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THEBIGGER PICTURE Current data generation capabilities in the life sciences render scientists in an appar-
ently contradicting situation. While it is possible to simultaneously measure an ever-increasing number of
systems parameters, the resulting data are becoming increasingly difficult to interpret. Latent variable
modeling has proved to be a formal machine learning paradigm to achieve such interpretation by learning
non-measurable hidden variables from observations. This review summarizes concepts and applications
of this paradigm in the life sciences.
SUMMARY

Current data generation capabilities in the life sciences render scientists in an apparently contradicting sit-
uation. While it is possible to simultaneously measure an ever-increasing number of systems parameters,
the resulting data are becoming increasingly difficult to interpret. Latent variable modeling allows for such
interpretation by learning non-measurable hidden variables from observations. This review gives an overview
over the different formal approaches to latent variable modeling, as well as applications at different scales of
biological systems, such as molecular structures, intra- and intercellular regulatory up to physiological net-
works. The focus is on demonstrating how these approaches have enabled interpretable representations and
ultimately insights in each of these domains. We anticipate that a wider dissemination of latent variable
modeling in the life sciences will enable a more effective and productive interpretation of studies based on
heterogeneous and high-dimensional data modalities.
INTRODUCTION

Latent representation learning (LRL), or latent variable modeling

(LVM), is a machine learning technique that attempts to infer

latent variables from empirical measurements. Latent variables

are variables that cannot be measured directly and therefore

have to be inferred from the empirical measurements. In biomed-

icine or biomedical applications, directly measurable variables

are related to physical and biological characteristics, such as

weight, height, body temperature, pH, hemoglobin, blood count,

metabolism, and many more. However, many variables of inter-

est are not directly measurable, and examples include variables

like pain, satisfaction, abilities to perform activities of daily living,

stress, burnout or well-being, and health.1 Such variables are

modeled as latent variables of a LVM. In general, one or many

latent variables jointly constitute a latent space or latent repre-

sentation. This representation is usually a compressed form of

the empirical measurements; it consists of fewer latent variables

than the dimensionality of the measurements (i.e., the number of

different measurement modalities).
This is an open access article under the CC BY-N
Distinguishing between healthy or diseased patients is an illus-

trative example for LVM. This distinction typically involves a

physician performing many assessments; i.e., empirical mea-

surements such as visual tests, measuring temperature, physical

tests. In the end, the physician integrates this information to

conclude on the health state of the patient. This conclusion

can also be conceived as the inference of the latent patient

health state, and, in this conceptual example, the physician per-

forms the task of an LVM (Figure 1). The diagnosis of multiple

sclerosis (MS) is a specific instance of this inference. No single

test exists for diagnosis of MS, but, via diagnosis of exclusion

(McDonald criteria 20172), many variables, such as clinical re-

lapses, MRI lesions in specific locations, or oligoclonal bands

in cerebrospinal fluid, are integrated for the physician’s diag-

nosis of this disease.

In biology or translational studies, different measurement

types are commonly recorded; for example, single-cell omics,

imaging, structural data, time-series, or text data. Due to techno-

logical developments, the dimensionality of the data as well as

the sample size has been steadily increasing, in principle
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Figure 1. Visualizing the concept behind LVM based on a toy example of patient stratification
The state of health is a variable that cannot be measured directly, in particular in relation to diseases that cannot be diagnosed with one specific test, such asMS.
Many different tests can be performed and taken together to infer the state of health of patients. Similar test results lead to patientsmapping closely together in the
latent representation and therefore to a similar diagnosis.
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opening unprecedented possibilities to infer so far inaccessible

latent variables. To infer latent variables of interest, it is advisable

to focus on recording informative variables instead of as many

variables as possible. Hence, a well-prepared study design is

essential to be able to infer potential latent variables of interest.

Additionally, LVM can be used to combine different data modal-

ities for inferring a shared latent variable; e.g., to resolve the cell

cycle stage of a cell in a combined analysis of transcriptomic and

proteomic measurements. Inferring the lower-dimensional latent

representation typically makes it easier to handle data visualiza-

tion, non-numerical data types, or finding similarities in highly

complex data.

In this review, we aim to provide an overview of recent and

forthcoming LRL approaches and how these have been applied

in the past. The journey involves the development of classical

factor analysis (FA) models3 to Gaussian process (GP) LVM4–6

and, for now, ends with the breakthrough of deep learning,

including many different deep model architectures, such as au-

toencoders (AEs)7 variational AEs (VAEs),8,9 or generative adver-

sarial networks.10,11 In this work, we survey LVM from two per-

spectives. First, we give an overview of the mathematical

concepts to infer a latent space, introducing the most popular

models in a shared notation. Second, we discuss LVM from

the perspective of a hierarchy of applications defined by concep-

tual similarity of application domains in the life sciences. Finally,

we discuss advantages, shortcomings, and potential orientation

for future work in LVM.
BASIC CONCEPTS OF LVM

Here, we aim to describe the main concepts of LVM approaches

and variants of themmostly developed for more specific data re-

quirements or better interpretability of the latent variables. We

cover the idea behind the main approaches of FA and GP-

LVM. Further, we introduce the different variations of LVM using
2 Patterns 2, March 12, 2021
deep learning approaches as AEs, VAEs, standard (deep) neural

networks (DNNs), or generative adversarial networks.

As a general mathematical notation, we define the following

main variables that are used throughout this work:

d Factors, latent variable/representation:

fzigi = 1;.;N = Z˛RK3N

d Data matrix:

fxigi = 1;.;N = X˛R P3N

d Data matrix reconstructed:

�
xR;i

�
i = 1;.;N

= XR˛RP3N

d Data matrix generated:

�
xG;i

�
i = 1;.;N

= XG˛RP3N

In general, we always assume K<P, where K is the dimension-

ality of the latent representation and P the number of variables in

the data. Further, N is the number of independent samples in the

data matrix. The variables m and S stand for mean and covari-

ance, respectively.
Factor analysis
The most basic approach to infer latent variables is called FA3

and can be used to derive many variants of it, such as probabi-

listic principal component analysis (PPCA), where the difference



Figure 2. Schematic visualization of state-of-the-art methods used for latent representation learning
In red we visualize the central latent representation Z for each model type inferred from data X.
(A) FA where the loading matrix W defines the feature importance for each sample.

(legend continued on next page)
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can be found in assumptions on the noise parameterization.

Having our data matrix fxigi =1;.;N =X˛RP3N containing N sam-

ples with P features, we can define

X = WZ (Equation 1)

whereW˛RP3K is called the factor loading matrix with K< P and

Z˛RK3N contains the factors or latent variables. The loading ma-

trix captures the correlation between the observed variables for

every single factor. Those loading matrices can be used to inter-

pret the type of variance the factor is capturing. Argelaguet

et al.,12 for example, used the factor loadings to understand

which genes influence a specific factor themost, including direc-

tionality, whereas Klami et al.13 used the factor loadings to iden-

tify the relationship between groups of variables. The prior distri-

bution over the factor matrix fzigi = 1;.;N =Z˛RK3N in FA is

assumed to follow

pðziÞ = Nðzij0; IÞ (Equation 2)

where 0˛RK is the zero mean vector and I˛RK3K stands for the

identity matrix. Hence, the latent variables are standard normal

distributed in the classical FA model. Finally, we can write

pðxijziÞ = NðxijWzi + m;JÞ (Equation 3)

where the mean is defined by a general linear function of zi plus

the sample mean m, and the covariance matrix J is given by a

P3P diagonal matrix capturing for each variable the variance

of the noise. This Gaussian noise assumption is as mentioned

above the link to PPCA, where for each variable the same vari-

ance is assumed. Maximizing the log likelihood of the FA model

is one option for learning the latent variables, but can also be

done via variational inference (VI)14 or Markov ChainMonte Carlo

(MCMC) sampling.3 Figure 2A shows symbolically the FAmodel.

Many variants of FA with different applications in life sciences

were developed; for example, a model called zero-inflated FA

(ZIFA),15 which specifically was designed to meet the require-

ments of the so-called dropout characteristics of single-cell

RNA sequencing (scRNA-seq) data. Those dropouts lead to

many zero entries in the data matrix, which are modeled with

an additional zero-inflation modulation layer in the FA frame-

work. Buettner et al.16 introduce slalom, which is an FA model

trying to decompose the heterogeneity of the data in biological

and technical factors by introducing prior knowledge from

gene set annotation databases via priors on the factor weights.

In addition to that, slalom is not only modeling the dropout effect

but supports alternative different noise assumptions in different

RNA-seq protocols. FA was also adopted to incorporate

different data types (views) into one model to capture variance

across data types. The model is called multi-omics FA (MOFA)

and shares a single factor matrix across the different data views,

which have assigned their respective factor loading matrices. A
(B) GP-LVM, where GP defines a Gaussian process prior and ε a noise term usu
(C) AE consisting of an encoder and decoder network, where XR stands for the r
(D) VAE, where the encoder predicts the parameter’s mean and SD of a norma
sentation can be modeled. The variables XR and XG stand for reconstructed and
(E) DNN where the latent representation is defined as the last hidden layer befor
(F) GAN, where the latent representation can be defined in the generator or disc
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very similar motivation can be assigned to group FA (GFA)

models where different variants have been introduced.13,17

GFA groups variables and tries to find relationships between

groups of variables (i.e., pathways) instead of correlating individ-

ual variables.

FA can be adopted for various applications or data require-

ments, as shown above. Different priors on the latent variables

or adding additional terms allow modeling the special features

different data types might bring with them as well as to infer

latent variables of interest. A big advantage of FA is the interpret-

ability of the factor loadings, which provides a way to interpret

the kind of hidden variability that has been inferred from the

data. Further, the measurement noise of an FA model can be

defined explicitly. The standard FA model assumes normally

distributed observation noise, different for every variable. Vari-

ants include data-type-specific noise assumptions, such as Ber-

noulli distributed noise models12,16 or dropout noise.15,16

Gaussian process LVM
When data are very complex and difficult to interpret, non-para-

metric models might be the right choice for fitting the data. In the

case of LVM, GP-LVMs4–6 are such non-parametric models to

infer a latent space from the data. The GP models a finite set

of random function variables f = ½fðx1Þ;.; fðxNÞ� as a joint

Gaussian distribution with mean m˛RP and covariance

K˛RP3P. Here, xi is the ith data input to the function f. If we define

f to follow a GP prior, we can write

f � GPðm;KÞ: (Equation 4)

Often, the mean is chosen to be zero ðm = 0Þ and the covari-

ance matrix is represented by a kernel matrix or function Kðx;
x0Þ : X 3 X01R, which measures the similarity between the in-

puts x and y. Typical choices for kernel functions are the linear

kernel or radial basis function (RBF) kernel. GP can, for example,

be used for regression analysis, where we try to model a

response variable Y˛RN. This response variable can then be

defined as

yi � N �
fðxiÞ; s2

�
; (Equation 5)

where yi is ith response modeled as a noisy version of the func-

tion value fðxiÞ and the distribution of noise is GaussianNð0;s2Þ.
In this work, we are interested in inferring latent variables of data

sample xi, where also GPs can be used in a slightly different

formulation. The GP-LVM can be written as

xi = fðziÞ+ ε (Equation 6)

with zi being the lower-dimensional latent representation, with

the noise assumed to follow a Gaussian distribution ε � Nð0;
s2Þ, and with f defined as a non-linear function with GP prior
ally normally distributed around zero.
econstructed data.
lly distributed latent representation. Different distributions of the latent repre-
generated data, respectively.

e label prediction.
riminator networks. The variable XG stands for the generated data.
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f � GPð0; KÞ, where the kernel matrix K serves as covariance

matrix. In comparison with the linear FA, GP-LVM allows us to

infer complex non-linear variables from the data if the kernel ma-

trix K is defined as such; e.g., when using an RBF-kernel. The

flexible GP-LVM framework allows us to modify the noise

assumption of the model straightforwardly; for example, for

ordinal or count data,5 such as scRNA-seq data where the noise

does not follow a Gaussian distribution. In general, non-

Gaussian distributed noise is the often the case in biological ap-

plications, which makes GP-LVMs a valuable modeling

approach. GP-LVM models can be trained via optimizing the

log likelihood function and finding its maximum6 or in a more effi-

cient way via VI,18 where the posterior distribution of themodel is

approximated. Using a standard linear kernel KðXÞ=XXT and

optimizing the model via maximum likelihood, the GP-LVM

model reproduces the classic principal component analysis

(PCA). However, GP-LVM corresponds to a probabilistic PCA

with a VI due to the Bayesian formulation of the optimization

problem. A rather schematic overview of this model can be

seen in Figure 2B.

Different variants and their applications of GP-LVMs can be

found in Buettner et al.,19 where single-cell qPCR expression

data are analyzed with a novel framework of GP-LVMs, intro-

ducing gene-relevant maps and gradient plots for better inter-

pretation of the data. Garcı́a et al.,20 on the other hand, introduce

an analysis of time-series data investigating physiological

behavior. A GP-LVM was used to embed the dynamics of the

data in a latent representation used for classification.
Deep learning
Here, we go more into detail on the different deep learning ap-

proaches for LVM and show different variants used in life sci-

ences and translational studies. In general, the big advantage

of deep learning models is the highly non-linear inference of

the latent representation compared with FA.

AE

When looking for a non-linear dimensionality reduction for many

different kind of data types, the AE is a model to think about. In

other words, it can briefly be explained by sending the data

through a bottleneck, which forms the latent representation,

and is used to reconstruct the original data. This bottleneck en-

sures that only the important variation of the data is captured. In

the simplest form, an AE7 only consists of two layers and maps

the data fxigi = 1;.;N =X˛RP3N into the latent representation

fzigi = 1;.;N =Z˛RK3N as follows

zi = sðWxi + bÞ (Equation 7)

where W is the weight matrix, b is a bias vector, and

sð ,Þ : R1Rs is called the activation function, where Rs =

½0;1� when using a sigmoid activation function. This part of the

network is called the encoder. To complete the two-layer AE

we define

xR;i = bsðcWzi + bbÞ (Equation 8)

which maps from the latent representation back to the original

data space fxR;igi = 1;.;N =XR˛RP3N via reconstruction. The

part of the network that maps from the latent representation
back to the original data space is called decoder, where the

weight matrix cW and the bias vector bb are the trainable param-

eters and bs is the activation function, which can be similarly

defined as s above. To train an AE, typically the distance be-

tween original data points xi and the reconstructed data points

xR;i is minimized, which can be written as a loss function

Lðxi; xR;iÞ = kxi � xR;ik2 (Equation 9)

= jjxi � bsðcWsðWxi +bÞ+ bbÞjj2 (Equation 10)

where k ,k2 is the squared error. Generally, AEs are optimized

using backpropagation,21 which also applies for the upcoming

models here, which means in this simple case that the parame-

ters q= fW;cW ;b; bbg are optimized during training. It has been

shown that an AE with a single fully connected hidden layer, a

linear activation function, and a squared error cost function

can be used for a simple PCA.22 Adding more layers just means

stacking them one after another, as in Equation 10. Figure 2C

shows a schematic visualization of an AE with the latent repre-

sentation Z in the middle of the encoder and decoder network.

AEmodels can vary a lot in their architecture andwhat they are

intended to achieve. Apart from the one layer AE above, mostly

deeper AE architectures are used and can include regularization

of different natures. This regularization can be an additional loss

term that, for example, shapes the latent space to help with bet-

ter classification23–26 or to solve data-specific tasks or require-

ments better.27,28 Regularization can be added on any layer,

not only the latent representation,29 and can be used to define

a sparse AE.30 There are also many architectural variations,

including, for example, stacked AE,31,32 a group of AEs that for-

ward the latent representation always to the next AE until the last

provides the final latent space. Another variation are symmetrical

AEs,33 where the weights of encoder and decoder are shared. It

is also popular to couple an AE with other model types, such as

generative adversarial networks, to be able to sample the latent

representation;34 reinforcement learning models;30 or logistic

regression,23 since an AE can shape the latent space for the

respective needs. In many cases, AE architectures are also

adapted to their input, such as for varying length of data input,24

or convolutional AE,26,31 such as to extract local features.

Another example would be using recurrent NNs (RNNs) as

encoder and decoder networks for time-dependent data.35

RNNs were also used for data imputation tasks on an AE recon-

structed output.36 AEs are also used to have a combined latent

representation of different input data types.33

VAE

A VAE8,9 still consists of an encoder and decoder network as the

classical AE introduced above in the section on AE, but VAEs

differ significantly from an AE model when putting the architec-

tural similarities aside. VAEs are generative directed probabilistic

graphical models with a distributional assumption on the latent

variables and optimize a VI problem. The VAE learns a stochastic

mapping from the original observed data space to the latent rep-

resentation z via the encoder q4ðzjxÞ and back to the original

data space when reconstructing or generating via the decoder

pqðxjzÞ, where 4 and q are the parameters of the neural net-

works. In this case, q4ðzjxÞ defines the approximation of the
Patterns 2, March 12, 2021 5
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true posterior distribution pðzjxÞ, which is in general intractable,

and the neural network parameters 4 are the variational param-

eters for the inference. The distributional assumption on the

latent space is incorporated in themodel via the prior distribution

pðzÞ. More practically, we can define

ðm; logsÞ = Encoder4ðxÞ (Equation 11)

q4ðzjxÞ = Nðz;m;diagðsÞÞ (Equation 12)

zR � q4ðzjxÞ (Equation 13)

xR = DecoderqðzRÞ (Equation 14)

zG � pðzÞ (Equation 15)

xG = DecoderqðpðzGÞÞ (Equation 16)

where diag is the diagonal of a matrix, xR is the reconstructed

data where the latent space is sampled from q4ðzjxÞ via the

encoder network and xG is generated data, where the latent

space is sampled from the prior distribution pðzÞ. The encoder

network predicts themeanm and diagonal logs of the covariance

matrix of the distribution of the latent representation, if we

assume a normally distributed latent representation. Optimizing

a VAE model requires maximizing the evidence lower

bound (ELBO)

Lq;4ðxÞ = Eq4ðzjxÞ½logpqðxjzÞ� � DKLðq4ðzjxÞjjpðzÞÞ (Equation 17)

where logpqðxjzÞ is the log likelihood of the reconstructed data

and DKL is the Kullback-Leibler divergence, which ensures the

distribution of the latent representation to follow pðzÞ when opti-

mized. In many cases, the prior on the latent representation is

trained to be multivariate standard Gaussian distributed pðzÞ =
Nð0; IÞ, where 0 is a zero mean vector and I the identity matrix

as covariance, which makes it possible to derive a closed form

solution for the Kullback-Leibler divergence. The prior distribu-

tion for the latent representation can also be chosen differently,

which requires an alignment on the encoder network to predict

the distributional parameters of the latent representation. For

more details on the derivation of the loss function Lq;4ðxÞ, we

refer to Kingma and Welling8 and Welling and Kingma.9 Sche-

matic visualization of a VAE model is provided in Figure 2D.

Many VAE models have been proposed for different modeling

purposes or to meet certain data demands. VAEs are used to

infer a latent representation specifically trained for respective

prediction tasks,37–40 where mostly additional optimization

terms are added to the loss function, validating the classification

performance. Erroneous predictions influence the latent repre-

sentation and will be penalized during training via the loss func-

tion. Further, many VAE model architectures were designed to

fulfill the needs of specific data requirements; for example, using

RNNs in the encoder and decoder networks for time-series

data,41 having a Student’s t-distributed data distribution,42 or

to graph data-specific VAE network architectures.43 Those ad-

justments of the architecture of the VAE model aim at achieving

a better fit of the model to the data. To combine multiple data-
6 Patterns 2, March 12, 2021
specific tasks, such as batch correction, visualization, clus-

tering, and differential expression analysis, single-cell VI (scVI)

was developed.44 This scalable model framework assumes a

zero-inflated negative binomial distribution conditioned on batch

annotations for decoding the single-cell data accounting for the

so-called dropout effect (similar to ZIFA,15 introduced in the sec-

tion on Factor analysis). To generate data of a requested data

sub-type more precisely, conditional VAEs45 are used, whereby

a combination of the original input data and the label is for-

warded to the latent representation and concatenated to form

the input for the decoder network to generate data. VAEs were

also designed to learn latent representations that form clusters

of the input data in an unsupervised fashion. Therefore, similarity

features of the input data in combination with a mixture of

Gaussian assumption on the latent representation were

used,46 or the optimization of self-organizing mapswith probabi-

listic cluster assignments was suggested.47 Finally, the denoised

reconstructed output of VAEs is used as input for RNNs for data

generation purposes.48

DNN

When labels for the data are available, neural networks (NNs) can

be used for LVM extracting the hidden layers zi;j between the

input layer and the output layer of the NN as latent representa-

tion. In this case, variable i = 1;.;N is the sample index of N in-

dependent input samples and j = 1;.;D is the index of the hid-

den layer, where D is the total number of hidden layers in the

NN. In general, if D>1, the NN is usually called a DNN. Generally,

the last hidden layer zi;D is used as a latent representation, since

this layer captures the most detailed lower-dimensional repre-

sentation of the data. The more shallow layers at the beginning

of the network typically have still-higher dimensions and there-

fore might spread the variance of the data across to many vari-

ables, but this depends on the architecture of the DNN. In com-

mon cases, the hidden layer with the lowest number of units, or in

other words lowest dimensionality, is used as a latent represen-

tation. Figure 2E shows a schematic visualization of a DNN used

for LVMwith j = D, the latent representation as to the last hidden

layer before prediction.

There are many variants of NNs used for LRL reported in the

literature; for example, the classic case of using the last hidden

layer before the classification output layer as latent representa-

tion.49 In other cases, the hidden layers of the DNN are trained

semi-supervised via the loss function; for example, using the

mutual information criterion, which enhances discrimination of

unsupervised points, and adding a multinomial logistic regres-

sion for samples with labels.50 There also exist examples where

two model types are combined, such as the combination of the

word embedding model word2vec51 with classical convolutional

layers for prediction.52 Others use the encoder part of a VAE to

learn a latent representation with a defined distribution, which

is directly used for prediction without reconstructing as in the

classical VAE.53 Li et al.54 introduce a Siamese network where

the hidden layers are trained in an adversarial fashion to adapt

to each other for integrating a source and target domain into

the same latent representation. This goes in a similar direction

as DNN architectures that have multiple input layers for different

input types, where, in the deeper regions of the DNN, the hidden

layers get concatenated to one specific latent representation of

the multiple views from the input.55,56 In general, no architectural
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limits exist for LVM with DNNs where, for example, the depth of

the network, types of layers or regularization used, and combina-

tions of models vary a lot and provide an interpretable latent rep-

resentation of complex high-dimensional data.

Generative adversarial network

A generative adversarial network (GAN)10,11 consists of two

competitive NNs playing a game, and they try to fool each other

during training. On the one hand, a generator network

Gð ,Þ : RD1RP is trained to generate fake data xG, which is close

in terms of similarity to the input data x, from a sample z˛RD of a

simple prior distribution. This prior distribution can, for example,

bemultivariate standardGaussian distributed. Therefore, we can

write for the generation process

xG = GðzÞ: (Equation 18)

On the other hand, a discriminator networkDð ,Þ : RP1R½0;1� is
trained to find the differences between real and fake data, which

is generated by the generator network, and predicts whether the

input is fake or real. The lower-dimensional latent representation

zi of data point xi that we are interested in can be found similarly

as with the DNNs in the hidden layers of the GAN itself. Mostly

the last hidden layer of the discriminator network before classifi-

cation is therefore used. This game between generator and

discriminator comes with two cost functions, one for each of

both networks. The cost function for the discriminator network

LD
qD ;qG

ðx; zÞ = � 1

2
Ex�px logDðxÞ �

1

2
Ezlogð1�DðGðzÞÞÞ

(Equation 19)

which is nothing else but the standard cross-entropy cost func-

tion for classification tasks, where qD and qG are the model pa-

rameters for the discriminator and generator network, respec-

tively. It is important to mention that the discriminator is trained

on twominibatches of data, onewith label 1 for the batch coming

from the training data x itself and oneminibatch with label 0 com-

ing from the generator network GðzÞ and samples from the prior

distribution. When the discriminator network is optimized, the

parameters for the generator network qG are fixed and vice

versa. The simplest game between discriminator and generator

is the so-called zero-sum game (or minimax game since the so-

lution involves minimization and maximization), where

LG
qD ;qG

= � LD
qD ;qG

: (Equation 20)

There are many more optimization methods, which usually

involve a different cost function for the generator network,

such as the heuristic non-saturating game or themaximum likeli-

hood game. Optimization of both networks requires finding a so-

called Nash-equilibrium, which is in general more difficult and

unstable than optimizing an objective function, such as with a

VAE, which is also a generative model. In comparison, GANs

can suffer from mode collapse where the generator specializes

to fool the discriminator with a specific data mode, whereas

VAEs tend to generate more blurry and less sharp data. Hence,

both techniques can be combined in so-called adversarial

AEs.57 A schematic overview of GANs can be found in Figure 2F.
GAN architectures are discussed widely in the literature and

are beyond the scope of this review, but Goldsborough et al.58

classically used the last hidden layer of the discriminator network

as a latent representation of the data. Ghahramani et al.59 did the

very same thing, but also used the hidden layer of the generator

network as the latent representation for downstream analysis.

APPLICATIONS IN BIOLOGY AND TRANSLATIONAL
MEDICINE

In general, multiple data types with different properties have

been used to infer latent variables, such as imaging, single-cell

omics, graph-structured, time-series, or text data. The latent

variables capture different kinds of information, which we want

to discuss in the following section. With the different types of

input data, many general tasks have been performed; for

example, pre-processing of the data, classification, clustering,

visualization of the data in lower dimensions, variance decompo-

sition with or without prior knowledge, downstream analysis

based on the latent space, or data generation for augmentation

or design of new data. In principle, all the data types can be com-

bined with all the different tasks mentioned above. A schematic

overview of these various combinations is depicted in Figure 3A.

In the remainder of this section, we provide an overview of

LVM from an application’s point of view.We discuss applications

at varying scales of biological systems, and start by discussing

latent variables inferred from measurements of individual bio-

molecules in and on the surface of cells, followed by analyzing

measurements of collections of cellular components such as

proteomes. Afterward, we consider a tissue-level perspective

and review the various applications of LVM on single-cell omics

measurements as well as medical imaging data. We conclude

with the application of LVM on clinical physiological patient

data with the aim of explaining phenotypes that cannot be

measured directly. We depict the structure of this section in

Figure 3B and link all the different models with their application

and investigated data types in Table 1.

Designing new biomolecule target structures
The structure of a protein or biomolecule can be described as the

arrangement of atoms. Those structures are typically defined in

discrete graph domains. Defining a latent representation for

graph inputs is challenging since it involves finding anoptimal ob-

ject in a finite and large set of objects. The finite set of potential

molecules is estimated to be 1023, whereas only about 108 sub-

stances have ever been synthesized,37 Naive exhaustive search

through this discrete space to create objects with desired prop-

erties, such as activity against a specific protein, solubility, or

ease of synthesis, is intractable.38 LVMprovides an elegant solu-

tion, where the discretemolecular structured data are embedded

in a continuous latent representation.32–34,37,38,43,45,48,60–62 The

latent space is supposed to capture in the latent variables the

similarity of the graph structures. This is not a trivial task due to

non-trivial choice of the many different available graph distance

measures. Once the graphs are embedded in the continuous

space, the exact distances and similarities between two discrete

graph structures can be efficiently computed. Once the contin-

uous latent representation is trained and defined, one can then

optimize the representation and search efficiently for potential
Patterns 2, March 12, 2021 7



Figure 3. Schematic overview of LVM applications associated to different levels of biology and translational medicine
(A) Different data types (left) are used as input and several applications (right) are reported such as pre-processing, classification, clustering, visualization,
decomposition, downstream analysis, and data generation. Typical data types, such as imaging data, single-cell omics, graphs, time series, or text data, were
commonly modeled.
(B) LVM was applied at different levels in biological or translational studies, starting with analyzing particles within the cell (see section on Designing New
Biomolecule Target Structures) and how those interact with each other (Learning function-associated cellular interaction networks from sequentially embedded
data). LVM was also heavily applied to measurements describing cells as a whole (see section on Inferring Cellular Variation Across Several Axes, Including
Space, Phenotype, Or Time). Last but not least, LVM was used for modeling clinical trials (see section on Clinical applications of LVM).
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targets, which then can be generated and transferred back into

the discrete visualizable format. There are different ways the

new design of the molecule can be achieved, one of which is by

perturbing the latent representation before generating from it or

interpolating between molecules.37,48 Gradient-based optimiza-

tions are more powerful, where efficient guidance toward func-

tional compounds is performed via trained classifiers on the

latent representation,37,60,61 transfer learning approaches (using

learned knowledge on related tasks),34 or to learn a conditional

latent representation.38 For the later approaches, labels need to

be provided for training purposes. For the application of gener-
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ating anddesigning newdatawith desirable properties, LVMpro-

vides a huge boost, especially with the growth of deep learning

approaches since they provide a highly non-linear way to embed

discrete data types in continuous latent representations, as dis-

cussed above.

Learning function-associated cellular interaction
networks from sequentially embedded data
DNA, RNA, or protein information can be captured in sequential

data (i.e., nucleotide or amino acid sequences), a data type diffi-

cult to analyze. The challenges can arise due to the variable



Table 1. Overview of all cited LVM approaches and their applications

Section Method Type Data type Functionality Citation

Designing new

biomolecule target

structures

– VAE SMILES downstream analysis Gomez-Bombarelli R.

et al.37

ECAAE entangled conditional

adversarial AE

molecular graphs data generation Polykovskiy D. et al.38

– graph convolutional

network

protein structure

data

downstream analysis Aumentado-Armstrong T.60

– VAE protein structure

data

data generation Greener J. G. et al.45

– AE Graphs graph representation

learning

Tran P. V.33

NEVAE VAE molecular graphs representation learning Samanta et al.43

– AE protein structure

data

dimensionality reduction Alam et al.32

LatentGAN AE, GAN molecular graphs data generation Prykhodko et al.34

GraphNVP invertible normalizing

flow

molecular graphs representation learning Madhawa et al.61

– VAE, convolutional

AE, RNN

SMILES data generation Skalic et al.48

– AE SMILES, IUPAC domain transfer,

classification

Winter et al.62

Learning function-

associated cellular

interaction networks

from sequentially

embedded data

– AE DNA sequence representation learning Agarwal et al.24

– VAE protein sequence downstream analysis Ding et al.63

BindSpace StarSpace DNA sequence domain adaption,

classification

Yuan et al.64

– CNN RNA sequences classification Pan and Shen,52

PIPR Siamese residual

RCNN

protein sequence similarity learning Chen et al.65

DeepConv-DTI neural network molecular graphs classification, latent

representation

Lee et al.55

Dr. VAE VAE drug response,

transcriptomics

prediction Rampá�sek et al.40

– FA, matrix factorization drug response classification Gönen and Margolin,66

cwKBMF kernelized Bayesian

matrix factorization

drug response multi-view representation

learning

Ammad-ud-din et al.67

GFA group FA fMRI, drug

response

representation learning Klami et al.13

Inferring cellular

variation across several

axes, including space,

phenotype, or time

– neural network RNA-seq clustering Lin et al.49

scScope RNN RNA-seq clustering Deng et al.36

scVI deep probabilistic

model

RNA-seq dimensionality reduction,

imputation, clustering,

normalization, batch

correction

Lopez et al.44

SIMLR multikernel learning RNA-seq dimensionality reduction Wang et al.68

t-SNE stochastic neighbor

embedding

multi-omics dimensionality reduction,

visualization

van der Maaten et al.69

UMAP uniform manifold

approximation

multi-omics dimensionality reduction,

visualization

McInnes et al.70

SISUA VAE multi-omics heterogeneity

decomposition

Trong et al.39

MoE-Sim-VAE VAE image, CyTOF clustering Kopf et al.46

Slalom FA RNA-seq heterogeneity

decomposition

Buettner et al.16

ZIFA FA RNA-seq dimensionality reduction Pierson and Yau,15

(Continued on next page)
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Table 1. Continued

Section Method Type Data type Functionality Citation

Scvis VAE RNA-seq dimensionality reduction Ding et al.42

Tybalt VAE RNA-seq downstream analysis Way and Greene,71

Dhaka VAE RNA-seq representation learning Rashid et al.72

MDA-CNN AE, neural network miRNA similarity learning,

classification

Peng et al.25

MOFA FA multi-omics downstream analysis,

heterogeneity

decomposition

Argelaguet et al.12

– AE, supervised AE image classification Zeune et al.26

– AE RNA-seq disentangled

representation

Wang et al.73

SAUCIE AE mass cytometry clustering, imputation,

batch correction

Amodio et al.29

CellCNN CNN mass cytometry cell type identification Arvaniti et al.74

SIMLR multikernel learning RNA-seq dimensionality reduction Wang et al.68

– GP-LVM qPCR representation learning Buettner and Theis,19

Clinical applications

of LVM

deep RIT neural network, RIT MRI segmentation,

classification

Deng et al.50

InfoMask variational neural

network

image segmentation Taghanaki et al.53

– latent topic model image automatic annotation Cruz-Roa et al.75

– convolutional AE, AE MRI representation learning Jaiswal et al.31

– VAE fMRI classification, domain

transfer

Han et al.76

– AE, logistic regression fMRI classification Bzdok et al.23

– neural network text word embeddings Wehbe et al.77

– neural network image pseudo-time Eulenberg et al.78

– neural network, AE image classification, survival

analysis

Bello et al.27

– VAE ECG clustering Rajan and Thiagarajan,41

SOM-VAE VAE time series clustering Fortuin et al.79

DPSOM VAE, self-organizing

maps

time series clustering Laura Manduchi et al.47

– GP-LVM multimodal classification Garcı́a et al.20

Deep Patient AE EHRs representation learning Miotto et al.80

– unsupervised neural

language model

EHRs representation learning Stojanovic et al.81

The column Type provides information about the modeling approach used, whereas the column Data Type summarizes the data types the model was

applied on. In the column Application we summarize whichmodeling goals have been tackled with the respective approach. CNN, convolutional neural

network; GAN, generative adversarial network; RIT, robust information theoretic; SMILES, simplified molecular-input line-entry system.
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length of the sequences or when defining a proper similarity be-

tween them. LVM provides a solution to this problems, since se-

quences can be embedded in continuous latent representations,

with latent variables capturing biologically relevant variability and

similarity, such as for splice site classification from DNA se-

quences24 or analyzing evolutionary properties, fitness, and sta-

bility from protein sequences.63 To predict multi-class transcrip-

tion factor binding sites, the target sequence of the transcription

factors and the DNA sequences have been embedded in a

shared latent representation.64 Another study focuses on RNA-

protein interfaces, which play critical roles in processes such

as mRNA degradation and stability, as well as alternative

splicing. Those RNA-protein binding sites have been predicted
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from human RNA sequences of various lengths via a latent rep-

resentation inferred using LVMs.52 Finally, protein interaction

partners were predicted from a latent representation that has

been inferred only using protein sequences.65

Protein sequences constitute a basis for drug target discov-

ery. The high level of difficulty to experimentally identify suitable

protein drug targets renders more efficient computational ap-

proaches attractive alternatives. Latent representations from

protein sequence embedding have allowed prediction of drug–

target interactions, and to detect potential binding sites for

drugs.55 The response of drugs on gene expression levels in

terms of viability and transcriptomic perturbation40 or drug sus-

ceptibility66 have been analyzed and predicted using LVMs. The



ll
OPEN ACCESSReview
interaction between genes and proteins captured in pathways

has been exploited for genomic drug response predictions.67

Moreover, LVMs clustered specific cancer cell lines and chemi-

cal descriptors based on the gene expression response due to

drug treatment.13

Inferring cellular variation across several axes,
including space, phenotype, or time
Recent developments of single-cell measurement technologies

allowed to achieve a better understanding of tissue- or pheno-

type-specific differences between single cells. While such tech-

nologies are capable of defining the high-dimensional molecular

profile of a single cell, it is not possible to directly measure which

cell or molecular makeup conveys tissue function or other com-

plex phenotypes. However, these cell characteristics can be in-

ferred from gene or protein expression, which can nowadays be

measured in high dimensions with various techniques.

The identification of different cell types is a popular application

of LVM and has been applied extensively.36,44,49,68 The latent

variable cell type is thereby inferred when combining multiple

measurements of gene or protein expressions. State-of-the-art

dimensionality reduction techniques frequently applied to group

cell types in a latent representation are t-distributed stochastic

neighbor embedding (t-SNE)69 and uniformmanifold approxima-

tion and projection (UMAP).70 Another study combined gene and

protein expressions, such as using protein quantification for con-

straining the learning process of the lower-dimensional repre-

sentation of scRNA-seq data39 to separate the cell types in the

latent space. Cell subpopulations in peripheral blood mononu-

clear cells (PBMCs) have also been modeled and clustered via

mass cytometry incorporating prior knowledge about the similar-

ity of the data, which influences the training of the latent repre-

sentation.46 Prior knowledge in terms of pathway annotations

has also been used for inferring latent representations for vari-

ance decomposition between biological and technical variation,

novel subpopulation discovery, and interpretability of them via

scRNA-seq data.16 Technology-specific measurement noise

characteristics have been explicitly taken into account. For

instance, scRNA-seq measurements exhibit the dropout effect,

where the mRNA of random genes of single cells could not be

amplified, resulting in false-zero signals. This effect was in partic-

ular modeled with an LVM for dimensionality reduction and cell

type identification,15 since falsely missing gene measurements

can strongly influence the cell type definition, in particular for

rare cell types. Mapping cell measurements from high to a lower

dimensional representations requires preservation of local and

global distances and was modeled using a probabilistic LVM.42

Tissue- or organism-level phenotypes, such as disease states,

are frequently conveyed by, and are therefore associated with,

specific cell types or subpopulations. These associations have

been inferred by LVM approaches. Gene and protein expression

play a central role when inferring the latent variable explaining

the phenotype variation of interest, since they define the poten-

tial subpopulations, and potentially constitute the basis of the

mechanism conferring their association with the phenotype.

LVM has been applied to single-cell measurements of tissues

originating from different cancer types to infer cancer specific

subpopulations.25,42,71,72 Argelaguet et al.12 developed an LVM

to infer the variation of chronic lymphocytic leukemia patients
across multiple omics levels, unraveling the variation shared

and also specific for the respective measurement types of the

cancer patients. In another study, different classes of circulating

tumor cells from blood samples have been identified via fluores-

cence imaging techniques via a deep LVM approach.26 Different

phenotypes have also been reported to be detected via LVM;

e.g., different treatment conditions,73 subpopulations in 11

million T cells from dengue patients in India,29 or the inference

of a latent variable that associates to each cell a disease onset

association measure applied on PBMC samples from HIV pa-

tients.74 The very same approach was applied to PBMC samples

of MS patients in comparison with healthy donors measured via

mass cytometry to identify a disease-associated subpopulation

identifiable via a disease-associated latent variable.82

Latent variables have been used to capture variation along

time or developmental stages of biological processes using

snapshot single-cell expression data of genes or proteins. A spe-

cific example is the inference of latent variables capturing the

different stages in the cell cycle.16,68 In another study, Buettner

et al.19 inferred a latent space that allowed them to resolve the

differences in gene expressions for all developmental stages

and identification of new subpopulations in mouse fetal develop-

ment, from zygote to blastocyst.

Clinical applications of LVM
LVMs have been used to infer the health or disease state of pa-

tients on the basis of health records, physiological parameters,

and radiological data.1 Typical for such studies is the difficulty

of directly measuring disease manifestations in patients. LVM

provides a solution by deriving latent variables for thesemanifes-

tations from measurements, such as imaging of organs, physio-

logical signals, or clinical parameters.

Radiological approaches have enabled multimodal imaging of

every organ in the human body. MRI or fMRI is extensively used

to monitor brain activity. The resulting images allow three-dimen-

sional reconstruction of brain tissue composition. Deng et al.50

presented a study utilizing LVM for tissue type segmentation,

overcoming the time-consuming and difficult manual annotation

of image structures and color details. Further applications of im-

age segmentation include localization of pneumonia from pa-

tients’ chest X-ray images to pin down disease localizations53 or

for automatic annotation of histopathological images75 from latent

representations, respectively. Another common task in image

analysis is feature extraction, traditionally requiring expert domain

knowledge. Extracting features frombrainMRI using LVMwithout

the aforementioned expert knowledge helped to classify patient

status into healthy, Alzheimer diseased, or having mild cognitive

impairment or autism spectrum disorder from the brain structure

only.31Using fMRI techniques, functional phenotypes, such asac-

tivity or cognitive tasks during various stimuli, have been associ-

ated with specific brain regions using latent representations in-

ferred from the fMRI,23,76,77 Most diseases can be classified in

different stages, and therefore the progression of such diseases

can be built up in temporal order, such as diabetic retinopathy,

possibly leading to blindness. Eulerberg et al.78 have shown that

LVM has the potential to evince the disease progression from

snapshot color fundus photographs of the eyes only.

The progression of diseases can often be inferred from time-

series data. Temporal dependencies and models can be trained
Patterns 2, March 12, 2021 11
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to recognize patterns along the time axis responsible for the

presence or development of disease phenotypes. For instance,

time-resolved imaging of cardiac motion from patients diag-

nosed with pulmonary hypertension was the basis to predict sur-

vival via LVM.27 Multi-channel electrocardiogram (ECG) was

used to predict disease status41 or vital-sign time-series mea-

surements of the intensive care unit (ICU), which have been clus-

tered with respect to the patients’ future physiological states47,79

via LVM. Time-series data typically need to be modeled differ-

ently compared with other data formats due to their sequential

structure possibly comprising temporal dependencies. LVM

can be utilized to find similarities between different time series

in latent variables and extract those into the latent representa-

tion. Emotions constitute a canonical example for latent vari-

ables, since they cannot be measured with any device directly.

LVM has, for example, been applied to infer the affective state

of an emotional process frommultimodal physiological signals.20

In contrast to the approaches mentioned earlier, Weng et al.30

used LVMs to infer personalized optimal glycemic trajectories

for septic patients from the patients’ clinical features.

Treatment details of patients, disease state and progression,

change in phenotype, and many more details are so far re-

corded in written form. Those electronic health records

(EHRs) constitute a source of information about successful

treatments, possibly suggested or at least supported via auto-

matic approaches. To detect subtle symptoms at early disease

stages, LVM can be applied to text data such as EHR to embed

those into a continuous representation, which has many advan-

tages, such as capturing semantic meaning and defining a sim-

ilarity measure. The resulting features on the latent representa-

tion of EHR have helped in recent studies to, for example,

assess probabilities for patients to develop various diseases

for early recognition,80 or predicting healthcare quality such

as length of stay, total incurred charges, or mortality rates of

patients.81

REMARKS AND CONCLUSION

LRL has been a field of research, possibly under varying names,

and applied for a long time. Recent dramatic advances in deep

learning yielded a strong impetus to LVM, in particular due to

the introduction of model types such as AE, VAE, or GANs.

Those models found various applications in biological and trans-

lational studies and resulted in numerous new findings in the

respective fields. The big advantage of deep learning ap-

proaches over classical FA approaches is the ability to extract

highly non-linear properties and the local feature extraction via

convolutional computations, in particular for images. Further,

deep learning allowed straightforward regularization of latent

representations, such as distributional assumptions (see the

section on VAE) or regularization to preserve local and global

structures of the original data.42

On the other hand, there is also still room for improvement

concerning the interpretability of the latent variables inferred

from deep learning approaches. While classical FA methods

allow us to investigate the factor loading matrix and hence

identify features that are most important for the respective fac-

tor, the highly non-linear structure of stacked layers in deep

learning models does not allow us to straightforwardly extract
12 Patterns 2, March 12, 2021
this information. Nevertheless, there exist methods for deep

learning that allow us to extract features from the original

data responsible for variation in the latent representation.

Mostly, those features can be traced back using gradient-

based methods83–88 or perturbation-based methods,89 which

are in general slower. Furthermore, we believe that a theoretical

understanding of deep learning, in general, will also help in the

future for improving the interpretability of LVM. The idea of be-

ing able to infer a biologically disentangled representation90–92

is appealing. This would mean that single variables of the latent

representation encode very specific biologically relevant fea-

tures, such as cell type, differentiation state, cell cycle stage,

disease state, and many more.93 Coupled with generative

models, single cells with very specific properties could be

generated and amplified straight away; for example, for the

analysis of very rare cell types.

Overall, the use of LVM approaches often is motivated by the

lack of labels or phenotypes for the data. Hence, unsupervised

modeling approaches, such as FA or (variational) AEs, are of

great importance. They allow us to gather a better understanding

of the data due to reduced dimensions and grouping of objects

based on similarities. The choice of the model type typically de-

pends on the data properties defined by the type of the data.

scRNA-seq data, for instance, consist of gene counts with

non-Gaussian measurement noise. Many approaches dis-

cussed above (Table 1) explicitly assume parametric noise

models for the data, making up a pivotal part of defining sensible

models for biological data analysis. In addition, the scientific

questions and the corresponding modeling goal affect the selec-

tion of the LVM type. Many models, such as (variational) AE or

DNNs allow us to take into account supervision in terms of labels

in the learning process, and therefore enable us to derive a latent

representation tailored for label predictions. Semi-supervised

learning paradigms can be applied using deep learning-based

approaches if only a few data samples are labeled. Classical

and deep learning models also have been combined, such as

FA with a VAE94 to combine the best of both worlds; e.g., scal-

ability with increasing number of samples, as ensured via the

VAE and interpretability as provided via FA.

Latent representations will be increasingly used to derive

fundamental physical quantities such as process coordinates.

For instance, latent representations of high-dimensional single-

cell data have been interpreted as a process coordinate; i.e.,

pseudo-time of cellular differentiation processes. Different ap-

proaches have been proposed to this end, with the common

concept of converting the high-dimensional data into a more

interpretable latent representation from which the pseudo-time

is then inferred. Some methods are based on GP-LVMs,95,96

where the choice of the kernel plays an important role in inferring

the pseudo-time. Others make use of t-SNE,97 diffusion

maps,98–100 locally linear embedding,101 PCA,97,99,102–104

or independent component analysis.105 Most commonly, the

pseudo-times are inferred from high-dimensional scRNA-seq

or mass cytometry measurements.

In summary, this review exemplifies the increasingly wide-

spread use of LVM across a plethora of applications in the life

sciences. We expect their application scope to widen and their

formal concepts to be further developed at the fundamental level

as well as in task-specific terms, and thereby ultimately support
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the interpretation and progress in the different domains of the life

sciences.
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20. Garcı́a, H.F., Álvarez, M.A., and Orozco, Á.A. (2016). Gaussian process
dynamical models for multimodal affect recognition. In 38th Annual Inter-
national Conference of the IEEE Engineering inMedicine and Biology So-
ciety (EMBC), pp. 850–853, https://doi.org/10.1109/EMBC.2016.
7590834.

21. Linnainmaa, S. (1970). The Representation of the Cumulative Rounding
Error of an Algorithm as a Taylor Expansion of the Local Rounding Errors,
Master Thesis (University of Helsinki).

22. Plaut, E. (2018). From principal subspaces to principal components with
linear autoencoders. arXiv, arXiv:1804.10253.

23. Bzdok, D., Eickenberg, M., Grisel, O., Bertrand, T., and Varoquaux, G.
(2015). Semi-supervised factored logistic regression for high-dimen-
sional neuroimaging data. In Advances in Neural Information Processing
Systems, 28 (NIPS).

24. Agarwal, V., Jayanth Kumar Reddy, N., and Anand, A. (2019). Unsuper-
vised representation learning of DNA sequences. arXiv,
arXiv:1906.03087.

25. Peng, J., Hui, W., Li, Q., Chen, B., Hao, J., Jiang, Q., Shang, X., and Wei,
Z. (2019). A learning-based framework for miRNA-disease association
identification using neural networks. Bioinformatics 35, 4364–4371.

26. Zeune, L.L., Boink, Y.E., van Dalum, G., Nanou, A., de Wit, S., Andree,
K.C., Swennenhuis, J.F., van Gils, S.A., Terstappen, L.W.M.M., and
Christoph, B. (2020). Deep learning of circulating tumour cells. Nat.
Mach Intell. 2, 124–133.

27. Bello, G.A., Dawes, T.J.W., Duan, J., Biffi, C., de Marvao, A., Howard,
L.S.G.E., Gibbs, J.S.R., Wilkins, M.R., et al. (2019). Deep-learning car-
diac motion analysis for human survival prediction. Nat. Mach Intell.
1, 95–104.

28. H. He, C. Liu, and H. Liu. Model reconstruction from small-angle x-ray
scattering data using deep learning methods. iScience Volume 23, Issue
3, 100906, 2020. doi:https://doi.org/10.1016/j.isci.2020.100906.

29. Amodio, M., van Dijk, D., Srinivasan, K., Chen, W.S., Mohsen, H., Moon,
K.R., Campbell, A., Zhao, Y., Wang, X., Venkataswamy, M., et al. (2019).
Exploring single-cell data with deep multitasking neural networks. Nat.
Methods 16, 1139–1145, https://doi.org/10.1038/s41592-019-0576-7.

30. Weng, W.-H., Gao, M., He, Z., Yan, S., and Szolovits, P. (2017). Repre-
sentation and reinforcement learning for personalized glycemic control
in septic patients. arXiv, arXiv:1712.00654.

31. Jaiswal, A., Guo, D., Raghavendra, C.S., and Thompson, P. (2018).
Large-scale unsupervised deep representation learning for brain struc-
ture. arXiv, arXiv:1805.01049.

32. Alam, F.F., Rahman, T., and Shehu, A. (2019). Learning reduced latent
representations of protein structure data. In Proceedings of the 10th
ACM International Conference on Bioinformatics, pp. 592–597, https://
doi.org/10.1145/3307339.3343866.

33. Tran, P.V. (2018). Learning to make predictions on graphs with autoen-
coders. arXiv. arXiv:1802.08352. https://doi.org/10.1109/DSAA.
2018.00034.

34. Prykhodko, O., Johansson, S.V., Kotsias, P.-C., ArÃ�s-Pous, J., Bjerrum,
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