclassified pixels
reduces. However, after α exceeds 3, the segmentation per-
formance of the FCM S has no apparent changes. Therefore,
we set α = 3.5 in our study, which is a value that can pro-
duce steady and good results. Then, we choose an appropri-
ate value for B based on the segmentation performance of the
2DFCM. We also take a group of values for B ranging from 5
to 80 to test the misclassification rate. After B exceeds 36, the
segmentation performance of the 2DFCM has no apparent
changes. Therefore, we set B = 36 in our work, which gives
steady and satisfactory results. The computation time of the
proposed algorithm on an image of 128 × 128 is approxi-
mately 12 seconds. About two thirds of total time are con-
sumed in texture characterization based on Gabor wavelet.

The first example is applying algorithms to a synthetic
cellular image and comparing the 2DFCM with other three
algorithms, including the FCM on the original image, the
FCM with spatial constraints, and the FCM on the texture
feature image. The model to generate synthetic molecular
images is illustrated in Figure 3(a). The simulated molecu-
lar image (128× 128) corresponding to Figure 3(a) is shown
in Figure 3(b). Then Figure 3(b) is corrupted by the intensity
inhomogeneity (as shown in Figure 3(c)) to generate the final
synthetic image (as shown in Figure 3(d)). Figure 3(e) shows
the image filtered by the GNF plus SRAD. Figure 3(f) shows
the texture feature image obtained by the Gabor wavelet
bank. Figures 3(g)–3(j) give the segmentation results of the
FCM on the original image (Figure 3(d)), the FCM with
spatial constraints, the FCM on the texture feature image
(Figure 3(f)), and the 2DFCM, respectively. We quantify the
algorithm performance in terms of three parameters defined
as follows:

SA = NCORRECT

NTOTAL
,

US = Nf p

Nn
,

OS = Nf n

Np
.

(25)

SA represents the total segmentation accuracy; US is the un-
der segmentation rate; OS denotes the over segmentation
rate. NCORRECT is the number of correctly classified pixels;
NTOTAL is the total number of pixels; N f p is the number of
pixels that do not belong to the class and are segmented into
this class; N f n is the number of pixels that belong to the class
and are not segmented into the class; Np is the number of all
pixels that belong to the class; Nn is the number of all pixels
that do not belong to the class. There are totally four algo-
rithms that are compared in our experiments. Table 1 gives
the SA, US, and OS comparisons among the four algorithms,
correspondingly.

To further test the segmentation performance of the pro-
posed method, a group of synthetic images under different
imaging conditions are utilized. Nine synthetic images are
shown in Figure 4. These images are organized into the form
with different photons density along the vertical direction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3: Segmentation results on the first synthetic image: (a) the
ground truth image; (b) the synthetic image generated by MOSE;
(c) the intensity inhomogeneity model; (d) the synthetic image cor-
rupted by the intensity inhomogenetiy; (e) the denoising result with
the GNF plus SRAD; (f) the texture feature image; (g) the FCM re-
sult on (d); (h) the FCM S result on (d); (i) the FCM result on tex-
ture feature image; (j) the 2DFCM result.

and different types of intensity inhomogeneity along the hor-
izontal direction. Table 2 summarizes the segmentation ac-
curacy of the FCM on the original image, the FCM with
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Table 1: SA, US, and OS of the three-conventional FCM and 2DFCM on Figure 3.

Parameter The FCM on original image The FCM with spatial constraints The FCM on texture image The 2DFCM

SA 0.72 0.71 0.91 0.97

US 1.12 1.16 0.35 0.13

OS 0.01 0.01 0 0

SA: segmentation accuracy.
US: undersegmentation rate.
OS: oversegmentation rate.

Table 2: SA of the three-conventional FCM and 2DFCM on images with different imaging conditions.

Parameter The FCM on original image The FCM with spatial constraints The FCM on texture image The 2DFCM

SA 0.87± 0.15 0.86± 0.14 0.93± 0.03 0.96± 0.03

Figure 4: Synthetic images under different imaging conditions.
First row: the ground truth image. From the second row to bottom:
synthetic images with different photons density along the vertical
direction and different types of intensity inhomogeneity along the
horizontal direction.

spatial constraints, the FCM on the texture feature image,
and the 2DFCM, respectively.

The second example is applying the algorithms to a real-
molecular image (256× 256) (as shown in Figure 5(a)). Fig-
ures 5(b) and 5(c) show the denoising result of the GNF plus
SRAD, and the texture feature image obtained by the Gabor
wavelet bank, respectively. Figures 5(d)–5(g) illustrate the
segmentation results of the FCM on the original image, the
FCM with spatial constraints, the FCM on the texture feature

image, and the 2DFCM, respectively. In order to illustrate the
segmentation results clearly, the contours of the interest of
region in the classification image are extracted and superim-
posed on the original image. Figures 5(h)–5(k) give the con-
tour comparisons. It can be seen from Figure 5(a) that the
middle of the tissue appears homogeneously bright. How-
ever, the molecular concentration decreases in the boundary
area, which leads to the intensity variation near the bound-
ary. The conventional FCM on the original image and the
FCM with spatial constraints produce undersegmentation
results and the FCM on the texture feature image shows over-
segmentation.

From the experimental results, we can see that the de-
noising effects of the GNF plus SRAD are satisfactory. The
Gabor wavelet bank can represent the texture information in
the molecular image without being disturbed by the intensity
variation. The FCM produces the worst result due to the fact
that no spatial constraints are used in it. The FCM with spa-
tial constraints produces more smoothed segmentation re-
sults than the FCM. However the intensity inhomogeneity
makes the segmentation result degenerate. Since the 2DFCM
utilizes both the intensity and texture information simul-
taneously, it produces more satisfactory results than other
methods.

6. CONCLUSIONS

In this paper, we have developed a novel algorithm based
on the fuzzy clustering for the molecular image segmenta-
tion. Considering that there are two disadvantages for the
conventional FCM in the image segmentation, its success-
ful employment in the molecular image segmentation re-
quires overcoming nonrobust factors by introducing spatial
constraints and the texture feature of images into the clus-
tering. To alleviate noises in molecular images, a denoising
method combining GNF plus SRAD is proposed. We use the
denoising data obtained by GNF plus SRAD to compose spa-
tial constraints for the new 2DFCM. By utilizing the Gabor
wavelet representation and the texture energy characteriza-
tion, the texture feature that is insensitive to intensity varia-
tions is introduced into the 2DFCM. Quantitative evaluation
demonstrates the superiority of the 2DFCM over the conven-
tional FCM in the molecular image segmentation.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 5: Segmentation results on a real molecular image: (a) the original image; (b) the denoising result with the GNF plus SRAD; (c)
the texture feature image; (d) the FCM result on (a); (e) the FCM S result on (a); (f) the FCM result on the texture feature image; (g) the
2DFCM results; (h)–(k) the contours obtained from (d) to (g) superimposed on the original image, respectively.
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