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PURPOSE. The purpose of this tutorial is to provide visual scientists with various
approaches for comparing two or more groups of data using parametric statistical tests,
which require that the distribution of data within each group is normal (Gaussian). Non-
parametric tests are used for inference when the sample data are not normally distributed
or the sample is too small to assess its true distribution.

METHODS. Methods are reviewed using retinal thickness, as measured by optical coher-
ence tomography (OCT), as an example for comparing two or more group means. The
following parametric statistical approaches are presented for different situations: two-
sample t-test, Analysis of Variance (ANOVA), paired t-test, and the analysis of repeated
measures data using a linear mixed-effects model approach.

RESULTS. Analyzing differences between means using various approaches is demonstrated,
and follow-up procedures to analyze pairwise differences between means when there
are more than two comparison groups are discussed. The assumption of equal variance
between groups and methods to test for equal variances are examined. Examples of
repeated measures analysis for right and left eyes on subjects, across spatial segments
within the same eye (e.g. quadrants of each retina), and over time are given.

CONCLUSIONS. This tutorial outlines parametric inference tests for comparing means of
two or more groups and discusses how to interpret the output from statistical software
packages. Critical assumptions made by the tests and ways of checking these assumptions
are discussed. Efficient study designs increase the likelihood of detecting differences
between groups if such differences exist. Situations commonly encountered by vision
scientists involve repeated measures from the same subject over time, measurements on
both right and left eyes from the same subject, and measurements from different locations
within the same eye. Repeated measurements are usually correlated, and the statistical
analysis needs to account for the correlation. Doing this the right way helps to ensure
rigor so that the results can be repeated and validated.

Keywords: statistical methods, parametric inference, ANOVA, repeated measurements,
variance components

This tutorial deals with statistical parametric tests for
inference, such as comparing the means of two or more

groups. Parametric tests refer to those that make assump-
tions about the distribution of the data, most commonly
assuming that observations follow normal (Gaussian) distri-
butions or that observations can be mathematically trans-
formed to a normal distribution (e.g., log transformation).
Non-parametric tests are used for inference when the sample
data are not normally distributed or the sample is too small
to assess its true distribution and will be covered in a sepa-
rate tutorial.

For this tutorial on parametric statistical inference, opti-
cal coherence tomography thickness measurements of the
inner retinal layers recorded in eyes of control mice
and mice with optic neuritis produced by experimen-
tal autoimmune encephalitis (EAE) serve as illustration.
For brevity, we refer to the measured response as reti-

nal thickness. We have explained the goals of this study
in another tutorial on the display of data,1 and they
are summarized here. There are three treatment groups:
control mice, diseased mice (EAE) with optic neuritis, and
treated diseased mice (EAE + treatment). For the purpose
of this tutorial, we consider only mice with measurements
made on both eyes. This leaves us with 15, 12, and six
subjects (mice) in the three groups, respectively. For the
various statistical analyses in this tutorial, the variance (s2)
is defined as the sum of the squared differences of each
sample from their sample mean, which is then divided by
the number of samples minus 1 (subtracting 1 corrects for
the sample bias). The standard deviation is the square root
of the variance. The software programs Prism 8 (Graph-
Pad, San Diego, CA, USA) and Minitab (State College, PA,
USA) were used to generate the graphs shown in this
tutorial.
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This tutorial analyzes the average inner retinal thickness
of subjects by averaging the measurements on right and left
eyes. It also analyzes the inner retinal thickness of eyes,
but incorporates the correlation between right and left eye
measurements on the same subject.

ANALYSIS OF THE AVERAGE RETINAL THICKNESS

OF SUBJECTS AFTER COMBINING THEIR

MEASUREMENTS ON RIGHT AND LEFT EYES

Comparing Means of Two Treatment Groups:
Two-Sample t-Test

First we discuss whether there is a difference between the
average retinal thickness of control and diseased mice after
EAE-induced optic neuritis. We compare the two groups A
= control and B = EAE. Measurements in these two groups
are independent, as each group contains different mice. The
two-sample t-test relates the difference of the sample means

ȳA − ȳB to its estimated standard error, seȳA−ȳB =
√

s2A
nA

+ s2B
nB
.

Here, nA, ȳA, sA and nB, ȳB, sB are the sample size, mean, and
standard deviation for each of the two groups.

Under the null hypothesis of no difference between the
two means, the ratio ȳA−ȳB√

s2A
nA

+ s2B
nB

is well-approximated by a t-

distribution, with its degrees of freedom [(s2A/nA )+(s2B/nB )]
2

(s4A/n2A (nA−1))+(s4B/n2B (nB−1))

given from the Welch approximation.2 Confidence inter-
vals and probability values can be calculated. Small prob-
ability values (smaller than 0.05 or 0.10) indicate that the
null hypothesis of no difference between the means can be
rejected. Note that, although traditionally a probability of
<0.05 has been considered significant, some groups favor
an even more stringent criterion, but others feel that a less
conservative criterion (e.g., P < 0.1) may still be meaningful,
depending on the context of the study.

One can also use the standard error that
uses the pooled standard deviation, seȳA−ȳB =
spooled

√
1
nA

+ 1
nB

=
√

(nA−1)s2A+(nB−1)s2B
nA+nB−2

√
1
nA

+ 1
nB
, and a t-distribution

with nA − nB − 2 degrees of freedom. However, we prefer
the first method, where the standard error of each group is
calculated separately (not pooled), and the Welch approxi-
mation of the degrees of freedom, as it does not require that
the two group variances be the same. The pooled version
of the test assumes equal variances and can be misleading
when they are not.3 Both t-tests are robust to non-normality
as long as the sample sizes are reasonably large (sample
sizes of 30 or larger; robustness follows from the central
limit effect).

The mean retinal thickness of the diseased mice (group
B, EAE: mean = 59.81 μm; SD = 3.72 μm) is 6.40 microns
smaller than that of the control group (group A, control:
mean = 66.21 μm, SD = 3.39 μm). The P value (0.0001)
shows that this difference is quite significant, leaving little
doubt that the disease leads to thinning of the inner retinal
layer (Table 1).

Comparing Means of Two or More (Independent)
Treatment Groups: One-Way ANOVA

The one-way analysis of variance can be used to compare
two or more means. Assume that there are k groups (for
our illustration, k = 3) with observations yij for i = 1, 2,

TABLE 1. Subject Average Retinal Thickness (in μm) for Control and
Disease Groups: Two-Sample t-Test with Welch Correction Compar-
ing Group A (Control) with Group B (EAE)*

Unpaired t-test with Welch’s correction

P value 0.0001
Significantly different (P < 0.05)? Yes
One- or two-tailed P value? Two-tailed
Welch-corrected t (degrees of freedom) 4.616 (22.62)

How big is the difference?
Mean of column A 66.21
Mean of column B 59.81
Difference between means (B – A) ± SEM –6.396 ± 1.385
95% confidence interval –9.265 to –3.527

* Analysis with GraphPad Prism8.

…, k and j = 1, 2, …, ni (number of observations in the
ith group). The ANOVA table partitions the sum of squared
deviations of the n = ∑k

i=1 ni observations from their over-
all mean, ȳ, into two components: the between-group (or
treatment) sum of squares, SSB = ∑k

i=1 ni(ȳi − ȳ)2, express-
ing the variability of the group means ȳi from the overall
mean ȳ, and the within-group (or residual) sum of squares,
SSW = ∑k

i=1 {∑ni
j=1 (yi j − ȳi)2} = ∑k

i=1 (ni − 1)s2i , adding up
all within-group variances, s2i . The ratio of the resulting
mean squares (where mean squares are obtained by dividing
sums of squares by their degrees of freedom), F = SSB/(k−1)

SSW/(n−k) ,
serves as the statistic for testing the null hypothesis that all
group means are equal. The probability value for testing this
hypothesis can be obtained from the F-distribution. Small
probability values (smaller than 0.05 or 0.10) indicate that
the null hypothesis should be rejected.

The ANOVA assumes that all measurements are indepen-
dent. This is the case here, as we have different subjects
in the three groups. Note that independence could not be
assumed if both right and left eyes were included, as right
and left eye observations from the same subject are most
likely correlated; we will discuss later how to handle this
situation.

The ANOVA assumes that the variances of the treatment
groups are the same. Its conclusions may be misleading if the
variances are different. Box3 showed that the F-test is sensi-
tive to violations of the equal variance assumption, espe-
cially if the sample sizes in the groups are different. The F-
test is less affected by unequal variances if the sample sizes
are equal. Although the F-test assumes normality, it is robust
to non-normality as long as the sample sizes are reasonably
large (e.g., 30 samples per group).

For only two treatment groups, the ANOVA approach
reduces to the two-sample t-test that uses the pooled vari-
ance. Earlier we had recommended the Welch approxima-
tion, which uses a different standard error calculation for
the difference of two sample means, as it does not assume
equal variances. Useful tests for the equality of variances are
discussed later.

If the null hypothesis of equal group means is rejected
when there are more than two treatment groups, then
follow-up tests are needed to determine which of the
treatment groups differ from the others using pairwise
comparisons. For three groups, one calculates three pair-
wise (multiple) comparisons and three confidence intervals
for each pairwise difference of two means. The significance
level of individual pairwise tests needs to be adjusted for
the number of comparisons being made. Under the null
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TABLE 2. Subject Average Retinal Thickness (in μm): One-Way ANOVA with Three Groups (Control, EAE, EAE + Treatment) and Tukey’s
Multiple Comparison Tests*

Summary Control EAE EAE + Treatment

Number of values 15 12 6
Mean 66.21 59.81 61.65
SD 3.390 3.721 2.780

ANOVA Table Sum of Squares Degrees of Freedom Mean Square F(DFn, DFd) P

Treatment 287.2 2 143.6 F(2, 30) = 12.25 0.0001
Residual 351.8 30 11.73 — —
Total 639.0 32 — — —

Tukey’s Multiple Comparisons Test Mean Difference 95% CI of Difference Significant? Adjusted P

Control vs. EAE 6.396 3.126–9.665 Yes *** 0.0001
Control vs. EAE + treatment 4.562 0.4847–8.640 Yes * 0.0258
EAE vs. EAE + treatment –1.833 –6.054 to 2.388 No ns 0.5392

* Analysis with GraphPad Prism8. Dfn, degrees of freedom numerator; Dfd, degrees of freedom denominator.

FIGURE 1. Subject average retinal thickness (in μm). Visualizations of results. (A) Plot of group means and their 95% confidence intervals.
Confidence intervals are not adjusted for multiple comparisons. Analysis with Minitab. (B) Plot of pairwise differences and their Tukey-
adjusted confidence intervals. Analysis with GraphPad Prism 8.

hypothesis of no treatment effects, we set the error that
one or more of these multiple pairwise comparisons are
falsely significant at a given significance level, such as α =
0.05. To achieve this, one must lengthen individual confi-
dence intervals and increase individual probability values.

This is exactly what the Tukey multiple comparison proce-
dure4 does (Table 2, Fig. 1). Many other multiple compar-
ison procedures are available (Bonferroni, Scheffe, Sidak,
Holm, Dunnett, Benjamini–Hochberg), but their discus-
sion would go beyond this introduction. For a discussion
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TABLE 3. Subject Average Thickness (in μm): Bartlett and Brown–
Forsythe Tests for Equality of Group Variances*

Test Result

Brown–Forsythe test
F (DFn, DFd) 0.7118 (2, 30)
P value 0.4989
P value summary Not significant
Are SDs significantly different (P < 0.05)? No

Bartlett’s test
Bartlett’s statistic (corrected) 0.5149
P value 0.7730
P value summary Not significant
Are SDs significantly different (P < 0.05)? No

* Analysis with GraphPad Prism8.

of the general statistical theory of multiple comparisons,
see Hsu.5

The ANOVA results in Table 2 show that mean reti-
nal thickness differs significantly across the three treat-
ment groups (P = 0.0001). Tukey pairwise comparisons
show differences between the group means of thickness for
control and EAE and for control and EAE + treatment. The
means of EAE and EAE + treatment are not significantly
different.

Comparing Variances of Two or More
(Independent) Treatment Groups: Bartlett, Levine,
and Brown–Forsythe Tests

As stated above, ANOVA testing assumes that the group vari-
ances are equal. How does one test for equal variances?
Bartlett’s test6 (see Snedecor and Cochran7) is employed
for testing if two or more samples are from populations
with equal variances. Equal variances across populations are
referred to as homoscedasticity or homogeneity of variances.
The Bartlett test compares each group variance with the
pooled variance and is sensitive to departures from normal-
ity. The tests by Levene8 and Brown and Forsythe9 are good
alternatives that are less sensitive to departures from normal-
ity. These tests make use of the results of a one-way ANOVA
on the absolute value of the difference between measure-
ments and their respective group mean (Levine test) or their
group median (for the Brown–Forsythe test).

We apply these tests to the average retinal thickness data.
We cannot reject the hypothesis that all three variances are
the same, so we can be more confident in our interpretation
of the ANOVA results, as the variances of the groups appear
to be similar (Table 3). If one of the tests shows unequal
variance but the other test does not, then one needs to eval-
uate how significant the P value was in rejecting the null
hypothesis of equal variance. If a fair amount of uncertainty
remains, then alternative approaches are discussed in the
next section.

Approaches to Take When Variances Are Different

A finding of unequal variances is not just a nuisance
(because it puts into question the results from the ANOVA
on means) but it also provides an opportunity to learn
something more about the data. Discovering that particular
groups have different variances gives valuable insights.

Transforming measurements usually helps to satisfy
the requirement that variances are equal. Box and Cox10

discussed transformations that stabilize the variability so that

the variances in the groups are the same. A logarithmic
transformation is indicated when the standard deviation in a
group is proportional to the group mean; a square root trans-
formation is indicated when the variance is proportional to
the mean. Reciprocal transformations are useful if one stud-
ies the time from the onset of a disease (or of a treatment) to
a certain failure event such as death or blindness. The recip-
rocal of time to death, which expresses the rate of dying,
often stabilizes group variances. For details, see Box et al.11

If one cannot find a variance-stabilizing transformation,
one can proceed with the Welch approximation of pairwise
two-sample comparisons. For nearly equal and moderately
large sample sizes, the assumption of equal standard devia-
tions is not a crucial assumption, and moderate violations of
equal variances can be ignored. Another alternative would
be to use nonparametric procedures (they are covered in a
different tutorial).

ANALYSIS OF RETINAL THICKNESS USING BOTH

RIGHT AND LEFT EYE MEASUREMENTS OF EACH

SUBJECT

Comparing Means of Two Repeated
Measurements: Paired t-Test

In the earlier two-sample comparison, different subjects
were assigned to each of two treatment groups. Often it is
more efficient to design the experiment such that a treatment
(or induction of a disease phenotype, as in this example) is
applied to the same subject. For our example, each mouse
could be observed both under its initial healthy condition
and after having been exposed to a multiple sclerosis pheno-
type EAE protocol. Measurements are then available on the
same mouse under both conditions, and one can control
for (remove) the subject effect that exists. A within-subject
comparison of the effectiveness of a treatment or drug is
subject to fewer interfering variables than a comparison
across subjects. The same is true for the comparison of
right and left eyes when both measurements come from the
same subject and only one eye is treated, with the other eye
acting as a within-subject control. The large subject effect
that affects both eyes in a similar way can be removed, result-
ing in an increase of the precision of the comparison, poten-
tially making it more sensitive to detecting an effect, if one
exists.

The paired t-test considers treatment differences, d, on n
different subjects and compares the sample mean (d̄) to its
standard error, sed̄ = sd/

√
n. Under the null hypothesis of no

difference, the ratio (test statistic) d̄/sed̄ has a t-distribution
with n – 1 degrees of freedom, and confidence intervals and
probability values can be calculated. Small probability values
(usually smaller than 0.05 or 0.10) would indicate that the
null hypothesis should be rejected.

For illustration, we use the right eye (OD) and left eye
(OS) retinal thickness measurements from the 15 mice of the
control group. Figure 2 demonstrates considerable between-
subject variability; the intercepts of the lines that connect
measurements from the same subject differ considerably.
Pairing the observations and working with changes on the
same subject removes the subject variability and makes the
analysis more precise. Table 4 indicates that there is no
difference in the average retinal thickness of right and left
eyes. We had expected this result, as neither eye was treated.
However, if one wanted to test a treatment that is given to
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FIGURE 2. Retinal thickness (in μm) of OD and OS eyes in the control group (15 mice). OD and OS measurements from the same subject
are connected. Analysis with Minitab.

TABLE 4. Retinal Thickness (in μm) of OD and OS Eyes in the
Control Group (15 Mice): Paired t-Test*

Variable Value

Estimation for paired difference = OD – OS
Mean 0.050
SD 2.334
SEM 0.603
95% CI for mean difference –1.243 to 1.343

Test H0: μDiff = 0 vs. H1: μDiff �= 0
Test statistic 0.08
P value 0.935

* Analysis with GraphPad Prism8.

just one eye without affecting the other, such a paired treat-
ment comparison between the two eyes would be a desirable
analysis plan.

Correlation Between Repeated Measurements on
the Same Subject

The two-sample t-test in Table 1 and the ANOVA in Table 2
used subject averages of the thickness of the right and left
eyes. Switching to eyes as the unit of observation, it is tempt-
ing to run the same tests with twice the number of obser-
vations in each group, as now each subject provides two
observations. But, if eyes on the same subject are correlated
(in our illustration with 33 subjects, the correlation between
OD and OS retinal thickness is very large: r = 0.90), this
amounts to “cheating,” as correlated observations carry less
information than independent ones. By artificially inflating
the number of observations and inappropriately reducing
standard errors, the probability values appear more signifi-
cant than they actually are.

Suppose that measurements on the right and left eye
are perfectly correlated. Adding perfect replicates does not
change the group means and the standard deviations that
we obtained from the analysis of subject averages; however,
with perfect replicates, the earlier standard error of the
difference of the two group means gets divided by

√
2, which

increases the test statistic and makes the difference appear
more significant than it actually is. The earlier ANOVA is
equally affected. Adding replicates increases the between-
group mean square by a factor of 2 but does not affect the
within-group mean square, thus increasing the F-test statis-
tic. This shows that a strategy of adding more and more
perfect replicates to each observation makes even the small-
est difference significant. One cannot ignore the correlation
among measurements on the same subject! The following
two sections show how this correlation can be incorporated
into the analysis.

Analysis of Repeated Measures Data

Many studies involve repeated measurements on each
subject. Here we have 15 healthy control mice, 12 diseased
mice (EAE), and 6 treated diseased mice (EAE + treat-
ment), and we have repeated measurements on each subject:
measurements on the left and right eye. But, repeated
measurements may also reflect measurements over time or
across spatial segments (e.g., quadrants of each retina). The
objective is to study the effects of the two factors, treatment
and eye. Repeated measurements on the same subject can
be expected to be dependent, as a subject that measures
high on one eye tends to also measure high on the other.
The correlation must be incorporated into the analysis.
This makes the analysis different from that of a completely
randomized two-factor experiment where all observations
are assumed independent.

The model for data from such a repeated measures exper-
iment represents the observation Yijk on subject i in treat-
ment group j and eye k according to

Yi jk = α + β j + πi( j ) + γk + βγ jk + εi( j )k

where

• α is an intercept.
• β j in this example represents (three) fixed differen-
tial treatment effects, with β1 + β2 + β3 = 0.With this
restriction, treatment effects are expressed as devia-
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TABLE 5. Retinal Thickness (in μm) of OD and OS Eyes*

Two-Way Repeated Measures ANOVA

Matching Stacked
Assume sphericity? Yes
Alpha 0.05

ANOVA Table Sum of Squares Degrees of Freedom Mean Square F(DFn, DFd) P

Between subject
Treatment 574.5 2 287.2 F(2, 30) = 12.25 0.0001
Subject 703.5 30 23.45 F(30, 30) = 10.70 <0.0001

Within subject
Eye 1.351 1 1.351 F(1, 30) = 0.6164 0.4385
Eye × treatment 0.5959 2 0.298 F(2, 30) = 0.1360 0.8734
Residual 65.75 30 2.192 — —

Total 1345.31 65 — — —

Shown is the GraphPad Prism8 ANOVA output of the two-factor repeated measures experiment with three treatment groups and the
repeated factor eye. Sphericity assumes that variances of differences between all possible pairs of within-subject conditions are equal.

tions from the average. An equivalent representation
sets one of the three coefficients equal to zero, then
the parameter of each included group represents
the difference between the averages of the included
group and the reference group for which the param-
eter has been omitted.

• π i(j) represents random subject effects, represented
by a normal distribution with mean 0 and variance
σ 2

π . The subscript notation i(j) expresses the fact that
subject i is nested within factor j; that is, subject 1 in
treatment group 1 is a different subject than subject 1
in treatment group 2. Each subject is observed under
only a single treatment group. This is different from
the “crossed” design where each subject is studied
under all treatment groups.

• γ k represents fixed eye (OD, OS) effects with coeffi-
cients adding to zero: γ 1 + γ 2 = 0.

• βγ jk represents the interaction effects between the
two fixed effects, treatment and eye, with row and
column sums of the array βγ jk restricted to zero.
There is no interaction when all βγ jk are zero; this
makes effects easier to interpret, as the effects of one
factor do not depend on the level of the other.

• εi(j)k represents random measurement errors, with a
normal distribution, mean = 0, and variance = σ 2

ε .
Measurement errors reflect the eye by subject (within
treatment) interaction.

This model is known as a linear mixed-effects model as
it involves fixed effects (here, treatment and eye and their
interaction) and random effects (here, the subject effects and
the measurement errors). Maximum likelihood or, prefer-
ably, restricted maximum likelihood methods are commonly
used to obtain estimates of the fixed effects and the variances
of the random effects; standard errors of the fixed effects can
be calculated, as well. For detailed discussion, see Diggle et
al.12 and McCulloch et al.13

Computer software for analyzing the data from such
repeated measurement design is readily available. Minitab,
SAS (SAS Institute, Cary, NC, USA), R (The R Foundation
for Statistical Computing, Vienna, Austria), and GraphPad
Prism all have tools for fitting the appropriate models. An
important feature of these software packages is that they
can handle missing data. It would be quite unusual if a study
would not have any missing observations, and software that
can handle only balanced datasets would be of little use.

Without missing data (as is the case here), the computer
output includes the repeated measures ANOVA table. The
output from the mixed-effects analysis (which is used if
observations are missing) is similar. Computer software also
allows for very general correlation structure among repeated
measures. The random subject representation discussed here
implies compound symmetry with equal correlations among
all repeated measures. With time as the repeated factor,
other useful models include conditional autoregressive spec-
ifications that model the correlation of repeated measure-
ments as a geometrically decreasing function of their
time.

Results of the two-way repeated measures ANOVA for the
thickness data are shown in Table 5. Estimates of the two
error variances come into play differently when testing fixed
effects. The variability between subjects is used when testing
the treatment effect; the measurement (residual) variability
is used in all tests that involve within-subject factors. See,
for example, Winer.14 These variabilities are estimated by
the two mean square (MS) errors that are shown in Table 5
with bold-face type.

In Table 5, MS(Subject) = 23.45 is used to test the effect
of treatment: F(Treatment) = 287.2/23.45 = 12.25. The treat-
ment effect is significant at P = 0.0001. MS(Residual) =
2.192 is used in the test for subject effects and in tests of
the main effect of eye and the eye × treatment interaction:
F(Subject) = 23.45/2.192 = 10.70 (significant; P < 0.0001);
F(Eye) = 1.351/2.192 = 0.6164 (not significant, P = 0.4385)
and F(Eye × Treatment) = 0.298/2.192 = 0.1360 (not signif-
icant, P = 0.8734). In summary, the mean retinal thickness
differs among the control, EAE, and EAE + treatment groups.
Thickness varies widely among subjects, but difference in
means between right and left eyes are not significant.

Assume that we ignore the correlation of repeated
measures on the same subject and run a one-way ANOVA
(with our three treatment groups) on individual eye
measurements. The mean square error in that analysis is
(1345.31 – 574.5)/(65 – 2) = 12.23, increasing the F-statistic
to F = 287.2/12.23 = 23.47 which is highly significant.
However, such incorrect analysis that does not account for
the high correlation between measurements on right and left
eyes leads to wrong probability values and wrong conclu-
sions. It makes the treatment effect appear even more signif-
icant than it really is. In this example, the conclusions about
the factors are not changed, but that is not true in general
for all cases.
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TABLE 6. Retinal Thickness (in μm) of OD and OS Eyes: MINITAB Output of the Repeated Measures Experiment with Three Factors:
Treatment Group, Eye, and Quadrant*

OS OD

Design Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Control G1 G1 G1 G1 G1 G1 G1 G1
EAE G2 G2 G2 G2 G2 G2 G2 G2
EAE + treatment G3 G3 G3 G3 G3 G3 G3 G3

Degrees of Adjusted Sum Adjusted Mean
ANOVA Table Freedom of Squares Square F P

Between subject
Treatment 2 2297.86 1148.93 12.25 0.000
Subject 30 2814.15 93.80 7.41 0.000

Within subject
Eye 1 5.40 5.40 0.43 0.514
Treatment × eye 2 2.38 1.19 0.09 0.910
Quadrant 3 36.97 12.32 0.97 0.406
Treatment × quadrant 6 68.45 11.41 0.90 0.495
Eye × quadrant 3 17.51 5.84 0.46 0.710
Treatment × eye ×

quadrant
6 92.61 15.43 1.22 0.298

Residual 210 2659.15 12.66 — —
Total 263 8001.26 — — —

The residual sum of squares pools the interaction sums of squares between subjects and the effects of eye, quadrant, and eye by quadrant
interaction. The three-factor ANOVA in GraphPad Prism8 is quite limited (two of the three factors can only have two levels) and could not
be used.

A standard two-way ANOVA on treatment (with three
levels) and eye (with two levels) that does not account for
repeated measurements also leads to incorrect results, as
such analysis assumes that observations in the six groups
are independent. This is not so, as observations in different
groups come from the same subject.

More Complicated Repeated Measures Designs

Extensions of repeated measures designs are certainly possi-
ble. Here are two different illustrations for a potential third
factor.

In the first model, the third factor is the (spatial) quadrant
of the retina in which the measurement is taken. Measure-
ments on the superior, inferior, nasal, and temporal quad-
rants are taken on each eye. The model includes random
subject effects for the different mice in each of the three
treatment groups (G1, G2, G3), with each mouse stud-
ied under all eight eye/quadrant combinations. The design
layout is shown in Table 6.

Data for the 15, 12, and six mice from the three treatment
groups are analyzed. A total of 33 subjects × 8 regions (four
quadrants for the right eye and four for the left eye) = 264
measurements is used to estimate this repeated measures
model. Results are shown in Table 6. MS(Subject) = 93.80
is used for testing the treatment effect, F(Treatment) =
1148.93/93.80 = 12.25. MS(Residual) = 12.66 is used in all
other tests (subject effects, main and interaction effects of
eye and quadrant, and all of their interactions with treat-
ment). Treatment and subject effects are highly significant,
but all effects of eye and quadrant are insignificant, meaning
that eyes and quadrants had no effect on retinal thickness.

In the second model, a third factor, type, represents two
different genetic mouse strains. The experiment studies the
effect of treatment on mice from either of two genetic strains
(type 1 and type 2 below). Treatment and strain are crossed

fixed effects, as every level of one factor is combined with
every level of the other. Each mouse taken from one of
the six groups has a measurement made at four different
quadrants in one eye. This is a different repeated measures
design, as now the mice are nested within the treatment–
strain combinations. The design looks as follows:

Quadrant

Q1 Q2 Q3 Q4

Control type 1 G1 G1 G1 G1
Control type 2 G2 G2 G2 G2
EAE type 1 G3 G3 G3 G3
EAE type 2 G4 G4 G4 G4
EAE + treatment type 1 G5 G5 G5 G5
EAE + treatment type 2 G6 G6 G6 G6

The variability between subjects is used for testing main
and interaction effects of treatment and strain. The measure-
ment (residual) variability is used in the test for subject
effects and the tests for the main effect of quadrant and its
interactions with treatment and strain.

CONCLUSIONS

This tutorial outlines parametric inference tests for compar-
ing means of two or more groups and how to interpret the
output from statistical software packages. Critical assump-
tions made by the tests and ways of checking these assump-
tions are discussed.

Efficient study designs increase the likelihood of detect-
ing differences among groups if such differences exist. Situ-
ations commonly encountered by vision scientists involve
repeated measures from the same subject over time, on both
right and left eyes from the same subject, and from differ-
ent locations within the same eye. Repeated measures are
usually correlated, and the statistical analysis must account
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for the correlation. Doing this the right way helps to ensure
rigor so that the results can be repeated and validated with
time. The data used in this review (in both Excel and Prism
8 format) are available in the Supplementary Materials.

Two Excel data files can be found under the Supplemen-
tary Materials: Supplementary Data S1 contains measure-
ments on each eye as well as on each subject, whereas
Supplementary Data S2 contains measurements for each
quadrant of the retina. The two GraphPad Prism8 files under
the Supplementary Materials illustrate the data analysis:
Supplementary Material S3 on the analysis of subject aver-
ages, and Supplementary Material S4 on the analysis of indi-
vidual eyes.
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