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Abstract: In this work, we report the carbon fiber-based wire-type asymmetric supercapacitors (ASCs).
The highly conductive carbon fibers were prepared by the carbonized and graphitized process using
the polyimide (PI) as a carbon fiber precursor. To assemble the ASC device, the CoMnO2-coated and
Fe2O3-coated carbon fibers were used as the cathode and the anode materials, respectively. Herein,
the nanostructured CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation
route without high temperature treatment in presence of ammonium persulfate (APS) as an oxidizing
agent. FE-SEM analysis confirmed that the CoMnO2-coated carbon fiber electrode exhibited the
porous hierarchical interconnected nanosheet structures, depending on the added amount of APS,
and Fe2O3-coated carbon fiber electrode showed a uniform distribution of porous Fe2O3 nanorods
over the surface of carbon fibers. The electrochemical properties of the CoMnO2-coated carbon fiber
with the concentration of 6 mmol APS presented the enhanced electrochemical activity, probably
due to its porous morphologies and good conductivity. Further, to reduce the interfacial contact
resistance as well as improve the adhesion between transition metal nanostructures and carbon fibers,
the carbon fibers were pre-coated with the Ni layer as a seed layer using an electrochemical deposition
method. The fabricated ASC device delivered a specific capacitance of 221 F g−1 at 0.7 A g−1 and
good rate capability of 34.8% at 4.9 A g−1. Moreover, the wire-type device displayed the superior
energy density of 60.2 Wh kg−1 at a power density of 490 W kg−1 and excellent capacitance retention
of 95% up to 3000 charge/discharge cycles.
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1. Introduction

In recent years, the energy storage devices, such as Li ion batteries (LIBs) and electrochemical
capacitors/supercapacitors (SCs) are becoming more and more important as environmentally clean
and sustainable energy sources [1–3]. In particular, SCs are the most promising energy storage device
owing to their higher power densities, longer cycle life, fast charging/discharging capability, non-toxic
nature, and low-cost maintenance compared to the LIBs. In general, the charge storage mechanism of
supercapacitors is divided in two ways, either by forming electrical double layer charge accumulation
(electrical double layer capacitors; EDLCs) or by using faradaic reactions (pseudocapacitor) at the
interface between the electrode and electrolyte [2,4]. So far, various efforts have been made to meet
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increasing demand of high energy density and high-rate supercapacitors [2,5]. The development
of the transition metal oxides-based pseudocapacitors with high specific capacitance values and
excellent cycling stability, which can store and release the charges via the reversible redox reactions of
metal oxide’s surface and inner sites [4,5], have practical value because transition metal oxides and
hydroxides have higher theoretical specific capacitance and excellent energy density. In order to fulfill
the growing energy density demands for next generation high-performance supercapacitors, the energy
density (E = 0.5(CV2)) of supercapacitors can be improved by increasing the specific capacitance (C)
and operation potential window (V). Accordingly, the electrode design of the pseudocapacitors with
hierarchically nanostructured and battery-type bimetal oxides has been most important issues to
improve the specific capacitance value and energy density. The extending of the potential window
can be attained by the fabrication of asymmetric supercapacitors (ASCs), which effects an expanded
potential window up to ~2V in aqueous electrolytes [6]. Nevertheless, the practical application of
pseudocapacitors was still suffering from the limited energy and power densities, cycle lifetime and
rate capability [7].

Recently, fiber-type flexible supercapacitors have been extensively studied due to the fast and
steady progress in the portable/wearable electronics [8,9]. Till now, one-dimensional supercapacitors
have been mostly studied based on fiber/yarn, cable, and wire as a current collector, due to the high
flexibility, small size, lightweight, and easy to fabricate in wearable devices [10,11]. However, intensive
researches are still required to further improve the performances of the fiber-based supercapacitors,
such as energy and power densities, rate capability, and life span. Mostly, polymeric fibers [12,13]
and carbon fibers [14–16] were used as a substrate to produce the fiber-type flexible supercapacitor
devices, while nanocarbon materials (carbon nanotube, Ref. [12,17,18] graphene, Ref. [19,20] etc),
transition metal oxides (NiCo2O4, MnO2, Fe3O4) [7,15,21], and conductive polymers (polyaniline [13],
PEDOT [22,23], Polypyrrole [16]) were used as electroactive materials [15,24–26]. Most of studies
have been devoted to solving the problems of lower capacitances and higher internal resistances
between active materials and fiber-type electrodes, which can generally reduce the electrochemical
performances for a practical application [27,28].

Here, we have used highly conductive carbon fibers as a wire-type electrode, which were prepared
by the carbonized and graphitized process using the polyimide (PI) as a carbon fiber precursor. Briefly,
the PI fibers were prepared by the wet spinning of polyamic acid and subsequent thermal imidization.
The PI fibers were carbonized and finally graphitized at 2200 ◦C. Afterwards, the nanostructured
CoMnO2 were directly deposited onto carbon fibers by a chemical oxidation route without high
temperature treatments, which was carried out at moderately low temperature of 60 ◦C and did not
need severe conditions, such as high temperature, toxic chemicals, complex manufacturing procedures,
etc. Further, to reduce the interfacial contact resistance as well as improve the adhesion between
transition metal nanostructures and carbon fibers, the carbon fibers were pre-coated with the Ni layer
as a seed layer using an electrochemical deposition method. The assembled wire-type asymmetric
supercapacitor device using CoMnO2-coated carbon fibers as the cathode and Fe2O3-coated carbon
fibers as the anode materials delivered a specific capacitance of 221 F g−1 at 0.7 A g−1 and good rate
capability of 34.8% at 4.9 A g−1. The fabricated wire-type flexible supercapacitor device displayed the
superior energy density of 60.16 Wh kg−1 at a power density of 490 W kg−1 and excellent capacitance
retention of 95% up to 3000 charge/discharge cycles.

2. Results and Discussion

Figure 1 presents the FE-SEM images of pure PICF (Figure 1a,b), CoMnO2@PICF-1 (Figure 1c,d),
CoMnO2@PICF-3 (Figure 1e,f), CoMnO2@PICF-6 (Figure 1g,h), and CoMnO2@PICF-9 (Figure 1i,j),
respectively. It can be clearly seen that hierarchical CoMnO2 nanostructures were successfully formed
on the surface of PICFs. While the bare PICFs showed smooth surface morphologies, CoMnO2@PICFs
exhibited the porous hierarchical interconnected nanosheet structures, which depended on the added
amounts of APS. Insets in Figure 1d–j show the higher magnified SEM images. We have also
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measured the elemental mapping and corresponding EDX spectrum using FE-SEM equipped with
EDX measurement (Figure 1k). The results confirmed the presence of C, Co, Mn, and O elements,
supporting the successful deposition of CoMnO2 onto PICFs.
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Figure 1. FE-SEM images of pure polyimide-based carbon fibers (PICFs) (a,b), CoMnO2@PICF-1 (c,d),
CoMnO2@PICF-3 (e,f), CoMnO2@PICF-6 (g,h), and CoMnO2@PICF-9 (i,j), and inset shows the higher
magnified images. The elemental mapping and EDX spectrum (k) of CoMnO2@PICF-6.

Figure 2a presents CV curves of pure PICFs, CoMnO2@PICF-1, CoMnO2@PICF-3,
CoMnO2@PICF-6, and CoMnO2@PICF-9 at the scan rate of 20 mV s−1 within the potential window 0.0
to + 0.6 V vs. (Ag/AgCl). The shape of CV curves for CoMnO2@PICFs was nearly rectangular. No redox
peaks were clearly detected, attributed to the fast, reversible successive surface redox reactions [29].
Moreover, it clearly showed that the integrated area of CoMnO2@PICF-6 was larger than those of
CoMnO2@PICF-1, CoMnO2@PICF-3, and CoMnO2@PICF-9, suggesting feasible enhancement in the
electrochemical activity, probably due to its porous morphology and good conductivity. On the other
hand, the contribution of pure PICFs to the capacitance was almost negligible, as seen in Figure 2a,
suggesting that the added CoMnO2 significantly enhanced the capacitance. Further, as increasing
the scan rate the CV curves of CoMnO2@PICFs well maintained symmetrical shape (Figure S1),
demonstrating the reversible electrochemical redox reaction and excellent rate capability of the
electrode material [30], which is one of important parameters in the pseudocapacitive electrodes.

Capacitive performance of the CoMnO2@PICFs electrodes was further studied by the GCD
measurements at the current density of 1 A g−1 within the potential range from 0 to + 0.5V (Figure 2b).
The fabricated CoMnO2@PICF-1, CoMnO2@PICF-3, CoMnO2@PICF-6, and CoMnO2@PICF-9 electrodes
delivered the specific capacitances of 362, 634, 928, and 688 F g−1 at the current density of 1 A g−1,
respectively. Figure 2c shows the relationship of specific capacitance vs. current density of the
CoMnO2@PICF electrodes. The specific capacitance (~928 F g−1@1 A g−1) of the CoMnO2@PICF-6
electrode was about 2.6, 1.5, and 1.3 times higher than those of the CoMnO2@PICF-1 (~362 F g−1@1
A g−1), CoMnO2@PICF-3 (~643 F g−1@1 A g−1), and CoMnO2@PICF-9 (~688 F g−1@1 A g−1) electrodes
at the current density of 1.0 A g−1, respectively. Moreover, the capacitance of the CoMnO2@PICF-6
electrode decreased by 29 % at higher current density of 5 A g−1, proving the excellent high-rate
capability. The EIS was exploited to investigate the ion diffusion and electron transfer of the
CoMnO2@PICF electrodes. Figure 2d presents the Nyquist plots for the pure PICF, CoMnO2@PICF-1,
CoMnO2@PICF-3, CoMnO2@PICF-6, and CoMnO2@PICF-9 electrodes in the frequency range of 0.1 to
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100 kHz with an amplitude of 10 mV. The EIS spectrum was composed of a small semicircle in a
high-frequency range and a linear curve in the low-frequency range. The internal resistance (RS)
is the sum of the ionic resistance of the electrolyte. The intrinsic resistance of the active material
and the contact resistance at the active material/current collector interface can be derived from the
intercept of the plots on the real axis. The semicircle of Nyquist plot corresponds to the Faradic
reaction and its diameter represents the interfacial charge transfer resistance (RCT) [31]. The fabricated
CoMnO2@PICFs electrodes showed a semicircle at higher frequency region. The calculated RCT values
were 11.7 Ω, 27.1 Ω, 14.1 Ω and 23.8 Ω for the CoMnO2@PICF-1, CoMnO2@PICF-3, CoMnO2@PICF-6,
and CoMnO2@PICF-9 electrodes, respectively. The values were tabulated in inset of figure. As a
result, it was found that the CoMnO2@PICF-6 showed best electrochemical activity. Although the
value of RCT (14.1 Ω) of the CoMnO2@PICF-6 electrode was a rather large, we could see the lower RS

value (9.2 Ω) of the CoMnO2@PICF-6 electrode at the intersection of the real axis, indicating a low
internal resistance.
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Figure 2. Cyclic voltammetry (CV) curves (a), galvanostatic charge–discharge (GCD) curves
(b), relationship between capacitance and current density (c), and electrochemical impedance
spectroscopy (EIS) curves (d) of pure PICFs, CoMnO2@PICF-1, CoMnO2@PICF-3, CoMnO2@PICF-6,
and CoMnO2@PICF-9.

In order to further improve the interfacial properties of the fabricated CoMnO2@PICFs electrode,
the additional Ni as a seed layer was deposited on the PICF before CoMnO2 deposition. Figure 3
shows the FE-SEM images of pure PICF (Figure 3a), N10@PICF (Figure 3b), N20@PICF (Figure 3c),
and CoMnO2/N20@PICF-6 (Figure 3d), respectively. This result indicated that N20@PICF showed
evenly Ni-coated and rather smooth surface morphology (Figure 3c), while N10@PICF clearly showed
poor coverage of Ni on PICF (Figure 3b). Furthermore, CoMnO2/N20@PICF-6 showed the similar
surface morphology to the CoMnO2@PICF-6 (Figure 3d). We have checked the crystal structure of
pure PICF, N20@PICF, and CoMnO2/N20@PICF-6. As seen in Figure 4a, bare PICF showed a broad
peak around 25.4o, corresponding to the graphitic carbon peak [32]. The Ni20@PICF showed the
three obvious diffraction peaks appearing at 44.6o, 52.0o, and 76.7o, which were well indexed to
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the (111), (200), and (220) crystal planes of the face-centered cubic structure of nickel/nickel oxide
(JCPDS No. 87-0712) [33] originated from the 3D-Ni metal skeleton [21] and coated Ni seed layer.
The CoMnO2/N20@PICF-6 showed the diffraction peaks at 12.7◦, 18.9◦, 28.7◦, 36.8◦, 38.3◦, 65.9◦, 69.6◦,
and 73.1◦, which were well indexed to the (110), (111), (310), (311), (222), (440), (451), and (312) crystal
planes, respectively. Among them, the diffraction peaks at 12.2◦, 28.7◦, 69.6◦, and 73.1o were indexed
to the characteristic (110), (310), (451), and (312) crystal planes of α-MnO2 [JCPDS No. 72-1982] [34].
The other peaks at 18.9o, 36.8o, 38.3◦, and 65.9◦ were well indexed to the characteristic (111), (311),
(222), and (440) crystal planes of Co3O4 (JCPDS No. 43-1003) [35]. The fitted lattice parameter of
α-MnO2 and Co3O4 were a = 9.816Å and a = 8.076Å, which were perfectly matched with standard
JCPDS No. 72-1982 and JCPDS No. 43-1003, respectively. These results demonstrated the successful
coating of CoMnO2 with amorphous phase onto the PICF [36].
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To confirm the chemical states of CoMnO2/N20@PICF-6, XPS studies were carried out (Figure 4b–f).
The survey spectrum shows the presence of Ni, Co, Mn, O, and C without other impurity elements.
The observed Ni peak is ascribed to the Ni seed layer on the PICF. The deconvoluted Co 2p spectrum
suggested the existence of Co(0), Co2+, and Co3+ at the 778.5–795.1 eV, 780.5 eV, and 779.5–797.3 eV,
respectively. The deconvoluted Mn 2p spectrum displayed two peaks at 653.9 and 642.2 eV, which
were ascribed to the presence of mixed Mn 2p1/2 and Mn 2p3/2 with a spin-energy separation of 11.7eV.
The O 1s spectrum at 529.5 eV, 531.58 eV, and 533.28 eV can be attributed to metal oxygen bond (M-O,
M-Co, and Mn), the hydrated trivalent oxide bond (M-O-H), and the residual water bond (H-O-H),
respectively. In the C 1s spectrum of CoMnO2@PICFs, the sharp peak at around 286 eV can be spilt to
three peaks at 284.4, 286.6, and 288.9 eV, which represent the sp2 graphitic carbon, C–O and O–C=O
bonds. The Co and Mn contents of CoMnO2/N20@PICFs reached 15.87 and 14.57 atomic%, suggesting
the successful formation of CoMnO2 on the fiber substrate.

In order to investigate the effect of Ni seed layer on the electrochemical properties of
CoMnO2@PICF-6, CV and EIS tests of bare PICF, CoMnO2@PICF-6, and CoMnO2/N20@PICF-6
were carried out in three-electrode configuration. As seen in Figure 5a, the CoMnO2/N20@PICF-6
electrode showed clearly large integrated area than those of other samples, suggesting an enhanced
electrochemical storage ability. As expected, the CoMnO2/N20@PICF-6 displayed the longer discharge
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time (Figure 5b), as compared to the CoMnO2@PICF-6. The specific capacitances calculated from the
discharge curves were plotted as a function of current density (Figure 5c). The CoMnO2/N20@PICF-6
electrode delivered excellent specific capacitances of 1206, 996, 876, 776, 700, 624, 574, 512, 468,
and 420 F g−1 at the current densities of 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 A g−1, respectively, which were
clearly higher than those of the CoMnO2@PICF-6 and even N20@PICF electrodes. The electrochemical
performances of the CoMnO2-decorated PICF electrodes (CoMnO2@PICF-6, CoMnO2/N20@PICF-6)
were further investigated by EIS. Compared to the CoMnO2@PICF-6 (14.1 Ω), the CoMnO2/N20@PICF-6
showed the lower RCT value (3.4 Ω), suggesting that Ni seed layer provided a good interfacial contact
between CoMnO2 and PICF, giving the lower interfacial resistance and a fast reversible redox reaction.Molecules 2020, 25, x FOR PEER REVIEW 6 of 15 
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To evaluate the real capacitance of the fabricated electrodes, an ASC full-cell was assembled with
cathode and anode materials. To fabricate the full-cell, Fe2O3-decorated N20@PICF with Ni seed layer
(Fe2O3/N20@PICF) was prepared by hydrothermal method and then used as anode material. FE-SEM
image showed a uniform distribution of porous Fe2O3 nanorods over the surface of PICF, as can be
seen in inset of Figure 6a. Figure 6b shows the survey XPS spectrum of Fe2O3/N20@PICF sample which
contained Fe, O, Ni, and C elements. The Fe 2p spectrum (Figure 6c) exhibited two distinct peaks
of Fe 2p1/2 and Fe 2p3/2 at the binding energies of 724.6 and 710.9 eV, respectively. The two satellite
peaks were also observed, indicating the existence of Fe3+ in Fe2O3 [37]. Figure 6d presented the XPS
spectrum of O 1s level of the sample. The peak can be deconvoluted into two peaks at 529.8 and
531.6 eV. The peak at 529.8 eV was due to the lattice oxygen of the Fe2O3, and the other peak at the
531.6 eV represented the presence of other components such as OH, H2O, and carbonate species
adsorbed onto the surface [38]. The porous structures in electroactive materials also plays an important
role in electrochemical energy storage devices. Figure S2 shows the N2 adsorption/desorption curves
of CoMnO2/N20@PICF-6 electrode. It exhibited a type IV isotherm with an H3 hysteresis loop at high
relative pressure, indicating the presence of mesoporous structure. The BET surface area and total pore
volume were measured to be 27.54 m2

·g−1 and 0.048 cm3
·g−1. The result showed that the major volume

of the pores was the mesopore, ranging from of 1.9 to 4.2 nm. Therefore, the large specific surface area
and the mesoporous architecture of the CoMnO2/N20@PICF-6 electrode can be expected to provide
enormous electroactive sites at the electrode/electrolyte interface and shorten the ion diffusion length
for an excellent electrochemical performance [39].

To test the feasibility of the CoMnO2/N20@PICF-6 and Fe2O3/N20@PICF electrodes for a real
application, we have assembled the ASC device by sandwiching the CoMnO2/N20@PICF-6 as a cathode
and Fe2O3/N20@PICF as an anode material with PVA-KOH as a polymer electrolyte. The optimal mass
ratio (m+/m−) of the cathode and anode materials was calculated by using Equation (2), and it turned
out to be 1:0.7. The CV profiles of the CoMnO2/N20@PICF6 and Fe2O3/N20@PICF electrodes were
shown in Figure 7a. The potential windows of the anode and cathode materials were−1.0 to 0 V and 0 to
0.6 V, respectively. Accordingly, the maximum operation potential for the wire-type ASC device was
anticipated to reach 1.5 V. The typical CV curves of the ASC device in a potential window of 0.0–1.5 V
at different scan rates were presented in Figure 7b. It displayed a rectangular-like shape, indicating that
the device showed a fast charge/discharge behavior and high rate ability. The triangular-shaped GCD
curves in Figure 7c revealed the satisfactory electrochemical reversibility and capacitive characteristics
of the ASC device. The calculated specific capacitance was 221 F g−1 at the current density of
0.7 A g−1. Moreover, the capacitance value started to decrease as the current density further increased.
The ASC device showed stable electrochemical performances at different voltage windows, as seen
in Figure 7d. The CV profiles remained rectangular-like shape up to 1.4 V. The charge–discharge
profiles at different voltage ranges also exhibited triangular-shaped curves up to 1.4 V (Figure 7e).
With the extension of voltage windows, the calculated electrical performance of the device slightly
increased from 159.6 F g−1 to 177 F g−1. The Nyquist plot (Figure 7f) showed the estimated RS and RCT

values of 23.2 Ω and 16.9 Ω, respectively, which derived from the low resistance of the conductive
carbon fiber substrate and the compact cell assembly. At low frequencies, the ASC device showed
vertical behavior, which indicates that samples possess capacitor characteristics. Thus, the ASC
device had good capacitive properties. In addition, the CoMnO2/N20@PICF-6//Fe2O3/N20@PICF
device exhibited higher capacitance retention rate of 95% after 3000 charge/discharge cycles at
2.8 A g−1 than that (retention rate of 82%) of the CoMnO2@PICF-6//Fe2O3@PICF device without
Ni seed layer, ascribed to the reduced interfacial contact resistance by an introduced Ni layer
(Figure 7g). Furthermore, the rate capability was enhanced by the electrodeposition of Ni seed layer
(inset in Figure 7g). The assembled CoMnO2/N20@PICF-6//Fe2O3/N20@PICF device delivered a
maximum energy density of 60.2 Wh kg−1 at power density of 490 W kg−1, as shown by Ragone
plot (Figure 7h). Compared to other devices, these values were higher than other energy storage
devices, such as NiCoMn-TH/AEG//CFP-S (23.5 Wh kg−1 at 427 W kg−1) [40], NiCoMn-OH//AC
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(43.2 Wh kg−1 at 790 W kg−1) [41], CoMn-HW/RGO10//AC (38.3 Wh kg−1 at 8000 W kg−1) [42], CoMn
LDH/PPy//MLG (29.6 Wh kg−1 at 500 W kg−1) [43], NCM//AC (23.7 Wh kg−1 at 2625 W kg−1) [44],
Ni-Mn LDH/rGO//AC (33.8 Wh kg−1 at 850 W kg−1) [45], and Co/Mn-ZIF//AC (52.5 Wh kg−1 at
1080 W kg−1) [46], as summarized in Table S1. As a result, the fabricated wire-type ASC device
exhibited the excellent electrochemical performance with good electrical conductivity.
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Figure 7. CV curves (a) of the cathode and anode materials at 20 mV s−1, CV curves (b) of the
asymmetric supercapacitors (ASC) device at various scan rates, GCD curves (c) of the ASC device at
different currents density, CV curves (d) at different potential windows at 20 mV s−1, GCD curves (e) at
different potential windows at 1.4 A g−1, Nyquist plot (f) of the ASC device, cycle performance (g) of
the ASC device for 3000 cycles at 2.8 A g−1 (inset shows the relationship between specific capacitance
and current density of the ASC device), (h) Ragone plot (inset shows the digital images of the ASC
device upon bending).
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3. Materials and Methods

3.1. Materials

Poly(amic acid) (PAA, composed of pyromellitic dianhydride (PDMA)/4,4′-diaminodiphenyl
ether (4,4′-ODA), 230,000 cPs of viscosity, PI Advanced Materials Co., Ltd., Anyang, Korea)-based
carbon fibers (PICFs) [47] were kindly provided by Dissol Inc., Republic of Korea. Cobalt(II) acetate
tetrahydrate (Co(CH3COO)2·4H2O), manganese(II) acetate tetrahydrate (Mn(CH3COO)2·4H2O),
iron(III) chloride hexahydrate(FeCl3·6H2O), nickel(II) chloride hexahydrate (NiCl2·6H2O), ammonium
persulfate (APS, (NH4)2S2O8)), and ammonium chloride (NH4Cl) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). All the reagents were an analytical grade and used without further purification.
All aqueous solutions used in these experiments were prepared with deionized (DI) water (18.2 MΩ·cm,
Elga DI water system, Woodridge, VA, USA).

3.2. Fabrication of Transition Metal Oxides-Coated PICF Electrodes

At first, 4.5 mmol Co(CH3COO)2·4H2O and 4.5 mmol Mn(CH3COO)2·4H2O were dissolved in
30 mL of DI water and stirred for 1 h to make a clear bright red solution. Then the PICF was immersed
in the above solution and sonicated slightly to remove the microbubbles of the solution. Afterwards,
APS solution with various concentrations of 1, 3, 6, and 9 mmol was further added and reacted at
60 ◦C for 12 h (via a chemical oxidation reaction) and labelled as CoMnO2@PICF-1, CoMnO2@PICF-3,
CoMnO2@PICF-6, and CoMnO2@PICF-9, respectively. The obtained CoMnO2-decorated PICFs
(CoMnO2@PICFs) as cathode material was washed with DI water gently, and dried at 60 ◦C. The mass
loading of CoMnO2 metal oxide deposited onto PICF was about 2 mg. For the preparation of anode
material, 6 mmol FeCl3·6H2O was dissolved in 60 mL of DI water and stirred for 1 h at room temperature
to make a homogeneous solution. Then, PICF and the above solution were transferred into 80 mL
Teflon-lined stainless steel autoclave, and hydrothermal treatment was carried out at 140 ◦C for 12 h in
an oven. The resultant product was carefully rinsed with DI water and dried at 60 ◦C for 12 h. Finally,
the obtained sample was further calcinated at 350 ◦C for 2 h at a heating rate of 2 ◦C min−1 to achieve
the Fe2O3-decorated PICF (Fe2O3@PICF). The mass loading of Fe2O3 metal oxides deposited onto
PICF was about 1 mg.Molecules 2020, 25, x FOR PEER REVIEW 11 of 15 
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3.3. Electrodeposition of Ni Seed Layer on PICF

For the deposition of Ni seed layer, 2M NH4Cl and 0.1M NiCl2·6H2O as a supporting electrolyte
were dissolved in 100 mL of DI water, and used as the solution for electrodeposition. The PICF and Pt
wire were used as working and reference electrodes, respectively. The Ni seed layer deposition was
carried out with a constant current density of 0.25 A cm−2 (by adjusting 7 V and 0.5 A) at a deposition
time of 20 s (denoted as Ni20@PICF) using a DC power supply. After deposition, the samples were
washed with DI water and dried at 60 ◦C for 12 h. The schematic illustration for the preparation of
CoMnO2@PICFs was represented in Scheme 1.

3.4. Characterization

The surface morphologies were examined by field emission scanning electron microscopy (FE-SEM,
JEOL JSM-5900) along with energy dispersive X-ray (EDX) system. The X-ray diffraction studies were
performed using Rigaku diffractometer, CuKα radiation operating at 40 keV/40 mA at a scanning rate
of 15◦ per min in the 2θ range from 10◦ to 90◦. The chemical state of the elements linked with the
surface chemical composition of the sample was analyzed by X-ray photoelectron spectroscopy (XPS,
ESCALAB250, Al Kα radiation). The specific surface area (SSA) and pore size of the samples were
computed using the Brunauer–Emmett–Teller (BET) equation.

3.5. Electrochemical Measurements

The electrochemical performance was investigated by cyclic voltammetry (CV), electrochemical
impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD). The CV and EIS
measurements were carried out in a three-electrode system at room temperature using an electrochemical
workstation (Princeton Applied Research, Versatat 4). Here, Pt wire was used as the counter electrode,
Ag/AgCl as the reference electrode and the prepared samples as the working electrode, respectively.
The CV curves were recorded within the potential window from 0 to 0.6 V (vs. Ag/AgCl) in 1M KOH
electrolyte at various scan rates (5, 10, 20, 50, and 100 mV s−1). The GCD tests were carried out within
the potential range of 0 to 0.5 V in 1M KOH. The specific capacitance of the fabricated electrodes was
calculated from the discharge curves using the following Equation (1).

C = I∆t/m∆V (1)

where C is the specific capacitance (F g−1), I is the discharge current (mA), m is the mass (mg) of
the electroactive material, ∆t and ∆V are the discharge time (s) and potential window (V). The EIS
measurement was carried out at open circuit potential in the frequency range of 0.1 Hz to 100 kHz.
The ZView software was employed to fit the EIS data. The impedance data are presented in the
form of Nyquist plot, representing the resistive and capacitive behavior of electrodes. The values of
the charge transfer resistance (RCT) and internal resistance (RS) were determined using Zsimpwin
software simulations.

For the practical applications, the asymmetric supercapacitor (ASC, CoMnO2/N20@PICF//

Fe2O3/N20@PICF) device was constructed using CoMnO2/N20@PICF and Fe2O3/N20@PICF as cathode
and anode materials, respectively. The PVA/KOH gel electrolyte was used for both electrolyte and
separator in ASC device. To prepare the PVA/KOH gel electrolyte, 2 g PVA and 2g KOH were added to
the 20 mL DI water and it was kept under stirring and then heated slowly to 90 ◦C until it became
clear and transparent. After it was cooled down to room temperature, the CoMnO2/N20@PICF and
Fe2O3/N20@PICF electrodes were coated with PVA/KOH gel electrolyte and carefully assembled
together and then sealed in the plastic tube to fabricate the wire-type ASC device. To obtain optimum
energy and power densities, the optimal mass ratio of both electrodes was determined based on the
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charge balance relationship (q+ and q- are the charges acquired by the cathode and anode materials)
provided by the following Equation (2).

m+/m− = (C− × V−)/(C+
× V+) (2)

where m+, m−, C+, C−, V+, and V− signifies the mass (g), specific capacitance (F g−1) and working
potential window (V) for the cathode and anode materials, respectively. The energy (E, Wh kg−1)
and power densities (P, W kg−1) of as-assembled ASC device were computed by the following
Equations (3) and (4).

E = C × ∆V2/2 × 3.6 (3)

P = E × 3600/∆t (4)

where C indicates the specific capacitance of ASC device (F g−1), ∆V is the working potential window
(V) and ∆t is the discharging time (s).

4. Conclusions

We have prepared the carbon fiber-based wire-type asymmetric supercapacitors (ASCs).
The nanostructured and porous CoMnO2-coated and Fe2O3-coated carbon fibers were used as the
cathode and the anode materials to produce the asymmetric CoMnO2/N20@PICF-6//Fe2O3/N20@PICF
supercapacitor device. Such porous hierarchical interconnected nanosheet structures were confirmed
by FE-SEM analysis. The electrochemical properties of the CoMnO2-coated carbon fiber electrode
(CoMnO2@PICF-6) with the concentration of 6 mmol APS presented the enhanced electrochemical
activity, due to its porous morphologies and good conductivity. Moreover, additional Ni seed layer
provided a good interfacial contact between CoMnO2 and PICF, giving the lower interfacial resistance
and a fast reversible redox reaction. The fabricated ASC device delivered a specific capacitance of
221 F g−1 at 0.7 A g−1 and good rate capability of 34.8% at 4.9 A g−1. The wire-type device displayed
the superior energy density of 60.2 Wh kg−1 at a power density of 490 W kg−1 and excellent capacitance
retention of 95% up to 3000 charge/discharge cycles.

Supplementary Materials: The following are available online, Figure S1: CV curves of CoMnO2@PICF-1,
CoMnO2@PICF-3, CoMnO2@PICF-6, and CoMnO2@PICF-9 electrode materials at various scan rates,
Figure S2; N2 adsorption/desorption curve (Figure S2a) and the pore size distribution curve (Figure S2b) of
CoMnO2/N20@PICF-6 electrode, Table S1: The specific capacitance, energy density, cycle stability, and electrolyte
of the CoMnO2/N20@PICF-6//Fe2O3/N20@PICF device, compared to previously reported transition metal oxides
based electrode materials.
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