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We demonstrate bistable attractor dynamics in a spiking neural network implemented with
neuromorphicVLSI hardware.The on-chip network consists of three interacting populations
(two excitatory, one inhibitory) of leaky integrate-and-fire (LIF) neurons. One excitatory
population is distinguished by strong synaptic self-excitation, which sustains meta-stable
states of “high” and “low”-firing activity. Depending on the overall excitability, transitions
to the “high” state may be evoked by external stimulation, or may occur spontaneously
due to random activity fluctuations. In the former case, the “high” state retains a “work-
ing memory” of a stimulus until well after its release. In the latter case, “high” states
remain stable for seconds, three orders of magnitude longer than the largest time-scale
implemented in the circuitry. Evoked and spontaneous transitions form a continuum and
may exhibit a wide range of latencies, depending on the strength of external stimulation
and of recurrent synaptic excitation. In addition, we investigated “corrupted” “high” states
comprising neurons of both excitatory populations. Within a “basin of attraction,” the net-
work dynamics “corrects” such states and re-establishes the prototypical “high” state.
We conclude that, with effective theoretical guidance, full-fledged attractor dynamics can
be realized with comparatively small populations of neuromorphic hardware neurons.
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INTRODUCTION
NeuromorphicVLSI copies in silicon the equivalent circuits of bio-
logical neurons and synapses (Mead, 1989). The aim is to emulate
as closely as possible the computations performed by living neural
tissues exploiting the analog characteristics of the silicon substrate.
Neuromorphic designs seem a reasonable option to build bio-
mimetic devices that could be directly interfaced to the natural
nervous tissues.

Here we focus on neuromorphic recurrent neural networks
exhibiting reverberating activity states (“attractor states”) due to
massive feedback. Our main motivation is the belief that neural
activity in mammalian cortex is characterized by “attractor states”
at multiple spatial and temporal scales (Grinvald et al., 2003; Shu
et al., 2003; Holcman and Tsodyks, 2006; Fox and Raichle, 2007;
Ringach, 2009) and that “attractor dynamics” is a key principle of
numerous cognitive functions, including working memory (Amit
and Brunel, 1997; Del Giudice et al., 2003; Mongillo et al., 2003),
attentional selection (Deco and Rolls, 2005), sensory inference
(Gigante et al., 2009; Braun and Mattia, 2010), choice behavior
(Wang, 2002; Wong et al., 2007; Furman and Wang, 2008; Marti
et al., 2008), motor planning (Lukashin et al., 1996; Mattia et al.,
2010), and others. To date, surprisingly few studies have sought to
tap the computational potential of attractor dynamics for neuro-
morphic devices (Camilleri et al., 2010; Neftci et al., 2010; Massoud
and Horiuchi, 2011).

The more elementary forms of attractor dynamics in networks
of biologically realistic (spiking) neurons and synapses are theoret-
ically well understood (Amit, 1989, 1995; Fusi and Mattia, 1999;
Renart et al., 2004). This is particularly true for bistable attrac-
tor dynamics with two distinct steady-states (“point attractors”).
Attractor networks can store and retrieve prescribed patterns of
collective activation as “memories.” They operate as an “associa-
tive memory” which retrieves a prototypical “memorized” state in
response to an external stimulus, provided the external perturba-
tion does not push the state outside the “basin of attraction.” The
“attractor state” is self-correcting and self-sustaining even in the
absence of external stimulation, thus preserving a “working mem-
ory” of past sensory events. Besides being evoked by stimulation,
transitions between attractor states may also occur spontaneously,
driven by intrinsic activity fluctuations. Spontaneous activity fluc-
tuations ensure that the energetically accessible parts of state space
are exhaustively explored.

Thanks to this theoretical understanding, the system designer
has considerable latitude in quantitatively shaping bistable attrac-
tor dynamics. By sculpting the effective energy landscape and by
adjusting the amount of noise (spontaneous activity fluctuations),
he can control how the network explores its phase space and how
it responds to external stimulation (Mattia and Del Giudice, 2004;
Marti et al., 2008). The kinetics of network dynamics, including
response latencies to external stimulation, can be adjusted over
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several orders of magnitude over and above the intrinsic time-scale
of neurons and synapses (Braun and Mattia, 2010).

Below,we demonstrate step-by-step how to build a small neuro-
morphic network with a desired dynamics. We show that the char-
acteristics of bistable attractor dynamics (“asynchronous activity,”
“point attractors,” “working memory,” “basin of attraction”) are
robust, in spite of the small network size and the considerable inho-
mogeneity of neuromorphic components. Moreover, we demon-
strate tunable response kinetics up to three orders of magnitude
slower (1 s vs. 1 ms) than the time-constants that are expressly
implemented in the neuromorphic circuits.

Some of these results have been presented in a preliminary form
(Camilleri et al., 2010).

MATERIALS AND METHODS
A THEORY-GUIDED APPROACH
We are interested in attractor neural networks expressing noisy
bistable dynamics. Networks of this kind are well understood
and controlled in theory and simulations. Here, we describe
a theory-guided approach to implementing such networks in
neuromorphic VLSI hardware.

A compact theoretical formulation is essential to achieve the
desired dynamics in hardware. Such a formulation helps to vali-
date neuron and synapse circuits, to survey the parameter space,
and to identify parameter regions of interest. In addition,a theoret-
ical framework helps to diagnose hardware behavior that diverges
from the design standard.

Note that here we are interested in stochastic activity regimes
that are typically not encountered in electronic devices. Boolean
circuitry, sensing amplifiers, or finite-state machines all exhibit
deterministic behavior. In contrast, the stochastic dynamical
systems at issue here respond in multiple ways to identical input.

Accordingly, the behavior of neuromorphic hardware must be
characterized in the fashion of neurophysiological experiments,
namely, by accumulating statistics over multiple experimental
trials. Comparison to theoretical predictions proves particularly
helpful with regard to the characterization of such stochastic
behavior.

Finally, the massive positive feedback that is implemented in
the network not only begets a rich dynamics, but also amplifies
spurious effects beyond the intended operating range of the cir-
cuitry. Comparison to theory helps to identify operating regimes
that are not contaminated materially by such effects.

The starting point of our approach – mean-field theory for
integrate-and-fire neurons (Renart et al., 2004) with linear decay
(Fusi and Mattia, 1999) – is summarized in the next section.

MEAN-FIELD THEORY
Fusi and Mattia (1999) studied theoretically and in simulation
networks of integrate-and-fire neurons with linear decay and
instantaneous synapses (similar to those implemented on our
chip). We use their formulation to explore the parameter space
and to identify regions of bistable dynamics. The dynamics we are
considering for the neuronal membrane potential V (t ) (below the
firing threshold θ) are described by the equation:

dV (t )

dt
= −β + I (t ), V (t ) < θ

V (t ) is constrained to vary in the interval [0, θ]. When V (t )
reaches the threshold θ , it is reset to zero, where it remains during
the absolute refractory period τ arp.

The authors show that, if a neuron receives a Gaussian current
I (t ) with constant mean μ and variance σ 2, the stationary neu-
ronal spiking rate νout = �(μ, σ ) has a sigmoidal shape with two
asymptotes. Given σ , for low values of μ, � approaches 0, while
for high values of μ, � approaches 1/τ arp. For given μ, � increases
with increasing σ . The assumption of a Gaussian process holds if
the number of incoming spikes is large, if spike times are uncor-
related, and if each spike induces a small change in the membrane
potential. This set of assumptions is often termed the “diffusion
limit.”

We consider a neuron receiving n uncorrelated input spike
trains, each with a mean rate equal to νin. In the “diffusion limit”
our neuron will receive an input current I (t ) with mean and
variance:

μ = nJνin − β

σ 2 = nJ 2 (
1 + �J 2) νin,

where J is the synaptic efficacy, �J 2 is the variance of J and
β is the constant leakage current of the neuron. These equa-
tions state that both μ and σ are functions of the mean input
rates νin, thus the response function �(μ, σ ) can be written as
νout = �(νin).

We now consider an isolated population of N identical and
probabilistically interconnected neurons, with a level of connec-
tivity c. c is the probability for two neurons to be connected, thus
the number of inputs per neuron is cN. If we assume that the
spike trains generated by the neurons are uncorrelated, and that
all neurons have input currents with the same μ and σ (mean-field
approximation), and we keep J small and N large, then the “diffu-
sion approximation” holds and the previous equations for μ and
σ (with n = cN ) are still valid. We can then use, for neurons in the
population, the same transfer function � defined above, possibly
up to terms entering μ and σ due to external input spikes to the
considered population.

In our population all the neurons are identical and hence the
mean population response function is equal to the single-neuron
response function �(ν). Since the neurons of the population are
recurrently connected, i.e., a feedback loop exists, νin ≡ νout = ν,
resulting in a self-consistency equation ν = �(ν) in a stationary
state, whose solution(s) define the fixed point(s) of the population
dynamics.

In the more complex case of p interacting populations, the
input current of each population is characterized by a mean μ

and a variance σ 2, which is obtained by summing over the con-
tributions from all populations. The stable states of the collective
dynamics may be found by solving a system of self-consistency
equations:

ν− = �− (ν−),

where ν− = (ν1 . . . νp) and �− = (�1 . . . �p).
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EFFECTIVE RESPONSE FUNCTION
The solution to the self-consistency equation does not convey
information with regard to the dynamics of the system away from
the equilibrium states. To study these dynamics we should consider
the open-loop transfer function of the system.

In the case of a single isolated population, the open-loop trans-
fer function is simply �. It can be computed theoretically, as
we have shown in the previous section, or it can be measured
directly from the network, provided that one can “open the loop.”
Experimentally this is a relatively simple task: it corresponds to
cutting the recurrent connections and substituting the feedback
signals with a set of externally generated spike trains at a fre-
quency νin. By measuring the mean output firing rate of the
population νout one can obtain, the open-loop transfer function
νout = �(νin).

In Mascaro and Amit (1999), the authors extended the above
approach to a multi-population network and devised an approx-
imation which allows, for a subset of populations “in focus,” to
extract an Effective Response Function (ERF) �eff which embeds
the effects of all the other populations in the network. As will be
described later on, we have applied these concepts to our multi-
population hardware network. The key ideas are summarized
below.

Consider a network of p interacting populations, of which
one population (say, no. 1) is of particular interest. Following
(Mascaro and Amit, 1999), the ERF of population no. 1 may be
established by “cutting” its recurrent projections and by replacing
them with an external input (cf. Figure 3). As before, with the iso-
lated population, this strategy introduces a distinction between the
intrinsic activity of population no. 1 (termed νout

1 ) and the extrin-
sic input delivered to it as a substitute for the missing recurrent
input (termed νin

1 ). Next, the input activity νin
1 is held constant at

a given value and the other populations are allowed to reach their
equilibrium values ν∗

2 , . . . , ν∗
p :

ν∗
2 = �2

(
νin

1 , ν∗
2 , . . . , ν∗

p

)

...

ν∗
p = �p

(
νin

1 , ν∗
2 , . . . , ν∗

p

)

The new equilibrium states (ν∗
2 , . . . , ν∗

p ) drive population no. 1 to
a new rate:

νout
1 = �1

(
νin

1 , ν∗
2 , . . . , ν∗

p

)
≡ �eff

(
νin

1

)

where νout
1 = �eff(ν

in
1 ) is the ERF of population no. 1.

By capturing the recurrent feedback from all other populations,
the ERF provides a one-dimensional reduction of the mean-field
formulation of the entire network. In particular, stable states of
the full network dynamics satisfy (at least approximately) the
self-consistency condition of the ERF:

ν1 = �eff (ν1)

The ERF is a reliable and flexible tool for fine-tuning the sys-
tem. It identifies fixed points of the activity of population no. 1 and

provides information about its dynamics (if it is “slow” compared
to the dynamics of the other populations).

THE NEUROMORPHIC CHIP
The core of our setup is the FLANN device described in detail
in Giulioni (2008), Giulioni et al. (2008). It contains neuro-
morphic circuits implementing 128 neurons and 16,384 synapses
and is sufficiently flexible to accommodate a variety of network
architectures, ranging from purely feed-forward to complex recur-
rent architectures. The neuron circuit is a revised version of the
one introduced by Indiveri et al. (2006) and implements the
integrate-and-fire neuron with linear decay described above.

The synapse circuit triggers, upon arrival of each pre-
synaptic spike, a rectangular post-synaptic current of duration
τpulse = 2.4 ms. The nature of each synaptic contact can be indi-
vidually configured as excitatory or inhibitory. The excitatory
synapses can be further set to be either potentiated or depressed.
According to its nature each synapse possesses an efficacy J equal
to either J p for excitatory potentiated synapses, J d for excitatory
depressed ones or J i for inhibitory synapses. In what follows we
will express the value of J as a fraction of the range [0,θ] of the neu-
ronal membrane potential. Accordingly, an efficacy of J = 0.01 θ

implies that 100 simultaneous spikes are required to raise V (t )
from 0 to θ . Similarly, we express the leakage current β in units of
θs−1. Thus, a value of β = 200θ s−1 implies that 1/200 s = 5 ms are
required to reduce V (t ) from θ to 0 (disregarding any incoming
spikes).

The membrane potential of each neuron integrates post-
synaptic currents from a “dendritic tree” of up to 128 synapses.
Spiking activity is routed from neurons to synapses by means
of the internal recurrent connectivity, which potentially provides
for all-to-all connectivity. Spiking activity sent to (or coming
from) external devices is handled by an interface managing an
Address-Event Representation (AER) of this activity (Mahowald,
1992; Boahen, 2000). All AER interfaces, described in Dante et al.
(2005) and Chicca et al. (2007) are compliant with the parallel
AER standard.

The nominal values of all neuron and synapse parameters are
set by bias voltages, resulting in effective on-chip parameters which
will vary due to device mismatch. Each synapse can be configured
to accept either local or AER spikes, and it can be set as excitatory
or inhibitory, and potentiated or depressed, thus implementing
a given network topology by downloading a certain configura-
tion to the on-chip synapses. To disable a synapse, we configure it
to receive AER-input and simply avoid providing any such input
from the external spike activity. To stimulate and monitor the chip
activity, we connect it to the PCI-AER board (Dante et al., 2005),
which provides a flexible interface between the asynchronous AER
protocol and the computer’s synchronous PCI (Peripheral Com-
ponent Interconnect) standard. Controlled by suitable software
drivers, the PCI-AER board can generate arbitrary fluxes of AER
spikes and monitor on-chip spiking activity.

Several aspects of the circuitry implemented in the FLANN
device were disabled in the present study. Notably, these included
the spike-frequency adaptation of the neuron circuit and the self-
limiting Hebbian plasticity (Brader et al., 2007) of the synapse
circuit.
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THE NETWORK
The architecture of the network we have implemented and stud-
ied is illustrated in Figure 1. It comprises several populations of
neurons, some with recurrent connectivity (on-chip) and some
without (off-chip). Two excitatory populations with 48 neurons
each constitute, respectively, an “attractor population” Eatt and a
“background population” Ebkg. In addition, there is one inhibitory
population I of 31 neurons. These three populations are recur-
rently connected and are implemented physically on the neu-
romorphic chip. All on-chip neurons share the same nominal
parameter values, with a leakage current β = 200 θs−1 and an
absolute refractory period τ arp = 1.2 ms. Two additional excitatory
populations (E1AER, E2AER) and one further inhibitory population
(IAER) project to the on-chip populations in a strictly feed-forward
manner. These three populations are implemented virtually (i.e.,
as spike fluxes delivered via the AER generated by the PCI-AER
sequencer feature).

The on-chip excitatory populations Eatt and Ebkg are recur-
rently and reciprocally connected with a connectivity level c = 0.6.
They differ only in their degree of self-excitation: Eatt recurrent
feedback is mediated by excitatory potentiated synapses, while all
the other synapses connecting on-chip excitatory populations are
set to be depressed. Due to stronger self-excitation, Eatt is expected
to respond briskly to increased external stimulation from E1AER. In
contrast, Ebkg is expected to respond more sluggishly to such stim-
ulation. Later, in Section “Tuning feedback,” we study the network
response for different levels of self-excitation obtained varying
the fraction of potentiated synapses per projection. The recurrent
inhibition of I is fixed at c = 0.15. The excitatory projections from

Eatt and Ebkg onto the inhibitory population I are fixed at c = 0.15.
In return, the inhibitory projections of I onto Eatt and Ebkg are set
at c = 0.4, respectively.

On-chip synapses of the same kind share the same voltage
biases. Thus the synaptic efficacies, expressed as a fraction of
the dynamic range of the membrane potential (see above), are
J p = 0.098 and J d = 0.024 for potentiated and depressed excitatory
synapses, respectively, and J i = −0.050 for inhibitory synapses.

Due to the small number of neurons in each population, an
asynchronous firing regime can be more easily maintained by
immersing the on-chip populations in a “bath” of stochastic activ-
ity – even if sparse synaptic connectivity can allow for asynchro-
nous firing with constant external excitation as predicted by van
Vreeswijk and Sompolinsky (1996) and observed in a neuromor-
phic VLSI chip by D’Andreagiovanni et al. (2001). To this end, each
neuron of the excitatory populations Eatt and Ebkg receives external
excitation from E1AER (840 Hz = 35·24 Hz) and external inhibi-
tion from IAER (480 Hz = 20·24 Hz). Similarly, each neuron of the
inhibitory population I receives external excitation from E2AER

(700 Hz = 35·20 Hz). External (AER) spike trains are indepen-
dent Poisson processes. During various experimental protocols,
the off-chip activity levels are modulated.

MAPPING TO NEUROMORPHIC HARDWARE
To implement the target network depicted in Figure 1 on the
FLANN device, neuron, and synapse parameters must be brought
into correspondence with the theoretical values. This is not an easy
task, because analog circuits operating in a sub-threshold regime
are sensitive to semiconductor process variations, internal supply

I
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FIGURE 1 | Network architecture. Each circle represents a homogeneous
population of neurons. The gray oval includes the on-chip populations: two
excitatory populations Eatt and Ebkg (48 neurons each) and one inhibitory
population I (31 neurons). Off-chip populations E1AER (800 neurons), E2AER (300

neurons), and IAER (300 neurons) are simulated in software. Connectivity is
specified in terms of the fraction c of source neurons projecting to each
target neuron. Projections are drawn to identify synaptic efficacies as
excitatory potentiated (J p), excitatory depressed (J d), or inhibitory (J i ).
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voltage drops, temperature fluctuations, and other factors, each of
which may significantly disperse the behavior of individual neuron
and synapse circuits.

To compound the problem, different parameters are coupled
due to the way in which the circuits were designed (Giulioni
et al., 2008). For instance, potentiated synaptic efficacy depends
on both the depressed synaptic efficacy bias and the potentiated
synaptic efficacy bias. As sub-threshold circuits are very sensi-
tive to drops in the supply voltage, any parameter change that
results in a slight voltage drop will also affect several other para-
meters. Even for the (comparatively small) chip in question, it
would not be practical to address this problem with exhaustive
calibration procedures (e.g., by sweeping through combinations
of bias voltages).

We adopted a multi-step approach to overcome these difficul-
ties. In the first step, we use “test points” to certain individual
circuits in order to monitor various critical values on the oscil-
loscope (membrane potential, pulse length, linear decay β, etc.).
In subsequent steps, we performed a series of “neurophysiolog-
ical” experiments at increasing levels of complexity (individual
neurons and synapses, individual neuron response function, open-
loop population response functions), which will be described in
detail below.

Implementing the desired connectivity between circuit com-
ponents presents no particular difficulty, as the configuration of
the synaptic matrix is based on a digital data-stream handled by a
dedicated microcontroller.

SYNAPTIC EFFICACY
To assess the effective strength of the synaptic couplings, it is
essential to know the distribution of efficacies across synaptic pop-
ulations. We conducted a series of experiments to establish the
efficacies of excitatory (potentiated and depressed) and inhibitory

synapses. The results are summarized in Figure 2 (left panel).
The basic principle of these measurements is to stimulate an indi-
vidual synapse with pre-synaptic regular spike trains of different
frequencies and to establish how this affects the firing activity of
the post-synaptic neuron. Specifically, for a post-synaptic neuron
with zero drift rate β = 0 and no refractory period τ arp = 0, the
synaptic efficacy J syn (for small J syn) is approximated by:

Jsyn ≈ fout − fref

fin
,

where fout is post-synaptic output frequency, fref is post-synaptic
baseline activity, and fin is pre-synaptic input frequency.

If the measured spike trains are sufficiently long (≥0.5 s),
this procedure gives reasonably accurate results. Note that
this measurement characterizes the analog circuitry generat-
ing post-synaptic currents and therefore does not depend on
the routing of pre-synaptic spikes (i.e., internally via recur-
rent connections or externally via the AER). To measure the
efficacy of excitatory synapses, it is sufficient to initialize the
desired configuration (potentiated or depressed) and to apply
the desired pre-synaptic input. To measure the efficacy of
inhibitory synapses, the post-synaptic neuron has to be sufficiently
excited to produce spikes both with and without the inhibitory
input. To ensure this, a suitable level of background excitation
(fref) has to be supplied via an excitatory synapse of known
strength.

Knowing the dispersion of synaptic efficacies will prove impor-
tant for the experiments described below (e.g., in determining the
value of �J 2). Note also that the variability of the efficacy is not
related to the location of the synapse on the matrix (not shown),
thus all post-synaptic neurons receive spikes mediated by synapses
with similar distribution of efficacies.
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FIGURE 2 | Left panel : distribution of efficacy in 1,024 excitatory

depressed synapses, expressed as fractions of the dynamic range of the

membrane potential (i.e., from the reset potential 0 and to the firing

threshold θ ). Right panel : single-neuron response function. Mean and SE of
neuromorphic neurons (blue symbols with error bars). The variability is due

primarily to device mismatch in the leakage current β and in the absolute
refractory period τ arp. Mean of simulation results (red symbols) for an ideal
neuron and 120 synapses drawn from a Gaussian distribution of efficacies
(see inset and text for details). CV stands for the coefficient of variation of the
efficacy distributions.
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DURATION OF SYNAPTIC CURRENT
Synaptic efficacy is the product of the amplitude and the dura-
tion of the synaptic pulse. To disambiguate these two factors,
we experimentally determined the actual duration of individual
synaptic currents. To this end, we took advantage of current sat-
uration due to overlapping synaptic pulses. The synapse circuit
initiates a post-synaptic current pulse immediately upon arrival
of the pre-synaptic spike. If another spike arrives while the pulse
remains active, the first pulse is truncated and a new pulse initi-
ated. This truncation reduces synaptic efficacy at high pre-synaptic
spike frequencies.

The duration of synaptic pulses was τpulse = 2.4 ms with a SD of
0.58 ms. To determine the actual duration for individual synapses,
we stimulated pre-synaptically with periodic spikes of frequency
νpre and monitored post-synaptic firing νpost, setting both leakage
current β and absolute refractory period τ arp to zero. With these
settings, post-synaptic firing saturates when synaptic pulses over-
lap to produce a constant continuous current. The true pulse dura-
tion τpulse may then be computed as the inverse of the pre-synaptic
frequency at which saturation is reached: τpulse = 1/νpre.

DURATION OF REFRACTORY PERIOD
To measure the absolute refractory period τ arp of individual neu-
rons, we availed ourselves of a special feature of the neuron circuit
which allows a direct current to be delivered to each neuron.
For a given input current, we compared the inter-spike intervals
(ISI) obtained for zero and non-zero values of τ arp. The differ-
ence between those values revealed the true value of the absolute
refractory period.

The dispersion in the value of τ arp was ≈10% (average
τ arp = 1.2 ms and SD 0.11 ms). This degree of variability is
sufficient to affect single-neuron response functions (see below).

LEAKAGE CURRENT
In principle, the leakage current β of individual neurons can also
be determined experimentally (e.g., by nulling it with a direct cur-
rent). In practice, however, it proved more reliable to establish β

in the context of the single-neuron response function (see below).

SINGLE-NEURON RESPONSE FUNCTION
The response function of a neuron describes the dependence of
its firing rate on pre-synaptic input. To establish this function
for an individual FLANN neuron, we configured 40 synapses of
its dendritic tree as excitatory/depressed, 40 synapses as excita-
tory/potentiated, and 30 synapses as inhibitory. All synapses were
activated via AER with independent Poisson spike trains. In par-
ticular, 70 synapses (depressed and inhibitory) were activated
with fixed Poisson rates of 20 Hz (to maintain a baseline oper-
ating regime), while 40 synapses (potentiated) were stimulated
with Poisson rates ranging from 10 to 160 Hz (to vary excitatory
input). For each input rate, an associated output rate was estab-
lished and the results (mean and SD over 100 individual neurons)
are shown in Figure 2 (right panel). For the chosen parameter
values, output firing exhibited a monotonically increasing and
slightly sigmoidal dependence on excitatory input. For compar-
ison, Figure 2 (right panel) also shows the response function of a
simulated neuron model (with all parameters set to their nomi-
nal values). The sigmoidal shape of the transfer function will turn

out to be crucial for obtaining bistable dynamics with recurrently
connected populations (see further below).

Once an estimate of the synaptic efficacies and τ arp is obtained,
the match between the empirical and simulated single-neuron
response function allows us to extract a good estimate of β. Thus,
by comparing the leftmost part of the curve with simulation
data, we could determine the effective value of β for each neu-
ron. All simulations were performed with an efficient event-driven
simulator.

The comparison between single-neuron response function and
its theoretical or simulated counterpart is an important aggregate
test of a neuromorphic neuron and its synapses (i.e., the synapses
on its “dendritic tree”). Passing this test safeguards against sev-
eral potential problems, among them crosstalk between analog
and digital lines, excessive mismatch, or other spurious effects.
In addition, this comparison stresses the AER communication
between the FLANN chip and the PCI-AER board. In short, the
single-neuron response function provides a good indication that
the hardware components, as a whole, deliver the expected neural
and synaptic dynamics.

Note that there are a number of unavoidable discrepancies
between the hardware experiment, on the one hand, and the-
ory/simulation, on the other hand. These include device mismatch
among neurons and synapses, violations of the conditions of the
“diffusion limit,” finite duration of synaptic pulses (causing the
saturation effects discussed above), non-Gaussian distribution of
the synaptic efficacies, as it results from Figure 2 (left panel), and
any deviations from the predictions for instantaneous synaptic
transmission (Brunel and Sergi, 1998; Renart et al., 2004), and oth-
ers. For the present purposes, it was sufficient to avoid egregious
discrepancies and to achieve a semi-quantitative correspondence
between hardware and theory/simulation.

MEASURING THE EFFECTIVE RESPONSE FUNCTION
Measuring the ERF of a population of hardware neurons provides
valuable information. While the predictions of theory and simu-
lation are qualitatively interesting, they are quantitatively unreli-
able. This is due, firstly, to the unavoidable discrepancies between
experiment and theory (mentioned above) and, secondly, to the
compounding of these discrepancies by recurrent network inter-
actions. We therefore took inspiration from the theoretical strategy
to develop a procedure to estimate the ERF directly on-chip. This
constitutes, we believe, a valuable contribution to the general issue
of how to gain predictive control of complex dynamical systems
implemented in neuromorphic chips.

To establish the ERF for population Eatt in the context of the
network (Figure 1), we modified the connectivity as illustrated in
Figure 3. Specifically, the recurrent connections of Eatt were cut
and replaced by a new excitatory input Eext. From the point of
view of a post-synaptic neuron in Eatt, any missing pre-synaptic
inputs from fellow Eatt neurons were replaced one-to-one by pre-
synaptic inputs from Eext neurons. This was achieved by the simple
expedient of reconfiguring recurrent synapses within Eatt as AER
synapses and by routing all inputs to these synapses from Eext neu-
rons, rather than from Eatt neurons. All other synaptic connections
were left unchanged.

Controlling the activity νin of Eext neurons, we monitored the
resulting activity νout of Eatt neurons. Performing a sweep of νin
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FIGURE 3 | Modified network architecture to measure the effective

response function of population Eatt. Recurrent connections within Eatt

are severed and their input replaced by input from external population Eext.
In all other respects, the network remains unchanged. The effective
response function is νout = �(ν in).

values, established the ERF of Eatt, which is illustrated in Figure 4
(left panel). Note that, during the entire procedure, populations
E1AER, E2AER, and IAER maintained their original firing rates, while
populations Ebkg and I were free to adjust their activity.

In Figure 4, each red curve shows the average activity in Eatt as a
function of νin. Different red curves show results from six different
“microscopic” implementations of the network (i.e., six proba-
bilistic assignations of the connectivity of individual neurons and
synapses). The fact that the bundle of red curves is so compact
confirms that the network is stable across different “microscopic”
implementations. The shaded red area gives the total range of out-
comes for individual neurons in Eatt, attesting to the considerable
inhomogeneity among hardware neurons.

The effective response function �eff in the left panel of
Figure 4 predicts three fixed points for the dynamics of the
complete network (i.e., in which the severed connections are re-
established). These fixed points are the intersections with the
diagonal (νin = νout, black line) at approximately 0.5, 40, and
160 Hz. The fixed points at 0.5 and 160 Hz are stable equilibrium
points and correspond to stable states of “low” and “high” activity,
respectively. The middle fixed point at 40 Hz is an unstable equi-
librium point and represents the barrier the network has to cross
as it transitions from one stable state to another.

The choice of excitatory J is the compromise between two
needs: first we want the higher fixed point to be stable against
finite-size fluctuations, which would favor high values of J, on the
other hand we want to both keep the lower fix point simultaneously
stable, and to avoid the network being trapped into globally
synchronous state, which points toward low values of J.

If we consider the difference �ν = νin − νout as a“driving force”
propelling activity toward the nearest stable point, we can infer an
“energy landscape” from the ERF by defining “energy” as:

E(ν) =
ν∫

0

(νin − νout) dνin.

The result (Figure 4, right panel) is a typical “double-well”
landscape with two local minima at 0.5 and 160 Hz (two stable
fixed points), which are separated by a local maximum at 40 Hz
(unstable fixed point). In predicting the relative stability of the two
fixed points, one has to consider both the height of the energy bar-
rier and the amplitude of noise (essentially the finite-size noise),
which scales with activity. For example, while the transition from
“low” to “high” activity faces a lower barrier than in the reverse
direction, it is also driven by less noise. As a matter of fact, under
our conditions, the “low” activity state turns out to be less stable
than the “high” state.

Furthermore inhibitory neurons are a needed ingredient to
increase the attractor stability (Mattia and Del Giudice, 2004).

RESULTS
Our neuromorphic network exhibits the essential characteristics
of an attractor network. Here we demonstrate, firstly, hysteretic
behavior conserving the prior history of stimulation (section enti-
tled “Working memory”), secondly, stochastic transitions between
meta-stable attractor states (“Bistable dynamics”) and, thirdly,
self-correction of corrupted activity states (“Basins of attrac-
tion”). In addition, we characterize the time-course of state tran-
sitions (“Transition latencies”) and performance experimental
bifurcation analysis (“Tuning feedback”).

WORKING MEMORY
Attractor networks with two (or more) meta-stable states show
hysteretic behavior, in the sense that their persistent activity can
reflect earlier external input. This behavior is termed “working
memory” in analogy to the presumed neural correlates of visual
working memory in non-human primates (see for instance Zipser
et al., 1993; Amit, 1995; Del Giudice et al., 2003). The central idea is
simple: a transient external input moves the system into the vicin-
ity of one particular meta-stable state; after the input has ceased,
this state sustains itself and thereby preserves a “working memory”
of the earlier input.

Our starting point is the network depicted in Figure 1, which
possesses meta-stable states of “low” and of “high” activity (see
Methods). The normal level of external stimulation is chosen such
that spontaneous transitions between meta-stable states are rare.
To trigger transitions, an additional external input (“kick”) must
be transiently supplied. To generate an excitatory (inhibitory)
input transient, the mean firing rate of E1AER (IAER) is increased
from the baseline frequency νE1 = 24 Hz as described in the fol-
lowing paragraphs. Here, input transients are applied to all Eatt

neurons and only to Eatt neurons. The effect of stimulating
both Eatt and Ebkg neurons is reported further below (“Basins
of attraction”).

The effect of excitatory and inhibitory input transients
(“kicks”) to Eatt is illustrated in Figure 5. Its central panel depicts
average firing of Eatt and Ebkg neurons during four successive
“kicks,” two excitatory and two inhibitory. The first excitatory
“kick” is weak (t = 0.5 s, νE1 = 34 Hz) and modifies the Effective
Response Function (ERF) only slightly, so that Eatt increases only
marginally. After the “kick” the original ERF is restored and Eatt

returns to the “low” meta-stable state (Figure 5, bottom left inset).
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The second excitatory “kick” is more hefty (t = 1.5 s, νE1 = 67,
84, or 115 Hz) and dramatically increases Eatt and (to a lesser

degree) Ebkg activity. The reason is that a stronger “kick”
deforms the ERF to such an extent that the “low” state is

0 50 100 150 200
0

50

100

150

200

250

ν
in 

[Hz]

ν ou
t [H

z]
 

E
att

0 50 100 150 200 250
−800

−600

−400

−200

0

200

400

En
er

gy
 [H

z2 ]

0

ν
in 

[Hz]

FIGURE 4 | Left panel : effective response functions (ERF) of population

Eatt measured on-chip (see Figure 3). Each red lines represents an average
over neurons in Eatt. Different red lines represent different probabilistic
assignments of connectivity (see text). Also indicated is the range of activities
obtained from individual neurons (shaded red area). Intersections between

ERF and the diagonal (black line) predict fixed points of the network dynamics
(stable or unstable). Note that these predictions are approximate (inset). Right
panel : “Double-well” energy landscape derived from the ERF (see text for
details). Energy minima (maxima) correspond to stable (unstable) fixed points
of the network dynamics.
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FIGURE 5 | Firing rates of Eatt and Ebkg in response to multiple input

transients (“kicks,” central figure). Excitatory (inhibitory) transients are
created by square-pulse increments of E1AER (IAER) activity. The timing of input
transients is illustrated beneath the central figure: 0.5 and 1.5 s mark the
onset of sub-threshold (νE1 = 34 Hz) and supra-threshold (νE1 = 67, 84, or
115 Hz) excitatory “kicks,” 3 and 4 s that of sub- and supra-threshold inhibitory
“kicks.” Sub-threshold “kicks” merely modulate activity of the current
meta-stable state. Supra-threshold “kicks” additionally trigger a transition to

the other meta-stable state. All observations are predicted by the analysis of
effective response functions (ERFs, insets on either side of central figure)
measured on-chip. In the absence of input transients, the default ERF
predicts two meta-stable fixed points, one “low” state (blue dot, bottom
insets) and one “high” state (blue dot, top right inset). In the presence of
input transients, the ERF is altered (orange, red, and burgundy curves, top-left
inset) and the position of the meta-stable “high” state is shifted (orange, red,
and burgundy dots).
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destabilized (or even eliminated) and the system is forced toward
the “high” state (with ν > 170 Hz, Figure 5, top-left inset).
Thus, the recurrent interactions of the network (far more than
the external “kick” itself) drive the network to a “high” state.
After the “kick,” the original ERF is once again restored. How-
ever, as the network now occupies a different initial position,
it relaxes to its “high” meta-stable state (Figure 5, top right
inset), thereby preserving a “working memory” of the earlier
“kick.”

In a similar manner, inhibitory“kicks”can induce a return tran-
sition to the “low” meta-stable state. In Figure 5, a weak inhibitory
“kick” was applied at t = 3 s and a strong inhibitory “kick” at
t = 4 s. The former merely shifted the “high” state and therefore
left the “working memory” intact. The latter was sufficiently hefty
to destabilize or eliminate the “high” state, thus forcing the system
to return to the “low” state.

Figure 5 also illustrates the different behaviors of Eatt and Ebkg.
Throughout the experiment, activity of the background popula-
tion remains below 30 Hz. The highest level of Ebkg is reached while
the input from Eatt is strong, that is, while Eatt occupies its “high”
state. Differences between Eatt and Ebkg highlights, therefore, the
overwhelming importance of the different recurrent connectivity
in allowing for multiple meta-stable states.

The meta-stable states are robust against activity fluctuations
and small perturbations, a manifestation of the attractor prop-
erty. However, even in the absence of strong perturbations like the
above kicks, large spontaneous fluctuations of population activity
can drive the network out from an attractor state and into another,
as illustrated in the next section.

BISTABLE DYNAMICS
An important characteristic of attractor networks is their saltatory
and probabilistic dynamics. This is due to the presence of spon-
taneous activity fluctuations (mostly due to the finite numbers
of neurons) and plays an important functional role. Spontaneous
fluctuations ensure that the energy landscape around any meta-
stable state is explored and that, from time to time, the system
crosses an energy barrier and transitions to another meta-stable
state. The destabilizing influence of spontaneous fluctuations
is counter-balanced by the deterministic influence of recurrent
interactions driving the system toward a minimal energy state.
The stochastic dynamics of attractor networks is thought to be

an important aspect of neural computation. Below, we describe
how spontaneous transitions between meta-stable states may be
obtained in a neuromorphic hardware network.

Once again, we consider our network (Figure 1) with“low” and
“high” meta-stable states. In contrast to the “working memory”
experiments described above, we elevate and keep fixed E1 activity
to νE1 = 33 Hz. The additional excitation increases the amplitude
of spontaneous fluctuations such that meta-stable states are made
less stable and spontaneous transitions become far more frequent
(cf. double-well energy landscape in Figure 4, right panel).

Network activity was allowed to evolve spontaneously for
30 s and a representative time-course is illustrated in Figure 6.
The instantaneous firing rate of Eatt neurons (red curve) alter-
nates spontaneously between “low” and “high” states, spend-
ing comparatively little time at intermediate levels. The spik-
ing of individual neurons (blue raster) reveals subtle dif-
ferences between the two meta-stable states: in the “low”
state, activity is driven largely by external stimulation and
inter-spike intervals are approximately Poisson-distributed (coef-
ficient of variation CV = 0.82), whereas, in the “high” state,
activity is sustained by feedback and inter-spike intervals
are approximately Gaussian-distributed (CV = 0.29). In both
cases, the network maintains an asynchronous state as con-
firmed by the power spectra of the population activity (see
Figure 7).

The simultaneous evidences of a flat spectral density for high
ω together with the structure of the spectral resonances, centered
at multiples of ν, is consistent with established theoretical expec-
tations for a globally asynchronous state (Spiridon and Gerstner,
1999; Mattia and Del Giudice, 2002).

The measured asymptotic values lie slightly above their theo-
retical counterparts, suggesting that spikes of different neurons co-
occur a bit more frequently than expected. This is likely due to the
strength of the synaptic efficacies as they were determined based
on the constraints discussed in the Methods (D’Andreagiovanni
et al., 2001).

The origin of spontaneous fluctuations is well understood:
they are due to a combination of noisy external input, of the
randomness and sparseness of synaptic connectivity, and of the
finite number of neurons in the network (van Vreeswijk and Som-
polinsky, 1996; Brunel and Hakim, 1999; Mattia and Del Giudice,
2002).
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FIGURE 6 | Spontaneous activity of Eatt neurons: population average

(red curve) and 48 individual neurons (blue spike raster). Excitatory
input from E1AER was raised to ν = 33 Hz, such as to make less stable the
low activity state. The population activity jumps spontaneously between

meta-stable “low” and “high” states. This results in a bimodal
distribution of activity, as shown in the histogram on the right. Note that
the average activity of individual neurons differs markedly, due to
mismatch effects.
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The balance between spontaneous fluctuations and determin-
istic energy gradients provides a tunable “clock” for stochas-
tic state transitions. In the present example, the probability of
large, transition-triggering fluctuations is comparatively low, so
that meta-stable states persist for up to a few seconds. Note
that this time-scale is three orders of magnitude larger than
the time-constants implemented in circuit components (e.g.,
1/β = 5 ms).

In spite of the comparatively slow evolution of the collective
dynamics, transitions between meta-stable states complete, once
initiated, within milliseconds. This is due to the massive positive
feedback, with each excitatory neuron receiving spikes from 57
(48 · 0.6 · 2; see Figure 1) other excitatory neurons. This feedback
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FIGURE 7 | Power spectra of the firing activity of population Eatt in the

“high” (upper panel) and the “low” (lower panel) stable states.

ensures that, once the energy barrier is crossed, activity rapidly
approaches a level that is appropriate to the new meta-stable state.

TRANSITION LATENCIES
The experiments described so far exemplify two escape mecha-
nisms from a meta-stable state: a deterministic escape triggered by
external input and a probabilistic escape triggered by spontaneous
fluctuations which is consistent with Kramers’ theory for noisy
crossings of a potential barrier (Risken, 1989).

We examined the distribution of “escape times” following an
onset of external stimulation. The protocol adopted was similar to
Figure 5, but involved only a single input transient (“kick”) last-
ing for 3 s. Although we studied transitions in both directions, we
only report our findings for transitions from the low spontaneous
state to the high meta-stable state induced by stimulation (see top-
left inset in Figure 5). In this direction, the transition latency (or
“escape time”) was defined as the time between stimulus onset and
Eatt activity reaching a threshold of ν = 50 Hz.

Representative examples of the evolution of activity in response
to weaker (νE1 = 34 Hz) or stronger (νE1 = 41 Hz)“kicks”are illus-
trated in the central panel of Figure 8. It is evident that weaker
“kicks”result in longer, more broadly distributed latencies, whereas
stronger “kicks” entail shorter, more narrowly distributed laten-
cies. The respective latency distributions produced by weaker and
stronger “kicks” are shown in the left and right panels of Figure 8
(as well being superimposed over the central panel).

The difference between the two latency distributions reflects the
difference between the underlying mechanism: a stronger “kick”
disrupts the energy landscape and eliminates the“low”meta-stable
state, forcing a rapid and quasi-deterministic transition, whereas a
weaker “kick” merely modifies the landscape to increase transition
probability.

TUNING FEEDBACK
So far, we have described the network response to external
stimulation. We now turn to examine an internal parameter – the
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transitioning from the “low” spontaneous state to the “high” stable
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νE1 = 24 Hz). Blue tracks correspond to weaker (νE1 = 34 Hz), red tracks to
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activity reaching ν = 50 Hz). Stronger stimulation results in short, narrowly
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level of recurrent feedback – which shapes the network’s dynamics
and endows it with self-excitability. We will show that the network
response to an external stimulus can be modulated quantitatively
and qualitatively by varying internal feedback.
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FIGURE 9 |Transition latency and recurrent connectivity. Latency of
transition from low spontaneous state of Eatt activity to its high
meta-stable state induced by stimulation (same protocol as Figure 8), as
a function of the recurrent connectivity of population Eatt (fraction of
potentiated synapses) and of the strength of external stimulation (νE1

increasing from a baseline of 24 Hz to an elevated level of either 34, 36,
or 41 Hz (blue, green, and red curves, respectively).

The present experiments were conducted with a network sim-
ilar to that of Figure 1, except that the fraction f of potenti-
ated synapses (among recurrent Eatt synapses) was varied in the
range 0.65–1.0. The results are summarized in terms of a bifur-
cation diagram (the set of meta-stable states as a function of
f; Figure 10) and in terms of the average transition latencies
(Figure 9).

To establish a bifurcation diagram (analogous to the theoreti-
cal one introduced in Amit and Brunel, 1997), we used a protocol
similar to Figure 5 and measured the firing of Eatt after the end
of a strong “kick” (νE1 = 41 Hz, duration 0.5 s). The results are
illustrated in Figure 10. For low levels of recurrency (f < 0.8),
only the “low” meta-stable state is available and after the “kick”
Eatt activity rapidly returns to a level below 0.5 Hz (blue curve).
For high levels of recurrency (f ≥ 0.8), the network exhibits both
“high” and “low” meta-stable states in the absence of stimulation.
Just beyond the bifurcation point (f ∼ 0.8) the high meta-stable
state is about 100 Hz (red points); due to the finite-size effect after
a variable amount of time, the network spontaneously returns
to the “low” state (blue curve). Both the activity level and the
stability (persistence time) of the “high” state increase with the
degree of recurrency, as expected. Indeed, the sigmoidal shape
of the effective transfer function and the height of the barrier
in the energy landscape become more pronounced (see insets in
Figure 10).

In addition to the qualitative effect of establishing a “high”
meta-stable state, stronger feedback influences the network also in
quantitative ways. One such quantitative effect is expected to be an
acceleration of response times to external stimulation. To demon-
strate this, we return to the protocol of Figure 8 and measure
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FIGURE 10 | Bifurcation diagram. Central panel : measured Eatt activity
(mean and SE) of meta-stable states, as a function of the strength of recurrent
connectivity (fraction f of potentiated synapses in recurrent Eatt connectivity).
A “low” meta-stable state (blue line and error bars) exists for all levels of
recurrency. A “high” meta-stable state appears for strong levels of recurrency
(bifurcation point ≈0.77). Side panels: all observations are predicted by the

analysis of effective response functions (ERFs, insets on either side)
measured on-chip. For weak recurrency of f = 0.75, the ERF predicts a “low”
meta-stable state (blue dot, left inset), for intermediate recurrency of f = 0.9,
it predicts a “low” and a “high” state (blue and red dots, bottom right inset),
and for high recurrency of f = 1, it predicts that “low” and “high” states are
separated more widely (blue and red dots, top right inset).
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transition latencies (“escape times”) in response to three levels of
external stimulation (νE1 = 34, 36, and 41 Hz). The dependence
of transition latencies on the strength of recurrency is shown in
Figure 9.

As expected, the responsiveness of the network to external stim-
ulation can be tuned over a large range of latencies by varying the
strength of recurrent feedback.

It is also noted that the sensitivity of the transition latencies to
f decreases as the external stimulus increases (compare the slopes
of the three curves in Figure 9).

BASINS OF ATTRACTION
The “basin of attraction” of a given attractor is defined as the set
of all the initial states from which the network dynamics sponta-
neously evolve to that attractor. The size of the basins of attraction
established the “error correction” ability of the network: a stim-
ulus implementing a “corrupted” version of the neural activities
in the attractor state leads, provided it is in the basin of attrac-
tion, to a fully restored attractor state. In other words, the network
behaves as a “content addressable memory” in the sense suggested
by Hopfield (1982).

Specifically, we define a “corruption level” C and deliver a tran-
sient external input (“kick”) to a subset of 48(1 − C) neurons in
Eatt and a subset of 48C neurons in Ebkg. Accordingly, for C = 0,
a “kick” is delivered exclusively to Eatt neurons and, for C = 1,
the “kick” impacts only Ebkg neurons. This ensures that for differ-
ent levels of corruption (i.e., different distances from the attractor
states in which all 48 neurons in Eatt are highly active) the total
afferent input to the network is kept constant. Once the input
transient has passed, the network is again governed by its intrinsic
dynamics. If these dynamics restore the “high” meta-stable state of
Eatt (which also entails “low” activity in Ebkg), we say that the net-
work has“recognized”the corrupted input pattern. If the dynamics
lead to some other activity pattern, we speak of a “recognition
failure.”

A representative example of the network’s response to a “kick”
of 500 ms duration and a corruption level C = 0.5 is illustrated
in Figure 11. The instantaneous activities of the stimulated and
non-stimulated subsets of Eatt neurons (orange and gray curves,
respectively) are seen to be very similar, except during a short
period following the onset of the “kick.” During this period, the
activity of non-stimulated neurons may lag slightly behind that of
the stimulated neurons, by the time it takes for them to be recruited
by the stimulated ones.

With this protocol, we measured “recognition” probability as a
function of corruption level C (Figure 12). For low values of C,
the network recognizes the “corrupted” input reliably and enters
into the “high” attractor state.

For values of C above 0.65, the “recognition” probability falls
below 25%, so that the network fails to recognize the input pattern
in more than 75% of the trials. The sharp drop of the sigmoidal
P(C) curve marks the boundary of the basin of attraction around
the “high” state. Note that this curve depends also on the strength
of the external input transient (not shown).
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FIGURE 11 | Correction of “corrupted” input pattern. An external
stimulus (increase of νE1 from 24 to 43 Hz) is applied selectively to half of Eatt

and half of the Ebkg neurons (corruption level C = 0.5). The network corrects
this “corrupted” input and transitions into the “high” meta-stable state with
both stimulated and non-stimulated Eatt neurons (orange and gray curves,
respectively). Activity of Ebkg neurons remains below 30 Hz (not shown).
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FIGURE 12 | Basin of attraction: recognition probability P, as a function

of input corruption C, measured with the protocol of Figure 11. For
corruption levels C > 0.65, P falls below 25%, which implies that
recognition fails in more than 75% of the trials.

DISCUSSION
We show how bistable attractor dynamics can be realized in silicon
with a small network of spiking neurons in neuromorphic VLSI
hardware. Step-by-step, we describe how various emergent behav-
iors can be “designed into” the collective activity dynamics. The
demonstrated emergent properties include:
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• asynchronous irregular activity,
• distinct steady-states (with “low” and “high” activity) in a

sub-population of neurons,
• evoked state transitions that retain transient external input

(“working memory”),
• self-correction of corrupted activity states (“basin of attrac-

tion”),
• tunable latency of evoked transitions,
• spontaneous state transitions driven by internal activity fluctu-

ations,
• tunable rate of spontaneous transitions.

Standard theoretical techniques predict the single-neuron response
function, which in turn determines the equilibrium states of the
collective dynamics under the “mean-field” approximation (see
Section Mean-field theory). In the case of a multi-population
network, an Effective Response Function (ERF) for one or more
populations of interest can be extracted with the help of further
approximations.

The ERF provides the central hinge between network architec-
ture and various aspects of the collective dynamics. It predicts
quantitatively the number and location of steady-states in the
activity of selected populations, both for spontaneous and for
input-driven activity regimes. In addition, within the scope of
the relevant approximations, the ERF describes qualitatively the
energy landscape that governs the activity dynamics. Accordingly,
it also gives an indication about kinetic characteristics such as
transition latencies.

Establishing a proper correspondence between theoretical
parameters and their empirical counterparts in an analog, neu-
romorphic chip is fraught with difficulties and uncertainties. For
this reason, we do not stretch theory to the point of directly pre-
dicting the network’s behavior in silicon (in contrast to the route
taken by Neftci et al., 2011). Instead, we implement the theoretical
construction of the ERF in hardware and establish this impor-
tant function empirically. The ERF so obtained encapsulates all
relevant details of the physical network, including effects due to
mismatch, violation of the diffusion limit, etc. Thus, we rely on
an effective description of the physical network, not on a tenu-
ous correspondence to an idealized network. Equipped with these
tools (mean-field theory, characterization scripts, empirical ERF),
our neuromorphic hardware becomes an easily controllable and
reliable system on which we show how the concepts of mean-
field theory may be used to shape various aspects of the network’s
collective dynamics.

WIDER OBJECTIVES
The computational possibilities of neural activity dynamics are
gradually becoming better understood. Our wider objective is to
translate neuroscientific advances in this area to neuromorphic
hardware platforms. In doing so, we hope to build step-by-step the
technological and theoretical foundations for biomimetic hard-
ware devices that, in the fullness of time, could be integrated
seamlessly with natural nervous tissues.

Reverberating states of neocortical activity, also called “attrac-
tor states,” are thought to underlie various cognitive processes
and functions. These include working memory (Amit and
Brunel, 1997; Del Giudice et al., 2003; Mongillo et al., 2003),

recall of long-term memory (Hopfield, 1982; Amit, 1995; Has-
selmo and McClelland, 1999; Wang, 2008), attentional selec-
tion (Deco and Rolls, 2005), rule-based choice behavior (Fusi
et al., 2007; Vasilaki et al., 2009), sensory integration in deci-
sion making (Wang, 2002; Wong et al., 2007; Furman and
Wang, 2008; Marti et al., 2008; Braun and Mattia, 2010), and
working memory in combination with delayed sensory decision
making (Laing and Chow, 2002; Machens et al., 2005), among
others.

Dynamical representations involving attractor states are not
restricted to the “point attractors” we have considered here (Des-
texhe and Contreras, 2006; Durstewitz and Deco, 2008). For
example, there is evidence to suggest that “line attractors” may
underlie some forms of working memory and path integration
(Machens et al., 2005; Trappenberg, 2005; Chow et al., 2009).
Chaotic attractors have long been proposed to subserve perceptual
classification in certain sensory functions (Skarda and Freeman,
1987). More generally, both spontaneous and evoked activity in
mammalian cortex may well be characterized by “attractor hop-
ping” at multiple spatial and temporal scales (Grinvald et al., 2003;
Shu et al., 2003; Fox and Raichle, 2007; Durstewitz and Deco, 2008;
Ringach, 2009).

Thus, the stochastic dynamics of a multi-attractor system offer
both a comparatively stereotyped, low-dimensional representation
of high-dimensional inputs, and a statistical distribution of possi-
ble responses. This motivates the emphasis that we have placed on
the stochastic aspects of the collective dynamics of our hardware
network. The classification of sensory events at multiple spatial
and temporal scales might require “nested attractor” dynamics in
a neuromorphic VLSI device. In a “nested” scenario, reverberating
activity patterns spanning multiple spatial and temporal scales are
generated by many individually bistable attractor modules inter-
acting in a hierarchical network architecture (Gigante et al., 2009;
Braun and Mattia, 2010).

The energy landscape of a “nested” system would be consider-
ably more complex than the one described here (Braun and Mattia,
2010). It should be imagined with multiple high-dimensional val-
leys within valleys, ridges, and saddles permitting state transitions.
To match the sensory time-scales of interest, the dynamics of such
a system could be tuned in much the same way as the simplistic
attractor system of the present work (i.e., by adjusting ERFs and
noise levels).

Yet another challenging perspective is to build attractor rep-
resentations in an adaptive manner, by means of activity-driven
plasticity. Even at the level of theory, surprisingly few studies have
addressed this important issue (Amit and Mongillo, 2003; Del
Giudice et al., 2003). The 16,384 synapses of the FLANN chip
exhibit a bistable, spike-driven plasticity (Fusi et al., 2000) that, in
principle, would be well suited for this purpose (Del Giudice et al.,
2003). Although the present study did not make use of this feature,
we consider it imperative to face this challenge with neuromor-
phic hardware and have taken some initial steps in this direction
(Corradi, 2011).

STATE OF THE FIELD
Neuromorphic engineering is a broad and active field seeking to
emulate natural neural processes with CMOS hardware technol-
ogy for robotic, computational, and/or medical applications.
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Recently, two groups have implemented “continuous attractor”
dynamics in neuromorphic VLSI (Neftci et al., 2010; Massoud
and Horiuchi, 2011). The two networks in question (comprising
32 and 124 neurons, respectively) realized a continuous-valued
memory of past sensory input by means of excitatory-inhibitory
interactions between nearest neighbors. The resulting winner-
take-all dynamics permitted the authors to represent and update
a sensory state with incremental input (Trappenberg, 2005). The
hardware used by these groups is comparable to ours in that it
combines fixed synapses with the neuronal circuit of Indiveri et al.
(2006).

The main difference to our study concerns the handling of
noise and mismatch. To minimize drift in the continuous attrac-
tor dynamics, Massoud and Horiuchi (2011) suppress finite-size
noise with a synchronous and regular firing regime, while authors
of Neftci et al. (2010) propose an initial precise calibration phase
to reduce the mismatch that greatly affects the performance of
their system. In contrast, we take advantage of both mismatch and
finite-size noise to create a stochastic dynamics. As we have shown,
the time-scale of this dynamics can be finely controlled by setting
the balance between deterministic forces (energy landscape) and
stochastic factors (finite-size noise).

To our knowledge, there have been no further demonstrations
of self-sustained activity and working memory with neuromor-
phic VLSI hardware. Other neuromorphic applications concern
biomimetic sensors such as “silicon cochleas” (Chan et al., 2007;
Hamilton et al., 2008; Wen and Boahen, 2009) or “silicon retinas”
(Boahen, 2005; Zaghloul and Boahen, 2006; Lichtsteiner et al.,
2008; Kim et al., 2009; Liu and Delbruck, 2010), implementations
of linear filter banks (Serrano-Gotarredona et al., 2006), receptive
field formation (Choi et al., 2005; Bamford et al., 2010), echo-
localization (Shi and Horiuchi, 2007; Chan et al., 2010), or selective
attention (Indiveri, 2008; Serrano-Gotarredona et al., 2009).

SCALING UP
As mentioned, our wider objectives include spiking neural net-
works that operate in real-time and that can be interfaced with
living neural tissues. At present, it is not evident which technolog-
ical path will lead to the network sizes and architectures that will
eventually be required for interesting computational capabilities.
However, neuromorphic VLSI is a plausible candidate technology
that offers considerable scope for further improvement in terms
of circuits, layout, autonomy, and silicon area. Multi-chip archi-
tectures with a few thousand spiking neurons and plastic synapses
may come within reach in the near future (Federici, 2011). Such
networks could accommodate multiple attractor representations
and complex energy landscapes. We note here in passing that
moving to larger networks would imply softer constraints on
the choice of the synaptic connectivity (see Methods), thereby

allowing more biologically plausible firing rates for the higher
meta-stable states.

Several consortia are building special-purpose platforms that in
principle could able to host large, attractor-based networks. These
include the neuromorphic Neurogrid (Boahen, 2007) system,
which aims to simulate up to one million neurons in real-time,
the BrainScaleS project (Meier, 2011), which relies on wafer scale
technology and promises 160,000 neurons with 40 million plas-
tic synapses operating several thousand times faster than natural
networks. In addition, the SpiNNaker project (Furber and Brown,
2009) proposes a fully digital, ARM-based simulation of approx-
imately 20,000 Izhikevich neurons and spike-time-dependent
synapses and the EU SCANDLE project, which uses a single, off-
the-shelf FPGA to accommodate one million neurons (Cassidy
et al., 2011). Finally, a fully digital VLSI chip has recently been pre-
sented by the DARPA-funded SyNAPSE project. Designed with
45 nm technology, it comprises 256 neurons and 65,000 plastic
synapses (Merolla et al., 2011; Seo et al., 2011).

Of course, a fully digital implementation would quietly aban-
don the original vision of a “synthesis of form and function” in
neuromorphic devices (Mahowald, 1992). Nevertheless, in view
of the rapid progress in digital tools and fabrication processes,
this may well be the most appropriate route for most applications.
However, for applications requiring an implantable device oper-
ating in real-time, a mixed-signal approach founded on analog
CMOS circuits seems likely to remain a viable alternative.

CONCLUSION
We demonstrate, with a network of leaky integrate-and-fire neu-
rons realized in neuromorphic VLSI technology, that two distinct
meta-stable states of asynchronous activity constitute attractors of
the collective dynamics. We describe how the dynamics of these
meta-stable states – an unselective state of low activity and a selec-
tive state of high activity – can be shaped to render transitions
either quasi-deterministic or stochastic, and how the character-
istic time-scale of such transitions can be tuned far beyond the
time-scale of single-neuron dynamics. This constitutes an impor-
tant step toward the flexible and robust classification of natural
stimuli with neuromorphic systems.
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