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The reaction of methyl peroxy and hydroxyl radicals
as a major source of atmospheric methanol
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Methyl peroxy, a key radical in tropospheric chemistry, was recently shown to react with

the hydroxyl radical at an unexpectedly high rate. Here, the molecular reaction mechanisms

are elucidated using high-level quantum chemical methodologies and statistical rate

theory. Formation of activated methylhydrotrioxide, followed by dissociation into methoxy

and hydroperoxy radicals, is found to be the main reaction pathway, whereas methylhydro-

trioxide stabilization and methanol formation (from activated and stabilized methylhydrotri-

oxide) are viable minor channels. Criegee intermediate formation is found to be negligible.

Given the theoretical uncertainties, useful constraints on the yields are provided by

atmospheric methanol measurements. Using a global chemistry-transport model, we show

that the only explanation for the high observed methanol abundances over remote oceans is

the title reaction with an overall methanol yield of B30%, consistent with the theoretical

estimates given their uncertainties. This makes the title reaction a major methanol source

(115 Tg per year), comparable to global terrestrial emissions.
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M
ethyl peroxy radical (CH3O2) is the most important
organic peroxy radical in the atmosphere, with a global
production (B50 Tmoles or 2,500 Tg per year)

primarily due to the oxidation of ubiquitous methane by hydroxyl
(OH) radicals1. Its reaction with nitric oxide (NO) accounts for
B25% of the global production of tropospheric ozone2,3, second
in importance only to HO2þNO. Under pristine conditions,
CH3O2 reacts chiefly with hydroperoxy radicals HO2 to form
methyl hydroperoxide CH3OOH, depleting odd hydrogen
radicals (HOx�OHþHO2) directly and through the further
reaction of CH3OOH with OH. The reaction of CH3O2 with
organic peroxy radicals (RO2) is only a minor sink4, but it is also
the only well-documented photochemical source of atmospheric
methanol, amounting to 18–38 Tg per year globally according
to model estimates5. Note that a much larger total photochemical
source (50–100 Tg per year) was invoked by Jacob et al.4 to
rationalize serious model underestimations of methanol
observations during an aircraft campaign over the Pacific6.

Although the possibility of a reaction of CH3O2 with OH was
previously considered7,8, it is only recently that a direct, absolute
determination of its rate has been reported. Coupling Laser
Induced Fluorescence and cw-Cavity Ring-Down Spectroscopy
to laser photolysis, Bossolasco et al.9 measured a rate of
(2.8±1.4)� 10� 10 cm3 molecule� 1 s� 1. This unexpectedly high
value makes this reaction a major sink of CH3O2 in pristine
conditions. Using campaign data in Cape Verde, Fittschen et al.10

estimated that it accounts for B25% of the overall CH3O2 sink at
that remote site, rivalling the reaction with HO2. Its impact on
atmospheric chemistry is however critically dependent on the
nature and yields of the products. Three exothermic overall
reaction channels were envisaged8:

OHþCH3O2 ! CH2O2þH2O ð1Þ

OHþCH3O2 ! CH3OþHO2 ð2Þ

OHþCH3O2 ! CH3OHþO2 ð3Þ
with CH2O2 the singlet Criegee intermediate, H2C¼O(þ)�O(�).
The Criegee channel (1) has been invoked as the possible source
of a missing oxidant of SO2 inferred from observations at a
coastal site11. A large Criegee yield would also lead to a very large
source of formic acid through reaction of stabilized CH2O2 with
water12. The reaction was therefore speculated8,13 to explain
part of the missing source of HCOOH required to sustain the
high HCOOH levels observed in the atmosphere14,15, although it
was found to degrade model/data correlation for measurement
campaigns over the U.S.13 The methoxy channel (2) leads
ultimately to two HO2 radicals and formaldehyde, which is the
end product of both CH3O2þNO and (through CH3OOH)
CH3O2þHO2. The methanol channel (2) was noted to be a
potentially very significant source of methanol8,13, but no
quantitative assessment has been made to this date.

A recent quantum chemical study of CH3O2þOH by Bian
et al.16 could identify only one thermally accessible pathway
commensurate with the high measured rate constant: combination
of the reactants into an activated methylhydrotrioxide CH3OOOH
(TRIOX), followed by direct dissociation into CH3O and HO2,
which are about 4 kcal mol� 1 more stable than the reactant
radicals. Another recent theoretical study by Nguyen et al.17 briefly
addressed the reaction, concluding that the dominant pathway in
atmospheric conditions is collisional stabilization of CH3OOOH,
whereas production of Criegee is negligible.

In view of the likely major importance of the title reaction for
key oxygenated organic compounds and its potentially large
impact on HOx radicals in the remote troposphere, this work
proposes to: (i) elucidate the molecular mechanisms of the reaction

by constructing detailed potential energy surfaces, using suitable
high-level density functional theory (DFT) and ab initio
methodologies for the singlet and triplet (biradical) intermediates;
(ii) identify the kinetically viable reaction channels and distinguish
between the major and minor product routes using appropriate
statistical rate theories; (iii) use a global chemistry-transport model,
the Intermediate Model for the Annual and Global Evolution of
Species (IMAGES, see the ‘Methods section’), to assess the impact
of the reaction and constrain the yields through comparisons with
atmospheric measurements. For those readers most interested in
the implications for atmospheric chemistry, the results relating to
goals (i) and (ii) are succinctly summed up before the section on
atmospheric modelling, and we invite such readers to move
directly to this summary.

Results
Potential energy surface and reaction kinetics. We characterized
all three exothermic overall reaction channels (reactions (1), (2),
(3)) and all other relevant pathways of the title reaction using
quantum chemical methods. Structures and vibrational frequencies
were computed with DFT, at the M06-2X-D3/6-311þþ
G(3df,3pd) level of theory (Supplementary Fig. 1, Supplementary
Fig. 2, and Supplementary Table 1). More accurate energies
were computed using coupled-cluster theory, with explicit
(‘F12’) treatment of electron–electron distances, as shown in
Fig. 1. The DFT and coupled-cluster calculated properties
of various complexes and transition states are summarized in
Table 1.

The reaction of CH3OO with OH starts by the barrier-less
formation of singlet reactant complex 1RC and triplet reactant
complex 3RC, in which OH donates a hydrogen bond to CH3OO,
and in which the singlet and triplet states are near degenerate.
Hydrogen abstraction starting from 1RC and 3RC to form the
Criegee intermediate 1CH2OO and the triplet biradical 3CH2OO
via TS2 and TS3, respectively, involve significant barriers. In
absence of intersystem crossing (ISC) 3RC-1RC, the
reaction CH3O2þOH 2 3RC will be quasi-equilibrated such
that the bimolecular rate constant for the overall triplet channel
CH3O2þOH-3CH2O2þH2O can be found from
transition state theory (TST)18–20, yielding 3kbi,3(298 K)¼
2.6� 10� 15 cm3 molecule� 1 s� 1. This channel is therefore
entirely negligible, as are the other triplet entrance routes
described by Bian et al.16, all proceeding through transition
states that lie even much higher. Instead, rapid ISC of 3RC to the
nearly-degenerate 1RC could channel much of the triplet entrance
flux also towards the singlet surface and hence to TRIOX
(see below), rationalizing the high measured overall rate constant9

of 2.8� 10� 10 cm3 molecule� 1 s� 1.
The favoured reaction channel of the chemically activated 1RC

is the formation of the stable methylhydrotrioxide TRIOX
over the very low-energy TS1. Direct dissociation of TRIOX
into CH3O and HO2 is not a minimum energy pathway; instead,
the energetically favoured decomposition route passes through
the singlet product complex 1PC over TS4, which involves
concerted CH3O–OOH bond-breaking and formation of a
CH3O–HOO hydrogen bond. The relative energy and vibrational
properties of saddle-point TS4 play an important role in
determining selectivity, but this point is also very difficult to
characterize accurately. As explained below, the best results are
obtained by using a structure optimized with the M06-D3 DFT
method, rather than M06-2X-D3 as used for the other stationary
points. Like the reactant complex, the hydrogen-bonded PC has
near-degenerate singlet and triplet states. From 1PC, CH2Oþ
HOOH can be formed through TS5, or CH3OHþ 1O2 can be
obtained through TS7. Equally, 1PC can convert to triplet
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product complex 3PC, and 3PC can form CH3OHþ 3O2 through
the very low TS6.

Transition states TS2, TS3, TS5, TS6 and TS7 corresponding
to the abstraction or transfer of a hydrogen atom are
straightforward and their identity has been carefully confirmed
using intrinsic reaction coordinate (IRC) calculations. The
coupled-cluster relative energies agree well with those from
DFT, supporting the use of the M06-2X-D3 functional for
geometry optimization. However, TS1 and TS4 are more
problematic and need further discussion, in particular as these
crucial transition states (TSs) largely determine the dominant
reactant pathways. Both TSs can be considered to correspond to
breaking of one of the O–O bonds in TRIOX. However, this step
does not proceed with monotonously increasing energy towards
the fragments, due to the existence of the hydrogen-bonded RC

and PC. As the relative orientation of the fragments in the
complexes differs from that in TRIOX, the TSs have combined
O–O bond breaking and fragment reorientation character. Also,
TRIOX has a closed-shell singlet electronic structure, with the
transition to the open-shell radical pair nature of PC or RC
occurring in the region near the TSs. For open-shell singlets
with completely uncoupled electrons, singlet and triplet states
are near-degenerate (as in RC and PC). Unrestricted DFT
calculations and coupled-cluster calculations based on unrest-
ricted Hartree-Fock reference wavefunctions are reasonably
accurate in this case. However, for partially uncoupled electrons,
the triplet is significantly higher in energy, and unrestricted
approaches are less accurate, introducing artefacts in the shape of
the energy curve. For TS1, we are able to locate two saddle points,
TS1 and TS10, with the M06-2X-D3 functional. The first one
corresponds mostly to reorientation of the OH fragment, while
TS10 has essentially only O–O bond stretching character.
Large-active-space CASSCF (complete active space self-consistent
field) and CASPT2 (complete active space perturbation theory 2)
calculations (Supplementary Fig. 3 and Supplementary Note 1),
which can treat systems with partially uncoupled electrons in a
balanced way, strongly suggest TS10 to be purely an artefact based
on inaccurate description of the developing low-spin open-shell
electronic structure, whereas the TS1 is more reliable.

For TS4, only one TS structure, TS40, is obtained with
M06-2X-D3, but CASSCF and CASPT2 calculations show it is an
artefact, similar to TS10. In contrast, the M06-D3 functional
yields a TS structure, denoted TS4, which is closer to the correct
TS according to CASSCF and CASPT2. The difference in
structure is quite large: the M06-2X-D3 TS40 structure is very
‘early’ (O–O distance of 1.967 Å) whereas the M06-D3 TS4 has
an O–O distance of 2.447 Å. Accordingly, we have used the TS4
structure in this study. For the other stationary points, the
CCSD(T)-F12 (coupled cluster—single, double and triple
excitation theory) total energies at the M06-D3 and
M06-2X-D3 structures differ by o0.2 kcal mol� 1, and the
vibrational frequencies are very similar also.

The chemically activated singlet reactant complex 1RC, with
average vibrational energy oEv4¼ 4.8 kcal mol� 1, including
an average 2.1 kcal mol� 1 thermal energy at 298 K inherited from

Table 1 | Relative energies with inclusion of ZPVE for all
structures involved in the title reaction.

Complexes DE* DEw T1 diag.z

CH3O2þOH 0 0 –
1RC �4.4 � 2.7 0.025
3RC �4.5 � 2.8 0.024
TRIOX � 29.9 � 29.0 0.015
1PC � 12.3 � 10.7 0.028
3PC � 12.1 � 10.5 0.025
TS1 �4.3 � 2.6 0.026
TS2 �0.1 1.0 0.035
TS3 3.0 4.6 0.028
TS4 � 7.1 �4.9 0.027
TS5 � 6.3 �4.8 0.038
TS6 � 12.0 �9.5 0.044
TS7 � 10.9 �8.1 0.081
CH3OþHO2 �4.8 �4.3 –
CH3OHþ 3O2 �60.1 � 59.3 –
CH2OþH2O2 �67.4 �68.6 –

*Computed at M06-2X-D3/6-311þ þG(3df, 3pd) level of theory.
wComputed at CCSD(T)-F12/cc-pVTZ-F12//M06-2X-D3/6-311þþG(3df, 3pd) level of theory.
zT1 diagnostic for CCSD(T)-F12 calculations.
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Figure 1 | Potential energy surface for CH3OOþOH biradical reactions. Coupled-cluster energies (kcal mol� 1) relative to separated reactants CH3O2

and OH, based on DFT geometries (CCSD(T)-F12/cc-pVTZ-F12//M06-2X-D3/6-311þþG(3df,3pd) level of theory). TS, transition state; RC, reactant

complex; PC, product complex. The singlet reaction pathways are depicted in black and grey, while the triplet reaction pathways are depicted in red

for clarity. aTS4 was optimized at M06-D3/6-311þþG(3df,3pd) level of theory, see text (each structure with formula or acronym is depicted separately in

Supplementary Fig. 2).
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the reactants (see the ‘Methods section’), reacts nearly barrier-free
(TS1) to form the closed-shell CH3OOOH molecule, TRIOX,
much faster than forming Criegee 1CH2O2 and H2O over a
barrier of 3.7 kcal mol� 1 (TS2). The RRKM-based (Rice,
Ramsperger, Kassel, Marcus)21,22 unimolecular rate coefficients
averaged over the (narrow) distribution function of formation
F(Eth,v) (see the ‘Methods section’) are ok14¼ 1.8� 1013 s� 1

and ok24¼ 3.4� 1010 s� 1, respectively. The k-subscripts refer
to the TS numbering in Fig. 1. All F(Eth,v)-averaged rate
coefficients of the activated reaction steps given in this
subsection are for 298 K and 1,013 hPa (air). They are listed
also in Table 2, together with the values for 285 K and 750 hPa, as
well as these for 256 K and 400 hPa (see next subsection). Since
the other pathways to 1CH2O2þH2O theoretically characterized
by Bian et al.16 and Nguyen et al.17 contribute even less as
they involve TSs lying Z7 kcal mol� 1 above the initial
reactants, it is clear that Criegee formation contributes not
more than B1% overall.

TRIOX, with average chemical activation energy oEv4 of
31.1 kcal mol� 1 (at 298 K) converts rapidly to the product
complex 1PC over the low-lying and very loose TS4,
characterized above, far outrunning the other isomerization/
decomposition reactions through high-lying transition states16.
The rate coefficient integrated over the formation distribution
function F(Eth,v) is evaluated at ok44¼ 2.4� 1010 s� 1,
implying a TRIOX lifetime of B40 ps during which it should
lose B0.45 kcal mol� 1 by collisions at 298 K and 1,013 hPa
(see below), shifting down also the energy distribution F(Eth,v) for
1PC. The CH3O�HO2 complex 1PC has a decisive role in our
system; the B7 kcal mol� 1 strong CH3O–HOO hydrogen bond
explains why the minimum energy pathway of CH3OOOH to
CH3OþHO2 passes through it. The fastest reaction of 1PC,
with oEv4(1PC)E12.4 kcal mol� 1, is dissociation into these
radicals by breaking the H-bond without exit barrier.
The F(Eth,v)- averaged okdiss4 was estimated by variational
RRKM21,22. The energy, zero-point vibrational energy (ZPVE)
and integrated density of states Gvar(Ev—Evar) were computed
for a series of structures with increasing H-bond length, using
the unprojected vibrational frequencies, as listed in
Supplementary Table 2; the use of projected frequencies23–25

for the sum of states would have resulted in B12% higher
okdiss4 and o3kdiss4, with a minor effect on the overall
product yields (see Supplementary Note 3). The variational
bottleneck that minimizes Gvar(Ev—Evar), shown in Fig. 2,
was found for an H-bond length of 3.2 Å, and relative

energy 1.7 kcal mol� 1 below the separated CH3OþHO2, giving
okdiss4E2.4� 1012 s� 1.

The decomposition of 1PC into CH2OþH2O2 over the
fairly high TS5, with RRKM-calculated rate of only ok54¼
9.7� 109 s� 1 is negligibly slow, whereas decomposition
into CH3OHþO2(1D) over TS7, at averaged rate ok74
¼ 1.2� 1011 s� 1, is a channel of atmospheric relevance.
Importantly, conversion of the initially formed 1PC to 3PC will
affect the relative yields of the different products. Spin–orbit
coupling between the lowest singlet and triplet states in PC is very
small, but the spin–orbit coupling between the lowest singlet state
and the second-lowest triplet state (or between the second-lowest
singlet and the lowest triplet) is much larger, as there is now an
orbital angular momentum difference, and we calculate a
root-mean-square coupling matrix element of 58 cm� 1 in both
cases. Simply assuming Rabi cycling between the two states, a
‘rate constant’ for singlet-triplet conversion of 1.7� 1012 s� 1 is
estimated. Using a more rigorous statistical rate theory for
reactions with spin-state change26,27 (see Supplementary Note 2),
we obtain a remarkably similar estimate of
okISC4¼ 3.5� 1012 s� 1, while the reverse ok� ISC4¼
1.9� 1012 s� 1. The reverse reaction 1PC-TRIOX occurs with
an average rate ok� 44 of 1.3� 1011 s� 1, which is B3% of the
total 1PC removal rate, such that the net TRIOX-1PC
conversion rate k4

n(Ev)¼ 0.97� k4(Ev).
3PC decomposes into CH3OH and ground state 3O2 over a

very low barrier (TS6), with RRKM-calculated average o3k64 of
4.1� 1011 s� 1, faster than the singlet 1PC reaction to CH3OH,

Table 2 | RRKM-calculated rate coefficients ok(Ev)4 averaged over the thermal energy distribution of formation F(Eth,v)* for
the various chemically activated reactions.

Reaction step Notation k(s� 1) (298 K) (1,013 hPa) k(s� 1) (285 K) (750 hPa) k(s� 1) (256 K) (400 hPa)
1RC-TRIOX ok14 1.82� 1013 1.81� 1013 1.76� 1013

1RC-1CH2O2þH2O ok24 3.36� 1010 2.56� 1010 1.20� 1010

TRIOX-1PC ok44 2.38� 1010 2.25� 1010 1.90� 1010

1PC-TRIOX ok-44 1.29� 1011 1.29� 1011 1.23� 1011

1PC-CH3OþHO2 okdiss4w 2.43� 1012 2.41� 1012 2.32� 1012

1PC-3PC okisc4 3.50� 1012 3.50� 1012 3.44� 1012

3PC-1PC o3k-isc4z 1.87� 1012 1.87� 1012 1.84� 1012

1PC-CH2OþH2O2 ok54 9.67� 109 9.67� 109 9.29� 109

3PC-CH3OþHO2 o3kdiss4w,z 3.37� 1012 3.36� 1012 3.23� 1012

3PC-CH3OHþ 3O2 o3k64z 4.14� 1011 4.14� 1011 4.14� 1011

1PC-CH3OHþ 1O2 ok74 1.20� 1011 1.20� 1011 1.20� 1011

*For formation of 1RC and TRIOX, F(Eth,v) is the initial thermal distribution; for 1PC and 3PC, F(Eth,v) is shifted down by collisions, by 0.45, 0.35 and 0.25 kcal mol� 1 at 298, 285 and 256 K, respectively
(see text).
wk-value obtained using variational RRKM.
zRate coefficient of triplet 3PC reaction preceded by superscript 3 for clarity.
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above. It must compete with the reverse ISC, above and also
with the fast dissociation of 3PC into CH3OþHO2 at variational-
RRKM rate o3kdiss4E3.4� 1012 s� 1 (see data in
Supplementary Table 3), but still results in twice more
CH3OHþ 3O2 production than the CH3OHþ 1O2 afforded by
1PC, above. Accounting for the rates of all reactions of 1PC
and 3PC, the two latter routes together are found to result in a
CH3OH yield through activated TRIOX of 7.8% at 298 K
and 1,013 hPa. Given the possible error of B1.5 kcal mol� 1 on
the energies of the transition states to CH3OH relative to the
(variational) transition states of the PC dissociations, and taking
into account also a likely error of a factor of B2 on the ratio
of kISC/kdiss, we estimate an uncertainty margin on the CH3OH
yield of a factor of B3.5. Note that about 45% of the products
of activated TRIOX arise via ISC of 1PC to 3PC. Of major
importance is that TRIOX does not decompose directly but
via the complex 1PC, which enables production of CH3OH,
while direct methanol formation from CH3OOOH would face a
quasi-unsurmountable barrier16.

A (minor) fraction of the activated TRIOX will suffer energy
loss by successive collisions with air molecules to yield
thermalized CH3OOOH, of which the subsequent fates are
discussed in Supplementary Note 4. Using the bi-exponential
energy transfer model of Troe28 with an assumed average energy
transferred per collision oDE4all of � 0.9 kcal mol� 1—fairly

high because TRIOX has several low-frequency vibration
modes—and taking into account the distribution function
F(Eth,v) of the activated TRIOX, the fraction of stabilization at
a collision frequency of 1.2� 1010 s� 1 at 298 K and 1,013 hPa
was evaluated (see the ‘Methods section’) to be fstabE10.7%.
However, this result is quite uncertain, first of all because it is
very sensitive to the assumed value of oDE4all: doubling it
increases fstab nearly threefold while halving it reduces fstab to
o2%. Moreover, the calculated fstab depends also strongly on
k4(Ev), which itself bears a possible error of a factor B1.5–2.
We therefore estimate a stabilized CH3OOOH yield at 298 K
and 1 atm in the range 0–35%. The much higher fstab of
B90% predicted by Nguyen et al.17 can be ascribed to their TS
for TRIOX-1PC conversion being our artefactual TS40, which
on account of its far higher rigidity than TS4 leads to a much
lower calculated rate of TRIOX-1PC and hence much more
TRIOX stabilization.

Reaction products and estimated yields in the troposphere. The
theoretical investigation above predicts that the dominant
product route of the title reaction is channel (2) yielding the
radicals CH3OþHO2, whereas the suggested channel (1)8,9

producing the Criegee Intermediate CH2O2 is found to be
entirely negligible. On the other hand, we find that the title
reaction yields a sizable fraction of collisionally thermalized
(but chemically labile) CH3OOOH, of order of 10% at 1 atm and
298 K, while we also uncovered two parallel pathways leading
directly to CH3OHþO2 with overall yield around 7% in the same
conditions. No evidence could be found for any other significant
product routes. It must be stressed that the yield estimates of
CH3OOOH and CH3OH given above and listed in Table 3 are
subject to large uncertainty factors of B3.5 for each, as detailed in
the previous subsection.

As detailed in the next subsection, the title reaction is most
important above the tropical oceans, where NO levels are low but
OH concentrations moderate to high. The rate of the reaction as a
function of decreasing pressure (or of increasing altitude) and as a
function of latitude is depicted in Supplementary Fig. 4. Near
the Equator, accounting for the temperature profile, B50% of the

Table 3 | Predicted products of the CH3O2þOH reaction and
best-estimate yields at various pressures and corresponding
average temperatures in the troposphere above the tropics.

Reaction
products

Reaction
channel

1,013 hPa,
298 K

750 hPa,
285 K

400 hPa,
256 K

CH3OþHO2 (2) 0.82 0.85 0.88
CH3OOOH* (4)* 0.107 0.074 0.035
CH3OHþO2

w (3) 0.069 0.072 0.078

*Channel 4: CH3O2þOH-thermalized CH3OOOH.
wOverall yield of CH3OH formed through activated CH3OOOHw.

28

26

24

22

20

18

16

14

12

10

8

6

4

3

2

1

0

Figure 3 | Contribution of CH3O2þOH to the sink of CH3O2. Modelled yearly averaged contribution (%) of the reaction to the vertically integrated sink of

CH3O2. Map created using IDL version 8.2.3.
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reaction occurs below 750 hPa (altitude B2.4 km) where the
average temperature is 285 K, and nearly B95% below 400 hPa
(altitude B7.5 km) where temperature is 256 K. Given that
the CH3OOOH stabilization fraction should show a considerable
pressure and temperature dependence, and a minor temperature
dependence is also expected for other pathways (see the ‘Methods
section’) we have evaluated the CH3OOOH and CH3OH yields
also for the ‘median’ conditions 750 hPa and 285 K, and for the
‘limit’ conditions 400 hPa and 256 K, above. The results, together
with those for 1,013 hPa and 298 K, are listed in Table 3.
The pronounced pressure- and temperature dependences of
the CH3OOOH stabilization fraction can be expressed within a
few per cent by the power function fstab(P,T)¼ 0.107�
(P/1,013 hPa)2.0� (298 K/T)5.0.

Modelled global impact. Adopting the measured rate9 of
CH3O2þOH, the reaction accounts for 20% of the global
CH3O2 sink according to IMAGES simulations. The global
flux through that reaction is considerable: B11 Tmoles per year,
comparable to, for example, the global source of isoprene29.
Although it is only a minor sink (B10%) of CH3O2 at high
latitudes and over polluted continental regions (Fig. 3) where the
reaction with NO is by far the largest sink (Supplementary Fig. 5),
the reaction with OH represents 20–30% of the sink over
tropical oceans and deserts, where CH3O2þHO2 is however still
dominant (30–50% of total sink).

Table 4 summarizes the model simulations. The best
theoretical estimates are used in run B, while runs C and D
adopt yields approaching respectively the high end and low
end of the estimated uncertainty range of both the direct
CH3OH yield and the TRIOX stabilization fraction. Relative
to a simulation neglecting the title reaction, the HO2 radical
abundances are increased by 10–20% over tropical oceans
(Supplementary Fig. 6). Unsurprisingly, the impact is highest
when the HO2 yield is highest (run D). The changes are
negligible or even negative in high-NOx areas.

The changes in OH are of opposite sign to those of HO2,
reaching up to � 7% over remote oceans. Loss of OH due to
reaction with CH3O2 and the products CH3OOH and CH3OH is
partially offset by OH recycled from enhanced HO2. The globally
averaged OH concentration decreases by 1.5–3.2% depending on
the simulation, increasing the methane lifetime by up to 0.3 years
in run C. The largest OH changes are calculated in run C, due to
its lower HO2 yield and higher OH loss through reaction with
CH3OOOH and CH3OH. Surface ozone is decreased due to
the CH3O2þOH reaction, by up to 6% over remote oceans, and
by 1–2% (o1 ppbv) over Europe, North America and East
Asia in July (Supplementary Fig. 7). Hydrogen peroxide (H2O2)

is strongly impacted, owing to the quadratic dependence of its
production on HO2 levels. Its concentrations increase by up to
30% in run C (Fig. 4) and B50% in runs B and D.

Methyl peroxy radical abundances are reduced by up to 40%
over tropical oceans (Fig. 4), irrespective of the yield assumption.
This strong drop in concentration reflects increased loss through
reaction with OH and HO2, and slightly decreased production
from CH4þOH. The decreases in CH3OOH are also substantial
(up to � 30%). Formaldehyde is almost unaffected, being an end
product to all CH3O2 sink pathways. Methanol, however, shows
drastic differences among the simulations: whereas its concentra-
tions increase or decrease by B20% at most in runs B and D, the
global methanol burden is increased by 60% in run C, with
concentration increases reaching 30–100% over remote oceans
(Fig. 4). Even over continents, methanol increases by 10–20%
over most areas and by 80–200% over desert regions with very
low methanol emissions. Methanol formation from CH3O2þOH
is largely due to the direct pathway to CH3OHþO2 (56%), but
indirect formation through stabilized TRIOX is significant (44%).
Reaction on aerosols is calculated to be the largest TRIOX sink
globally, followed by reaction with OH and reaction with (H2O)2

(Supplementary Fig. 8, Supplementary Note 4). The calculated
average yield of methanol from stabilized TRIOX is 65%.

Model evaluation for peroxides and formaldehyde. We limit
our evaluation to stable compounds over oceans, where strongest
impacts are expected. Both the modelled vertical profile and
latitudinal profile of H2O2 agree generally fairly well with the
observations from aircraft and ship campaigns (Supplementary
Fig. 9, Supplementary Fig. 10, and Supplementary Fig. 11),
indicating that its sources and sinks are reasonably well described
by the model. As seen in Supplementary Table 4, the average
model bias across all campaigns is improved when including the
title reaction, from � 14% in run A to þ 3 and � 2% in runs B
and C, respectively. Although this improvement could be
fortuitous, given the known uncertainties in HOx modelling30, the
title reaction clearly does not lead to noticeable inconsistencies
with the data. As expected, the reaction has negligible impact on
modelled CH2O (Supplementary Fig. 12) which agrees very well
with aircraft data over oceans.

For CH3OOH, the title reaction leads to model under-
estimations (4B25%) of airborne measurements, but it
improves significantly the model agreement with ship
measurements (Supplementary Fig. 11, Supplementary Fig. 13,
and Supplementary Table 5). The contradiction between the
conclusions from either ship or aircraft data is difficult to explain
given the wide geographical area covered by both platforms.
As in a previous modelling study13, the largest biases are

Table 4 | Overview of model simulations with assumed product yields.

Run CH3O2þOH CH3O TRIOX CH3OH CH2OO

A Ignored – – – –
B Best estimate 0.86 0.07 0.07 0
C High methanol case* 0.61 0.21 0.18 0
D Low methanol case* 0.975 0 0.025 0
E High Criegee casew 0.6 0 0 0.4
A_NO As A, no ocean sourcez – – – –
C_NO As C, no ocean sourcez 0.61 0.21 0.18 0
C_VR As C, low k(CH3OOHþOH)y 0.61 0.21 0.18 0

*Methanol yield from activated trioxide multiplied (divided) by 3 in run C (D) relative to best estimate. Stabilisation fraction multiplied by 3 in run C, taken equal to zero in run D.
wNot a theoretical prediction.
zOceanic methanol emission omitted.
yUse lower rate for reaction CH3OOHþOH, within recommended uncertainty range.
Globally averaged molar yields of CH3O, stabilized trioxide, CH3OH and CH2OO adopted in model runs. The yields are pressure- and temperature-dependent (see text).
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found for INTEX-B (ref. 31). Since even the run ignoring the
title reaction largely underestimates the observations in several
campaigns, measurement issues and/or model uncertainties
likely cause the discrepancies. For example, the estimated
uncertainty in the rate constant of the CH3OOHþOH reaction
is a factor of 1.4 (ref. 32). Adopting a rate constant
measurement33 about 25% lower than the current Jet
Propulsion Laboratory recommendation32 used in the model
increases the CH3OOH concentrations by 15–20% and goes
already a long way to compensating the deterioration of model
performance against aircraft campaigns (Supplementary Fig. 13
and Supplementary Table 5). Other relevant processes might be
also uncertain. More work is needed to address those issues.

A large source of methanol. In agreement with previous
studies4,5,34,35, our simulation omitting CH3O2þOH
underestimates CH3OH observations by a factor of B2 over
the remote Pacific (Fig. 5). When including the reaction,
methanol production from CH3O2þRO2 is halved, from 33 to
15 Tg per year (Supplementary Table 6) due to its near-quadratic
dependence on CH3O2 levels. The CH3O2þOH reaction would
therefore worsen the model underestimations unless methanol is
produced by the reaction with a sufficient yield. The model/data
mismatch is barely reduced in run B, with its low overall
methanol yield (B12%), while it nearly vanishes in run C, with
an overall yield of 32%. Both the average concentration and
vertical profile shape are greatly improved in this case.

Similar conclusions hold for comparisons at the most remote
sites Mauna Loa and Cape Verde, which was shown to be under
mostly maritime and Saharan influences36 (Table 5, Supplementary
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Fig. 15). The other campaigns listed in Table 5 were probably more
impacted by continental emissions, which are likely overestimated
in the model since they were derived by inverse modelling34

while neglecting the contribution of CH3O2þOH. Nevertheless,
including the reaction improves the model performance against
airborne measurement at mid-latitudes (Supplementary Fig. 16).
An overestimation of oceanic emissions likely contributes
also to the strong model overestimation for the Atlantic
Meridional Transect cruise AMT-22 (Supplementary Fig. 17),
since flux measurements by eddy covariance during that
campaign37 indicated no emission, only deposition with an
average dry deposition velocity (0.68 cm s� 1) close to the
corresponding model value (0.63 cm s� 1). Suppressing oceanic
emissions in the model (run C_NO) leads to a much closer
agreement with the latitudinal profile of AMT-22 data. That this
setting leads however to large underestimations at other sites
(Table 5) suggests that ocean/atmosphere exchanges are more
variable than currently assumed.

Discussion
The theoretical results presented above leave little doubt that the
Criegee pathway (1) is negligible in atmospheric conditions,
that is, CH2O2 is not formed in any significant amount from
CH3O2þOH which therefore cannot be an important source
of formic acid. Actually, any sizable contribution of the reaction
to HCOOH formation would lead to huge overestimations
of its modelled concentrations over the Southern Pacific
(Supplementary Fig. 18) where median concentrations of
only 19 pptv were measured in the boundary layer during
spring38, almost an order of magnitude below modelled values
assuming a 40% stabilized CH2O2 yield.

The theoretical calculations further inform us that the methoxy
pathway (2) is expected to dominate, whereas both methanol
formation (3) and stabilization of the trioxide are viable, but likely
minor. Of fundamental interest is that significant direct methanol
production can occur only because the activated CH3OOOH
intermediate decomposes indirectly through the CH3O�HO2

complex. The share of each of the two minor channels likely does
not exceed B20% of the total reaction rate. Theory alone cannot
provide precise yield estimates, due to uncertainties in key
parameters, that is, precise barrier heights, average energy losses
per collision, and the singlet 2 triplet ISC rate that impacts
methanol production.

Fortunately, atmospheric measurements provide valuable
constraints. The persistent model underestimation of CH3OH

measurements over the remote Pacific4,5,34,35 cannot be explained
by ocean/atmosphere exchanges, since higher emissions would
cause strong decreasing vertical gradients not seen in campaign
data; on the contrary, eddy covariance measurements37 indicate
that oceanic emissions might be very low. Another remote source
of methanol, the photochemical production due to CH3O2þRO2

reactions, could be underestimated. But since it is largely
dominated by the CH3O2 self-reaction of which the methanol
yield (B0.63) cannot be much underestimated, and since CH3O2

production from CH4þOH is also well constrained, only a
large production of organic peroxy radicals from non-methane
organic precursors could boost this source of methanol. High
observed acetaldehyde over oceans6,36,39 suggested indeed the
existence of unknown sources of CH3CHO or of its precursors.
However, besides the noted inconsistency39 of those observations
with measured PAN:NOx ratios, the good agreement of modelled
CH2O with observations over oceans (Supplementary Fig. 12)
shows that those potential sources cannot weigh heavily on CH2O
and CH3O2 production.

The only viable candidate for the missing remote source of
methanol is therefore CH3O2þOH, with an overall methanol
yield crudely estimated to be B30%, consistent with theoretical
estimates given their uncertainties. Given the experimental
uncertainty (50%) in the total rate constant of the reaction9, this
inferred overall yield could be even higher, or possibly lower. The
total photochemical source of methanol in run C (130 Tg per year)
slightly exceeds the range (50–100 Tg per year) estimated by Jacob
et al.4, because of a higher net ocean sink and lower continental
emissions in our simulations. The contribution of CH3O2þOH
(115 Tg per year globally) is comparable in magnitude to the total
terrestrial emission source. Further work will be needed to evaluate
how this source will impact our understanding of the methanol
budget. Clearly, a better understanding of ocean-atmosphere
exchanges is required to refine the top–down yield estimation
presented above. It is not currently possible to determine which of
the direct methanol formation channel or indirect pathway
through the stabilised TRIOX is dominant. A more direct
experimental determination is obviously needed. Hopefully
TRIOX can be measured, although loss to walls might prove
challenging, and atmospheric concentrations should be very low, a
few pptv at most.

Reaction with OH might be also significant for other peroxy
radicals, such as those formed from biogenic terpenoids.
We expect that for the much larger activated ROOOHw,
conversion to a complex RO—HO2 and eventual dissociation to
ROþHO2 will be substantially slower than for CH3OOOHw,

Table 5 | Measured CH3OH over oceans and model biases.

Campaign Area Obs. A A_NO B C C_NO

PEM-Tropics-B Pacific 934 0.44 0.30 0.54 0.87 0.74
PEM-West-B N.-W. Pacific 702 0.83 0.71 0.99 1.35 1.26
INTEX-A N. Atlantic 1,689 0.76 0.73 0.83 0.97 0.93
ITCT N. Atlantic 991 0.98 0.95 0.96 1.15 1.12
INTEX-B Pacific 1,012 0.60 0.53 0.67 0.80 0.73
Mauna Loa N. Pacific 900 0.50 0.23 0.63 0.89 0.64
Cape Verde N. Atlantic 768 0.38 0.18 0.73 1.06 0.68
AMT-22 Atlantic 420 1.12 0.52 1.33 1.96 1.35
INDOEX-1999 S. Indian 708 0.79 0.43 0.94 1.56 1.19
Mean model bias factor* 0.73 0.45 0.82 1.12 0.92
Mean discrepancy factorw 1.47 2.25 1.31 1.26 1.31

*Defined as G ¼
QN

i¼1 Mi=Oi

� �1 N=
, with Mi/Oi the ratio of the averaged modelled values to the averaged observed values for campaign i.

wDefined as Gabs ¼ exp½ 1=Nð Þ �
PN

i¼1 logðMi=OiÞj j�,that is, it is the geometrically averaged ratio of the higher to the lower among the model and observed averages.
Averaged observed mixing ratios (pptv) and ratios of averaged modelled to averaged observed values for model runs defined in Table 4. See Supplementary Fig. 14 for more information on the
measurements.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13213

8 NATURE COMMUNICATIONS | 7:13213 | DOI: 10.1038/ncomms13213 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


such that collisional stabilisation of ROOOHw should be a major
if not dominant product route. However, the global relevance
for large peroxys formed from biogenic terpenoids is expected to
be lower compared with CH3O2þOH, because OH levels are
generally lower in the boundary layer over forests than in the
oceanic lower troposphere, and because the reaction of HO2 with
large peroxys is considerably faster than the reaction of CH3O2

with HO2 (ref. 40). Assuming a rate constant similar to that of
CH3O2þOH, the reaction of large biogenic peroxy radicals with
OH is estimated here to account for B3% of their total sink over
remote forests.

Methods
Quantum chemistry. All the structures presented on the potential energy surface
were fully optimized with DFT using the M06-2X-D3/6-311þþG(3df,3pd) level
of theory in Gaussian 09 version D.01 (ref. 41; see Supplementary Table 7), except
where explicitly stated otherwise. The M06-2X-D3 method was benchmarked and
recommended for the general main group elements including the evaluation of
thermochemistry, kinetics and noncovalent interactions42. For the geometry
optimization and the corresponding frequency calculations, a tight convergence
criterion and a superfine integration grid (150,974) were adopted. Wherever
appropriate, an unrestricted ansatz was used, and careful checks were made to
ensure that low-spin open-shell solutions were found to the Kohn–Sham equations.
The calculated vibrational frequencies have been used for evaluation of zero-point
energies and RRKM rate calculations. All the transition states for the reactions
involving the abstraction or transfer of a hydrogen atom were confirmed by IRC
calculations, while for the reactions from the reactant complex 1RC via TRIOX to
the product complex 1PC, attempts to generate IRC curves failed due to the low
curvature of the potential energy surface, so instead, various scans were used to
explore the behaviour of those two loose TSs (Supplementary Fig. 3 and
Supplementary Note 1).

Various single-point calculations were carried out using CASSCF, CASPT2 and
CCSD(T)-F12. The CASSCF and CASPT2 calculations were performed with
Molpro 2012.1 (refs 43,44) with an active space of 18 electrons in 13 active orbitals
(which corresponds to a full-valence active space, but omitting the O–H and C–H
bonding orbitals and the C–H anti-bonding orbitals), with the cc-pVTZ basis set45.
We also calculated the spin–orbit coupling constant with Molpro at
CASSCF(18,13)/cc-pVTZ level of theory.

Explicitly correlated CCSD(T)-F12 energies were obtained with the ORCA 3.03
package46, using an unrestricted HF-reference wavefunction for reactant and
product radicals and the open-shell singlet intermediates, and a restricted reference
otherwise. The cc-pVTZ-F12 basis set47 and appropriate auxiliary basis sets
were used. Unless mentioned otherwise, all reported energies derive from
CCSD(T)-F12/cc-pVTZ-F12 calculations with ZPVE corrections from
M06-2X-D3/6-311þþG(3df,3pd).

Theoretical reaction kinetics. The statistical-kinetics rates for thermal as well as
chemically activated reactions were estimated using the energies obtained at our
highest level and including the ZPVE (scaled by a factor 0.97 (ref. 48)) as stated
above, while partition functions or integrated sums of vibration states and vibration
state densities were based on the M06-2X-D3 harmonic vibration frequencies
(scaled by a factor 0.983 (ref. 48)) and rigid-rotor rotation constants. For all
structures and transition states involved we adopted the harmonic oscillator
approximation, commensurate with our aim of identifying the relevant reaction
pathways and distinguishing between major and minor routes based on an
approximate, semi-quantitative assessment of end-product yields.

As detailed in the Results section, the only thermal bimolecular reaction that
needs to be considered was found to be unimportant if not negligible. Its thermal
rate coefficient at 298 K was computed using conventional transition state theory22,
with tunnelling factor estimated assuming an asymmetric Eckart potential49,50.

The majority of the relevant reaction steps are chemically activated
unimolecular reactions of (i) the initial singlet reactant complex 1RC, (ii) the
closed-shell singlet intermediate TRIOX and (iii) the resulting product complexes
1PC and 3PC. We employed RRKM theory21,22 to estimate the micro-canonical
rate coefficients for each of the steps:

k Evð Þ ¼ a�G 6¼ Ev �E 6¼
� �

= h�N Evð Þð Þ

in which a is the reaction path degeneracy, h Planck’s constant, Ea the TS energy,
Ev the vibration energy of the reacting activated intermediate, N(Ev) its density of
vibration states and Ga(Ev� Ea) the sum of accessible vibration states of the TS;
both the latter were evaluated by exact count22. The conservation of angular
momentum was accounted for in reasonable approximation by correcting the
potential energies (inclusive ZPVE) of the activated reactants and transition
structures by their average rotation energy relative to that of the reactant complex
1RC, adopting the quasi-diatom approximation (see Supplementary Note 5). The
changes in effective potential energy21,22 are at most ±0.3 kcal mol� 1 and the
rotational effects on the chemically activated rate coefficients remain minor for all

reactions (1–20%). Tunnelling corrections for all relevant activated reactions were
found negligible because of the relatively high excess vibration energies (Ev–Ea)
and low imaginary frequencies (see Supplementary Table 1). The rate constants for
the dissociation of the singlet and triplet product complexes 1PC and 3PC were
calculated using variational RRKM21,22 by locating the structure ‘var’ that
minimizes Gvar(Ev� Evar). The rate constant for ISC of 1PC to 3PC was calculated
based on locating the minimum energy crossing point using the code developed by
Harvey and Aschi51,52. (see Supplementary Note 2)

In the total distributable energy Ev, we duly include the thermal vibration
energy Eth,v that the intermediates inherit from the thermal reactants
CH3O2þOH, and for each step the rates k(Ev) were averaged over the thermal
distribution function F(Eth,v) of formation. As the lifetime of the initial complex
1RC is o1 ps, the original thermal distribution F(Eth,v) remains conserved up to
the TRIOX intermediate, but it shifts down for 1PC and 3PC by B0.45 kcal mol� 1

at 298 K/1,013 hPa, B0.35 kcal mol� 1 at 285 K/750 hPa and B0.25 kcal mol� 1 at
256 K/400 hPa, respectively, due to the average of B0.5, 0.4 and 0.3 collisions,
respectively, that TRIOX suffers in the atmosphere during its lifetime (see ok44
rate values in Table 2). The lifetime of o0.3 ps of 1PC and 3PC is too short for
further collisional losses. The width of F(Eth,v), of B2 kcal mol� 1, is much less
than the average excess energy (Ev�Ea) for most reaction steps, and the k(Ev) are
generally not far from their high-energy asymptotes, such that the F(Eth,v)-averaged
ok(Ev)4 differ only 1–20% from k(oEv4). The only exception is the 1PC
reaction through TS2, which anyway is negligibly slow compared with the
competing reaction through TS1. As a result, the precise shape of F(Eth,v) is of little
importance for the overall kinetics of the chemically activated unimolecular
reactions of our system, though the average value of the thermal oEth,v4 is of
some significance. As there is no entrance barrier and the entrance transition state
TSin is variational (see Fig. 1), the formation distribution function F(Eth,v) cannot
be evaluated in the usual way21. However, the average initial oEth,v4, of B2.1, 2.0
and 1.75 kcal mol� 1 at 298, 285 and 256 K, respectively, could be estimated with
sufficient accuracy for our purpose and a reasonable F(Eth,v) could be derived
accordingly as detailed in Supplementary Note 6.

Different from the effective rates of the unimolecular reactions, the (minor)
fraction fstab of the activated TRIOX that becomes collisionally stabilized depends
markedly on the vibration energy of the activated TRIOX and is therefore quite
sensitive to F(Eth,v). The stabilization competes with the much faster rearrangement
TRIOX-1PC through TS4 at net rate kn

4(Ev) (E0.97� k4(Ev) due to the reverse
reaction). The Lennard-Jones collision frequency of CH3OOOH with air molecules,
kcoll¼ZLJ[M], is estimated53 to be about 1.2, 0.92 and 0.55� 1010 s� 1 at 298 K/
1,013 hPa, 285 K/750 hPa and 256 K/400 hPa, respectively. The bi-exponential
energy transfer model of Troe28 was used and implemented in a quasi-stochastic
approach; the average energy transferred per collision, a critical quantity for the
overall fstab but highly uncertain, was assumed to be oDE4all¼ � 0.9 kcal mol� 1,
amounting at 298 K to an average energy lost per down-collision
aE1.34 kcal mol� 1 and average energy gained per up-collision bE0.44 . For a
given initial energy Ev,in of TRIOX, the stabilization fraction was found as the
repetitive product of the successive, increasing probabilities of a (new) jth collision
at constant rate kcoll in competition with TRIOX-1PC rearrangement at net rate
kn

4(Ej� 1) that decreases on average after each collision:

fstab Ev;in
� �

¼ �
0� j

kcoll= kcoll þ kn
4 Ej� 1
� �� �� 	

:

Given the initial excess energy of TS4 of B7 kcal mol� 1, this product converges
rapidly after some 8–10 collisions for the adopted oDE4all. The overall fstab was
finally found by integrating over the distribution function F(Eth,v). As the net
TRIOX conversion rate kn

4(Ev) at the initial energies is relatively high, fstab is small
and depends strongly on oDE4all but also markedly on kn

4(Ev) itself. Obviously,
at higher altitudes in the troposphere, fstab decreases with decreasing pressures, but
this is partially offset by the pronounced, multiple effect of the simultaneous
temperature decrease: through the lower kn

4(Ev), the lower average Eth,v to be lost
for stabilization, the effect on the number density of N2/O2 and the higher O2,2

collision integral. Thus, the combined effects of the decreasing pressure P and
temperature T in the troposphere above tropical oceans result in a dependence
fstabBP2�T� 5.

Overall and net reaction rates and end-product yields were obtained in a
straightforward way by duly considering the fractional contribution of each
competing reaction for each intermediate in the complete scheme.

Global modelling. IMAGES54,55 calculates the distribution of 172 compounds at
2�� 2.5� resolution, using meteorological fields from ERA-Interim analyses of the
European Centre of Medium-Range Weather Forecasts (ECMWF). Simulations
were made for the year 2010 with a spin-up time of 6 months starting in July 2009.
Anthropogenic emissions are obtained from a global inventory
(edgar.jrc.ec.europa.eu/overview.php?v¼ 42) overwritten by regional inventories
over Europe, Asia and the U.S. Biomass burning emissions are provided by the
Global Fire Emissions Database GFEDv4s (www.globalfiredata.org). Isoprene
fluxes are based on the Model of Emissions of Gases and Aerosols from Nature
(MEGAN)55. Biogenic methanol emissions (100 Tg per year globally) are obtained
from an inverse modelling study34 using IMAGES and methanol total columns
from Infrared Atmospheric Sounding Interferometer. Parameterization of
ocean-atmosphere methanol exchanges follows a two-layer model resulting in an
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oceanic source of 39 Tg (in 2010) and an oceanic uptake represented as dry
deposition (between 46 and 66 Tg per year depending on the model simulation).
The isoprene degradation mechanism has been updated to account for the revised
peroxy radical kinetics of the Leuven Isoprene Mechanism LIM1 (ref. 56) as well as
for the chemistry of isoprene epoxides57. Wet scavenging is parameterized based on
ECMWF cloud and precipitation fields58. Dry deposition follows Wesely’s
resistance-in-series scheme59, with aerodynamic resistances based on Monin-
Obukhov similarity theory (ECMWF, IFS Documentation—Cy40r1, Operational
implementation 22 November 2013, Part IV: Physical processes, European Centre
for Medium-Range Weather Forecasts, Shinfield Park, Reading, England, 2014.)
using sensible heat fluxes and friction velocities from ECMWF operational analyses
and quasi-laminar layer resistances dependent on gas-phase diffusivity60.
Surface resistances are calculated depending on mesophyll, cuticular, ground and
in-canopy aerodynamic resistances59,61,62. The surface resistances are adjusted to
provide a better match of modelled dry deposition velocities with eddy-covariance
estimates over a forest by Nguyen et al.63; in particular, the H2O2 surface resistance
becomes negligible after this adjustment.

As detailed in Supplementary Note 4, the reactions of the stabilized
trioxide include the thermal conversion to the product complex 1PC; reaction
with OH; reaction with the water dimer; and reactive uptake on aqueous aerosols.
Aerosol uptake is calculated54 based on sulfate/ammonium/nitrate and
carbonaceous aerosols calculated by IMAGES, and sea salt aerosols obtained
from the MACC (Monitoring Atmospheric Composition & Climate) Reanalysis
(apps.ecmwf.int/datasets/data/macc-reanalysis/levtype¼ sfc/). The water dimer
concentrations are calculated using an equilibrium constant expression64 validated
with available experimental data.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information file.
Any further relevant code and data used in the paper are available from the authors
upon request.
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