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Abstract 

Background:  The validity of ratings of perceived exertion (RPE) during aerobic training is well established; however, 
its validity during resistance exercise is less clear. This meta-analysis used the known relationships between RPE and 
exercise intensity (EI), heart rate (HR), blood lactate (BLa), blood pressure (BP) and electromyography (EMG) to deter-
mine the convergent validity of RPE as a measure of resistance exercise intensity and physiological exertion, during 
different forms of resistance exercise. Additionally, this study aims to assess the effect of several moderator variables 
on the strength of the validity coefficients, so that clearer guidance can be given on the use of RPE during resistance 
exercise.

Methods:  An online search of 4 databases and websites (PubMed, Web of Science SPORTDiscus and ResearchGate) 
was conducted up to 28 February 2020. Additionally, the reference lists of the included articles were inspected manu-
ally for further unidentified studies. The inclusion criteria were healthy participants of any age, a rating scale used to 
measure RPE, resistance exercise of any type, one cohort receiving no other intervention, and must present data from 
one of the following outcome measures: EI, HR, BP, EMG or BLa. Weighted mean effect sizes (r) were calculated using 
a random-effects model. Heterogeneity was assessed using the τ2 and I2 statistics. Moderator analysis was conducted 
using random-effects meta-regression.

Results:  One-hundred and eighteen studies were included in the qualitative synthesis, with 75 studies (99 unique 
cohorts) included in the meta-analysis. The overall weighted mean validity coefficient was large (0.88; 95% CI 
0.84–0.91) and between studies heterogeneity was very large (τ2 = 0.526, I2 = 96.1%). Studies using greater workload 
ranges, isometric muscle actions, and those that manipulated workload or repetition time, showed the highest valid-
ity coefficients. Conversely, sex, age, training status, RPE scale used, and outcome measure no significant effect.

Conclusions:  RPE provides a valid measure of exercise intensity and physiological exertion during resistance exercise, 
with effect sizes comparable to or greater than those shown during aerobic exercise. Therefore, RPE may provide an 
easily accessible means of prescribing and monitoring resistance exercise training.

Trial Registration The systematic review protocol was registered on the PROSPERO database (CRD42018102640).
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Key Points

•	 Ratings of perceived exertion is a useful and valid 
measure of resistance exercise intensity.

•	 Validity coefficients were greater in studies that 
manipulated workload or repetition time compared 
to studies that manipulated the number of repeti-
tions or the rest interval time.

•	 Participant sex, age, training status, and the RPE 
scale used had no significant effect on RPE validity.

Background
Ratings of perceived exertion have long been used as 
a measure of exercise intensity during aerobic exer-
cise [1], with many scales designed and validated for 
use during exercise of this type. There is a substantial 
body of evidence to suggest that RPE is a valid meas-
ure of exercise intensity and physiological exertion dur-
ing cardiovascular exercise [2] and team sport training 
and competition [3]. However, the evidence to support 
the use of RPE during resistance exercise is less clear 
and to date no meta-analysis has investigated the valid-
ity of RPE during resistance exercise. It has been sug-
gested that it is important to design and validate scales 
for specific populations, exercise types and modalities 
[4], and that caution should be taken when using RPE 
scales with modalities and materials other than those 
they have been validated for [5]. It has also been pro-
posed that for an RPE scale to be considered a valid 
measure for use in the clinical and/or health-fitness 
setting, it must demonstrate both concurrent and con-
struct validity, evidenced by strong positive correlations 
with physiological variables (e.g., HR) and a previously 
validated criterion scale, respectively [6]. Despite this, 
resistance exercise studies and interventions commonly 
use RPE scales that were not designed or validated for 
the types of exercise used.

As the use of RPE during resistance exercise has 
become more widespread, there is a growing body of 
evidence for the validity of various RPE scales during 
resistance exercise, including the Borg 6–20 [7], the 
OMNI-RES [8], and the Borg CR-10 [9] scales. How-
ever, due to inherent differences in study design and the 
unavoidable limitations in every study, validity results 
from individual studies cannot be taken as a true repre-
sentation of the validity of RPE [2]. This is highlighted 
by the wide range of reported validity coefficients 
within the current literature, with correlation magni-
tudes reported ranging from r = 0.52 [10] to r = 0.995 
[11] during isometric elbow flexion alone. Therefore, a 
synthesis of the body of evidence from various forms of 

resistance exercise is required to provide a true under-
standing of the use of RPE during this specific type of 
exercise.

Previous studies have suggested that there are many 
factors that could affect the validity of RPE during 
exercise, and therefore could explain some of the het-
erogeneity in the results from individual studies. Dur-
ing cardiovascular exercise, Chen et  al. [2] assessed the 
effect of several study and RPE characteristics on the 
strength of the RPE and exercise intensity relationship, 
including: participant sex, fitness/activity level, RPE 
scale used, type of exercise (e.g. running, swimming), 
exercise protocol (e.g. continuous, discontinuous or 
maximal, submaximal), and RPE mode (i.e. production 
mode, where the participants are required to manipu-
late the exercise intensity to achieve a specific RPE score; 
or estimation mode, where the participant is required 
to estimate their perceived exertion while working at 
a predetermined exercise intensity). The findings of the 
Chen et  al. [2] meta-analysis suggested that the highest 
validity coefficients were achieved when highly fit, male 
participants, were maximally exerted, during an unusual 
task, and when a 15-point Borg scale was used (rather 
than 21-point, 9-point or Category-Ratio Borg scales). 
These authors [2] reported mean validity coefficients of 
between r = 0.57 and 0.72 depending on the outcome 
measure were used, and while outcome measure did not 
have a significant effect on the validity coefficients, there 
were contradictory findings regarding the effects of mod-
erators depending on which outcome measures used. For 
example, this study [2] showed that when heart rate (HR), 
blood lactate (BLa) and VO2 were used as outcome meas-
ures, RPE in production mode produced significantly 
higher validity coefficients; however, when ventilation 
rate was used as the outcome measure, estimation mode 
produced significantly higher correlations. Likewise, 
while the highest validity coefficients were obtained from 
male participants, when BLa was used as the outcome 
measure, female participants produced significantly 
higher validity coefficients.

Different experimental designs have produced con-
flicting findings when using RPE in a resistance exercise 
setting. Research examining the effect of age on RPE 
response has suggested that older people require a higher 
torque to elicit the same RPE score as younger individu-
als in production mode [12]. Likewise, it has been shown 
that younger individuals may produce higher RPE scores 
than older individuals, for the same intensities, dur-
ing estimation mode tasks [13]. While conversely, other 
studies have suggested that there is no difference in RPE 
score due to age [14, 15]. Similar contradictory results 
are found for the effect of sex, with some studies showing 
no differences in RPE based on sex [16, 17], while others 
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show females report higher RPE scores during upper and 
lower body exercise [9].

Ratings of perceived exertion can be accurate in both 
estimation [18–20], and production mode [13, 20, 21] 
during resistance exercise, but it is not currently clear 
whether one produces greater validity coefficients than 
the other. Additionally, it is possible that upper body 
exercises may produce higher RPE results than lower 
limb exercises [9], and that RPE ratings that focus on the 
specific active muscle group produce higher RPE results 
than those that take into account overall or whole-body 
exertion [22]

These large differences in validity coefficients, contra-
dictory findings relating to moderator variables, and the 
results from previous studies using other forms of exer-
cise (e.g., cardiovascular) confirm the need for quantita-
tive assessment of the validity of RPE during resistance 
exercise and a greater understanding of which factors, if 
any, affect the validity of RPE during this type of exercise. 
This clarity would allow future studies and exercise inter-
ventions to use appropriate RPE scales and adapt their 
protocols to best utilise RPE depending on the exercise 
type and participant characteristics. Therefore, this study 
aims to: (1) conduct a systematic review and meta-anal-
ysis to collate the current findings and assess the validity 
of RPE during resistance exercise, and (2) perform mod-
erator analysis to examine which participant, exercise, 
RPE scale and study design characteristics may affect the 
validity of RPE during resistance exercise.

Methods
Search Strategy
This systematic review was conducted following the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. The review protocol was 
registered with the International Prospective Register of 
Systematic Reviews (PROSPERO) and was last updated 
on 15 June 2020 (registration number CRD42018102640).

A systematic computer-based literature search, end-
ing 28/02/2020, was conducted using the following data-
bases and websites: PubMed, Web of Science, SPORT 
Discus and Research Gate. Three levels of search terms 
were used; Level 1: RPE OR perceived OR ‘perceived 
exertion’ OR ‘perceived effort’ OR exertion OR effort OR 
perception; Level 2: intensity OR ‘exercise intensity’ OR 
‘heart rate’ OR HR OR ‘blood pressure’ OR BP OR EMG 
OR lactate OR workload OR work OR load; and level 3: 
concentric OR eccentric OR isometric OR resistance OR 
resistive OR ‘resistance exercise’ OR ‘concentric exercise’ 
OR ‘eccentric exercise’ OR ‘isometric exercise’. Searches 
were conducted for level 1 AND level 2 AND/OR 3.

The reference lists of original studies and reviews 
were also examined to identify any additional articles 

of interest. Where the researchers were unable to gain 
access to the full research article, corresponding authors 
were contacted to ask for a copy of the paper; two full 
texts were received for evaluation [23, 24]. Where pos-
sible, key authors in this field were contacted, to ask for 
relevant unpublished or in-press data. Additionally, a 
call for unpublished or in-press data was also placed on 
Research Gate, which yielded one response [25]. Finally, 
studies that failed to present the data required for the 
quantitative analysis, but otherwise met the eligibility 
criteria (“Eligibility Criteria” section), were sent a request 
for the missing data; one author replied to this call [26].

Retrieved studies were downloaded to EndNote X8 
(Thomson, Reuters, Carlsbad, California, USA) and 
duplicates were removed. The titles and abstracts of the 
retrieved studies were screened against the eligibility 
criteria by two independent reviewers (JL and JS). After 
this initial assessment, the full texts of papers deemed to 
meet the eligibility criteria were then assessed using the 
same criteria, by the same two independent reviewers. 
Any conflicts were resolved by a third reviewer (JW).

Eligibility Criteria
The eligibility criteria for inclusion in qualitative synthe-
sis were: (1) Only original research articles were included. 
(2) Studies must use at least one group of healthy partici-
pants. ‘Healthy’ was defined as having no injury or illness 
that could affect the participant’s performance, having no 
clinical diagnosis of any condition or dysfunction, and 
were not taking any medication that could affect exer-
cise performance or cardiovascular function; there were 
no age restrictions on the participants used. (3) Studies 
must have used a resistance exercise modality, defined 
as a systematic series of exercises that cause muscles 
to work or hold against an applied force or weight [27]; 
dynamic, eccentric only, concentric only, isometric, and 
isokinetic exercises were all acceptable. (4) Data must be 
presented for at least one group that did not receive any 
confounding interventions e.g., supplementation. (5) A 
rating scale must have been used to measure perceived 
exercise intensity, exertion, or discomfort. (6) Only stud-
ies written in English could be accepted. There were no 
restrictions on publication date, and un-published or 
‘grey’ literature, for example theses and conference pro-
ceedings were accepted.

For inclusion in the quantitative (meta) analysis, all of 
the qualitative synthesis criteria must have been met and 
then additionally: (7) Studies must have presented one 
of the following outcome measures: exercise intensity 
(EI), HR, BP, EMG or BLa. In this study, EI is defined as 
the interaction of workload, number of sets, number of 
repetitions, repetition time and rest time (Fig.  1); thus, 
EI can be modified by changing one or more of these 
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variables. (8) If using a direct measure of EI, there must 
have been an objective change between trials/conditions; 
for example, studies that increased load and decreased 
repetitions to match tonnage/volume load between con-
ditions, were not included in the quantitative analysis. (9) 
Data must have been presented in one of the following 
forms for RPE and at least one of the physiological exer-
tion measures and/or EI: correlation or linear regression 
(r or r2 values) or means and standard deviation from two 
or more trials/conditions (e.g., time points or workloads).

Data Extraction and Coding
Study eligibility assessment, risk of bias rating and data 
extraction/coding were conducted independently by 
two reviewers (JL and JS). All data were extracted and 
coded onto a custom Excel spreadsheet. Studies in the 
meta-analysis were coded for participant, exercise, RPE 
scale and study features (Table  1) to allow for meta-
regression analysis of possible moderators. The ‘muscle 
action’ used in each study was coded for studies using 
dynamic (i.e. a concentric followed by an eccentric con-
traction), concentric only, eccentric only, or isometric. 
The part of the body used in the exercise, or ‘body seg-
ment’ was also coded, i.e., an upper body, lower body, 
or whole-body exercise. Continuous and intermittent 
exercise ‘protocols’ were included and coded (e.g., an 
incremental test vs. a traditional weight training ses-
sion, respectively). Where a study actively adjusted 
workload between trials or conditions, the workload 
range (maximum workload − minimum workload) was 
also coded as percentage of one-repetition maximum 
(%1RM) or percentage of maximal voluntary contrac-
tion (MVC). Ratings of perceived exertion scale prop-
erties were recorded including: scale used, number of 
points on scale (e.g. the Borg 6–20 scale is a 15-point 
scale); fixed maximum, whether the scale has a fixed 
or open maximum (e.g. maximum = 10 or an open 
ended scale like the CR-10); rating mode (estimation 

or production); rating type, i.e. rating exertion in the 
active muscles only (RPE-AM), overall body (RPE-O), 
or whole session (S-RPE). Finally, if EI was manipu-
lated, the variables used to do so  were coded.

If a study did not report a variable or their result did 
not fit into one of the pre-defined categories, a code 
of ‘99’ was given and the study was excluded from the 
meta-regression analysis for that variable. Negative 
correlation r values for repetition velocity and RPE or 
knee joint angle and RPE, that represent increases in 
time under tension and workload, respectively, were 
included as positive values.

Information from studies fulfilling the qualitative 
inclusion criteria, but not the quantitative, were syn-
thesised using a narrative/thematic summary method.

Risk of Bias in Individual Studies
The risk of individual study bias in methodology or 
reporting was assessed, independently by JL and JS, 
using a 9-point scale designed in-house for RPE valid-
ity studies (see Additional file 1: Table S1). The 9 criteria 
assessed were: (1) participant eligibility criteria speci-
fied and fulfilled, (2) participant information given (must 
include: age, sex and training status), (3) a priori power 
analysis/sample size calculation completed, (4) exercise 
type (dynamic, isometric etc.) and movement (squat, 
bench press etc.) specified, (5) exercise intensity specified 
(including load, number of sets, number of repetitions, 
repetition time and rest interval time), (6) exact RPE scale 
used (including any modifications), (7) RPE instructions 
are specified, (8) anchoring procedures are specified, (9) 
a measure of repeatability/reliability was reported. Each 
criterion was given a score of 0 (indicating the criteria 
was not fulfilled or was not reported) or 1 (indicating the 
criteria was fulfilled and reported). A score of 0–3 was 
considered ‘high risk’, 4–6 was considered ‘moderate risk’, 
and 7–9 was considered to have a ‘low risk’ of bias.

Fig. 1  Exercise intensity variables and common terminology. Rep(s) = repetition(s), Workload could be substituted with force, torque or %MVC
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Data Analysis
Publication Bias
To examine the possibility of publication bias in this 
body of evidence, funnel plots of individual Fisher z val-
ues versus their corresponding standard errors were 
manually examined for signs of asymmetry (Additional 
file 1: Fig. S1). Duval and Tweedie’s trim and fill method 
was then used to look for missing studies and adjust 
the point estimate accordingly. Following this, the Clas-
sic fail-safe N was calculated to elucidate the number 
of unpublished non-significant studies that would be 
needed to make the result of this analysis non-statisti-
cally significant (p < 0.05). Finally, Orwin’s fail-safe N was 
calculated to examine how many unpublished studies 
would be required to reduce the calculated point esti-
mate to a ‘medium’ or ‘low’ effect size (r < 0.5 and r < 0.3 
respectively).

Synthesis of Results
All analyses were conducted using Comprehensive Meta-
Analysis software (version 3, Biostat Inc., Englewood, 
NJ, USA). Some of the eligible studies reported multiple 
outcome variables for the same participants. Therefore, 2 
separate random-effects meta-analyses were conducted; 
‘all measures’, which included any outcome variable, and 
‘EMG’ as the only outcome measure. All studies/cohorts 
reporting EI as the outcome measure were included 
in the main ‘all measures’ analysis therefore a separate 
analysis was not required. There were insufficient stud-
ies to conduct separate analyses for HR, BP or BLa, thus 
studies reporting these variables were only included in 
the ‘all measures’ analysis. For each analysis the mean 
sample size weighted correlation coefficient (r), 95% con-
fidence interval (CI), 95% prediction interval (PI), and 
significance level (p) were calculated. Between-study het-
erogeneity was assessed using standard Chi Squared test 
(Cochran’s test), τ2 and I2 statistics.

Sensitivity Analysis
Sensitivity analysis was conducted on each meta-analysis 
by systematically removing one study from the analysis to 
assess the effect on the point estimate. As no single study 
significantly affected the point estimate, all of the studies 
eligible for each analysis were included.

Moderator Analysis
Where statistically significant between-estimate het-
erogeneity was shown by the Chi Squared test (p < 0.01), 
meta-regression analysis was conducted to determine 
the effect of participant and study characteristics on the 
effect sizes reported. All moderators were assessed sep-
arately, using univariate regression analysis, and then 

Table 1  Participant and study features and coding

Coding, nominal coding used to allow analysis as a categorical variable. ERF, 
estimated repetitions to failure [28], Borg words, Borg CR-10 verbal cues with no 
numerical cues [29]. IES, Isometric Exercise Scale [30–32], NRS, Numerical Rating 
Scale [11, 18], PTD, perceived task duration [33], RES + RIR, resistance exercise 
specific RPE with repetitions in reserve [19]

Type Feature Categories Coding

Participant Age of participants Mean years Nos.

Sex of participants Male 1

Female 2

Both 3

Resistance training level Sedentary 1

 < 6 month 2

 > 6 month 3

 > 1 Year 4

Elite level 5

Exercise Muscle action Dynamic 1

Concentric 2

Eccentric 3

Isometric 4

Body segment Upper 1

Lower 2

Whole 3

Protocol Continuous 1

Intermittent 2

Workload range (% 1RM) Nos.

RPE Scale Scale used Borg 6–20 1

CR-10 2

OMNI-RES 3

ERF 4

Borg words 5

IES 6

NRS 7

PTD 8

RES + RIR 9

Number of points – Nos.

Fixed maximum Yes 1

No 2

Rating mode Estimation 1

Production 2

Rating type Active muscle 1

Overall 2

Sessional 3

Study Outcome measure EI 1

HR 3

EMG 3

BLa 4

EI variable manipulated Workload 1

No. reps 2

Rep time 3

Rest time 4



Page 6 of 19Lea et al. Sports Medicine - Open             (2022) 8:2 

used in combination to find the most effective multivari-
ate regression model. Individual moderators and models 
were assessed using the τ2 (unadjusted τ2 vs adjusted τ2) 
and R2 statistics.

Results
Literature Search
As seen in Fig.  2, the primary searches revealed 3268 
potentially relevant studies. After removing 2051 dupli-
cates, the titles and abstracts of 1217 studies were exam-
ined against the inclusion criteria. Of the 1217 studies, 
131 appeared to adhere to the inclusion criteria and as 
such the full texts were then reviewed. During full text 
review the reference lists of each article were exam-
ined for additional articles; 36 additional articles were 
identified, and these full texts were also examined. One 
hundred eighteen studies were eligible for inclusion in 
the qualitative analysis (49 excluded), with 75 studies 
included in the final quantitative analysis (Fig. 2).

Study Characteristics
Of the 75 studies eligible for the quantitative analysis, the 
overall risk of bias was ‘low’ in 44 studies and ‘medium’ 
in 31 studies. No studies included showed a ‘high’ risk 
of bias. Only 13 studies included/reported a measure of 
inter-session reliability. The primary analysis (all meas-
ures) included 75 studies [4, 5, 7–13, 15, 18, 19, 21, 22, 25, 
26, 28–85], with 99 unique cohorts (measures: EI = 89, 
HR = 2, EMG = 6, BLa = 2). These 99 cohorts contained a 
total of 2231 participants. The secondary analysis (EMG 
only) used 7 studies [11, 12, 41, 52, 53, 63, 82], containing 
8 unique cohorts with a total of 340 participants.

Publication Bias
There was some evidence of asymmetry in the funnel plot 
for the primary analysis; however, Duval and Tweedie’s 
trim and fill method did not add or remove any studies 
and made no adjustment to the point estimate. Addi-
tionally, the Classic fail-safe N revealed that 158,597 

Fig. 2  PRISMA flowchart illustrating the phases of the search and study selection
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non-significant studies would be required to render the 
analysis non-significant (p > 0.05). Likewise, the Orwin’s 
fail-safe N analysis showed that 108 and 268 studies, 
each with a correlation of r = 0.00, would be required to 
reduce the weighted mean effect size to medium (r < 0.5) 
and small (r < 0.3) respectively.

Primary Analysis: Validity of RPE Using All Outcome 
Measures
Figure  3 shows the validity coefficients and 95% confi-
dence intervals for each of the studies, and the weighted 
mean effect size for the relationship between RPE and 
the measure of EI or physiological exertion. The overall 
weighted mean validity coefficient was very large, r = 0.88 
(95% CI 0.84–0.91; 95% PI − 0.07 to 0.99; p < 0.001). There 
was significant between study heterogeneity (p < 0.001); 
total between study variance was τ2 = 0.526, with a high 
level of true/explainable between study heterogeneity 
(I2 = 96.1%).

Secondary Analysis: Validity of RPE with EMG 
as the Outcome Measure
As shown in Fig. 4, the weighted mean effect size for the 
8 cohorts reporting EMG as the outcome measure was 
also very large, r = 0.84 (95% CI 0.56–0.95; 95% PI − 0.68 
to 1.00; p < 0.001). As with the primary analysis, there 
was significant between study heterogeneity (p < 0.001), 
between study variance was τ2 = 0.624, and the level of 
true between study heterogeneity was high (I2 = 97.3%).

Moderator Variables and Meta‑Regression
As a significant level of explainable between study het-
erogeneity was present, meta-regression was used to 
examine which participant, exercise, scale, and study 
characteristics may affect the validity of RPE during 
resistance exercise. The secondary analysis contained 
data from 8 cohorts, 6 of which were included in the ‘all 
measures’ analysis. Additionally, the validity coefficients, 
variance and heterogeneity were comparable; therefore, 
moderator analysis was only conducted on the primary 
analysis (all measures).

Univariate regression analysis showed no statistically 
significant moderating effect of the participant charac-
teristics: age, sex or resistance training level (p < 0.05). 
Likewise, the exercise characteristics: body segment 
and protocol; scale characteristics: scale used, number 
of points, fixed maximum, rating mode and rating type; 
and the study characteristics: outcome measure and 
risk of bias, had no effect on the reported validity coef-
ficients (p < 0.05). Conversely, univariate analysis of 98 
cohorts showed that muscle action did significantly 
affect the validity coefficient, with isometric exercise giv-
ing significantly (p = 0.004) higher values than dynamic, 

concentric, or eccentric contractions (Fig. 5a). Likewise, 
analysis of the 56 cohorts that reported a quantifiable 
change in workload, showed that the workload range sig-
nificantly (p < 0.001) affected the validity coefficients with 
studies that used greater ranges showing larger effect 
sizes (Fig. 5b). The EI or physiological exertion measure 
used had no effect on the validity of RPE; however, for 
the cohorts using EI as the outcome measure (n = 83), 
manipulation of workload and repetition time showed 
significantly higher effect sizes (p < 0.001 and p = 0.002 
respectively) than manipulation of the number of repeti-
tions or the rest interval time (Fig. 5c).

Various multivariate regression models were built using 
the coded characteristics; workload range and EI variable 
showed collinearity and so could not be included in the 
same multiple regression models. The strongest model 
included: sex, rating type, and workload range. There 
were 50 unique cohorts that reported data for all 3 of 
these variables. This model explained 64% of the between 
study heterogeneity (R2 = 0.64), reducing the total 
between study variance from τ2 = 0.391–0.142. There was 
still a significant amount of variance not explained by the 
model (p < 0.001), and the amount of explainable variance 
was still high (I2 = 86.2%). The meta-regression equa-
tions for both the univariate and multivariate analyses are 
shown in Additional file 1: Table S2.

Discussion
RPE During Resistance Exercise
This is the first systematic review and meta-analysis to 
assess the validity of RPE as a measure of exercise inten-
sity during resistance exercise modalities. This study 
aimed to inform researchers, clinicians, athletes and 
coaches, so that RPE can be used more effectively in 
studies and interventions, by: (1) assessing the validity of 
RPE during resistance exercise, and (2) examining which 
participant, exercise, scale and study characteristics may 
affect the validity of RPE during this type of exercise. The 
results of this study demonstrate that RPE is a valid meas-
ure of resistance exercise intensity, with strong correla-
tions to EI, HR, EMG, and BLa giving a weighted mean 
validity coefficient of r = 0.88; therefore, RPE validity may 
be higher during resistance exercise than was previous 
shown for aerobic exercise [2] and during team sports [3]. 
The use of RPE in aerobic exercise is widespread, used 
by exercise professionals and recreational athletes alike; 
however, the use of RPE, especially amongst recreational 
athletes, in resistance exercise is not yet as common. Our 
results suggest that this is a tool that is both accurate and 
effective in the resistance exercise setting, and as such 
could be of great benefit if used more widely to optimise 
programming.



Page 8 of 19Lea et al. Sports Medicine - Open             (2022) 8:2 

Fig. 3  Forest plot showing the weighted validity coefficients (solid squares) and 95% confidence intervals (solid horizontal lines) for each 
study included in the ‘all measures’ analysis. The bottom row indicates the overall random-effects validity coefficient (solid diamond). Key study 
characteristics are presented next to each study; the ‘–’ symbol indicates data that were unavailable
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Participant Characteristics
Age
The results of the meta-regression analysis showed 
that the age of participants did not statistically signifi-
cantly affect the validity of RPE (p < 0.05). While results 
from different age groups may show statistically similar 
effect sizes (validity coefficients), this does not discount 
the possibility that there are consistent differences in 
the absolute magnitude of the responses, between age 
groups. There are conflicting results within the cur-
rent literature around possible age differences in RPE 
responses. It has been suggested that at sub-maximal lev-
els of exertion, older adults report lower RPE values than 
younger adults [13, 34]; with no difference shown at max-
imal fatigue [34]. Likewise, in production mode, older 
participants have been shown to produce significantly 
higher %MVC contractions at set submaximal RPE lev-
els [12, 13]. Conversely, no significant differences in RPE 
response  were shown between young and older adults 
during maximal or submaximal isometric back exten-
sion [86], submaximal isometric arm abduction [87] or 
submaximal hand grip and leg extension exercises [88]. It 
should be noted that all the above studies used isometric 
exercise and with the possible exception of back exten-
sion [86], all used single joint exercises. One study [9] 
that used a mixture of single and multi-joint, upper and 
lower body dynamic exercises, also showed conflicting 
results. This study concluded that on the whole, results 
from the CR-10 scale showed no differences between age 
groups, especially during leg muscle training. However, 
age differences were seen during single-joint arm exer-
cises and low-intensity leg extensions.

The results of our analysis show that RPE provides a 
valid representation of EI irrespective of age. The mixed 
results in the literature make it unclear whether there is 
a reliable difference in RPE ratings caused by age. If there 

is an age dependent difference, it would seem likely that 
older participants give lower RPE ratings at the same rel-
ative workload or older participants will produce higher 
relative loads at a set RPE, and this difference is likely to 
be more pronounced during single joint upper body exer-
cise. More research is required to examine whether there 
is an age  dependent difference, and to explore the factors 
that may cause this difference to be present, to increase 
or decrease.

Sex
Univariate moderator analysis showed that sex did not 
have a statistically significant effect on the validity of RPE 
results, and while the multivariate model explaining the 
largest amount of heterogeneity did contain sex as a vari-
able, the amount of variance explained by sex was still not 
statistically significant (p < 0.05). These results suggest 
that there is no sex dependent difference in RPE validity. 
This result is contrary to the main findings of Chen et al. 
[2], who showed higher validity coeffects in males, with 
all outcome variables except BLa where female validity 
was higher. It should be noted that in Chen’s study, there 
were fewer females in the analysis of each outcome vari-
able; and for BLa, females made up only approximately 
25% of the total sample; this together with the conflicting 
results between outcome measures, highlights the need 
for further investigation with greater numbers of studies 
using female participants.

Two studies [82, 89] in the current analysis suggested 
that males give significantly higher RPE ratings, at the 
same relative exercise intensities than females. These 
studies used two novel exercise modalities, eccentric 
elbow flexor exercise [89] and upper  trapezius shoul-
der elevation exercise [82], which raises the question as 
to whether certain types of resistance exercises do elicit 
a sex difference in RPE response. However, the vast 

Fig. 4  Forest plot showing the weighted validity coefficients (solid squares) and 95% confidence intervals (solid horizontal lines) for each study 
included in the ‘EMG’ analysis. The bottom row indicates the overall random-effects validity coefficient (solid diamond). Key study characteristics are 
presented next to each study; the ‘–’ symbol indicates data that were unavailable
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Fig. 5  Significant results of the random-effects univariate meta-regression analyses. a The effect of muscle action, b the effect of workload range, 
and c the effect of exercise intensity variable on Fisher’s Z transformed validity coefficients. **p < 0.01; ***p < 0.001
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majority of the current RPE research suggests there are 
no sex moderated differences; including during: 1RM 
prediction [16], concentric contractions [15, 71], eccen-
tric contractions [15], isometric contractions [68, 73], 
and dynamic resistance exercise [90]. Likewise, RPE rat-
ings for active muscle and overall body [22], in estima-
tion mode [9, 69, 79], in production mode [72], and in 
estimation mode in older adults [17, 44] have all shown 
no sex differences. Therefore, the weight of the available 
evidence suggests that there is no significant difference 
in mean RPE responses between males and females, and 
that individual differences are likely to have a far greater 
effect than any sex related differences. Additionally, 
our meta-regression analysis revealed that RPE was an 
equally valid measure of EI in males and females.

Resistance Training Level
Moderator analysis showed that the resistance training 
level of the participants had no statistically significant 
effect on the validity of the RPE response given. There 
are a limited number of studies that have directly com-
pared groups with different resistance training experi-
ence. Comparisons of trained and untrained participants 
during back squat, bench press and arm curl exercises 
showed no differences in RPE [91]. Likewise, no dif-
ferences were seen between novice and recreationally 
trained weightlifters during bench press exercises at the 
same relative intensities [57]. Conversely, it has been sug-
gested that, at low relative training volumes, novice ath-
letes are less accurate at representing actual training load, 
giving lower RPE ratings than well-trained participants 
[80]. Likewise, in estimation mode, novice squatters gave 
lower RPE scores than experienced squatters at maximal 
load [19]. However, it was suggested that this could be 
due to the inability of novice squatters to perform a true 
1RM test in dynamic squatting. In production mode, sed-
entary individuals produced significantly lower relative 
forces than strength trained individuals, at both low and 
high submaximal RPE scores [21]. This result would seem 
to contradict the findings of the previous two studies, as 
this would suggest that novice athletes would perceive 
relative loads as harder than trained participants; but 
comparison of estimation and production mode in this 
way may not be valid.

Several studies have suggested that RPE ratings sig-
nificantly decreased in participants following a train-
ing programme using the same exercise [40, 44, 92–94]. 
However, all these studies compared RPE at set absolute 
loads or at relative loads based on 1RM tests performed 
before the training programme was completed. Addi-
tionally, these studies all showed an increase in 1RM fol-
lowing the training; therefore, the reductions in RPE are 
merely representative of an increase in strength and thus, 

the absolute loads becoming lower relative loads. Based 
on this, Gearhart et  al. [95] concluded that as relative 
load and RPE decrease concurrently, RPE can be used to 
track strength training in older individuals. One study 
was identified that compared RPE at relative workloads 
based on pre- and post-intervention 1RM [44]. This study 
showed that in production mode, both the absolute and 
relative loads lifted increased, at RPE scores of 4, 6 and 
8. This result would support the findings of Tiggemann 
et  al. [21], that trained individuals may produce higher 
relative forces at set RPE levels than novices.

Based on the current available evidence, including 
our findings, there are no clear differences in RPE rat-
ings caused by training level and experience and RPE 
is equally valid across the difference experience levels. 
However, it is possible that in production mode trained 
individuals will work at higher relative loads than novices.

Exercise Characteristics
Body Segment
The body segment used had no statistically significant 
effect on the validity of the RPE responses given. As pre-
viously stated, some research has suggested that lower-
body exercises give more consistent inter and intra-scale 
RPE results, than upper body exercises [9]. In estima-
tion mode, it has been suggested that lower body exer-
cise elicits higher RPE results than upper body, possibly 
due to the larger muscle mass involved [64]. Likewise, in 
production mode, at lower RPE values, higher relative 
loads were produced during bench pressing than during 
leg pressing; although, this difference was not present at 
higher sub-maximal RPE values [21]. In contrast to this, 
no significant differences where shown, between upper 
and lower body exercise, when using RPE to estimate 
number of repetitions until failure [28] or to predicted 
maximal load [16]. However, these two analyses are deal-
ing with validity rather than differences in actual ratings 
given. Therefore, RPE is equally valid for upper, lower or 
whole-body exercise; while there is limited evidence that 
the larger muscle mass of the lower body will give higher 
RPE estimations or lower relative loads in production 
mode.

Protocol
Chen et  al. [2] showed that during aerobic exercise, 
using HR as the outcome measure, random intermittent 
exercise protocols produced significantly lower valid-
ity coefficients than progressive continuous, progres-
sive intermittent and submaximal protocols. While no 
individual study included in our review directly com-
pared difference protocol types, moderator analysis of 
92 cohorts, containing each of these study protocols, 
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showed no statistically significant differences in RPE 
validity during resistance exercise.

Workload Range
Workload range was the biggest single predictor of 
between study variance, with univariate analysis showing 
that workload range explained 59% of the heterogeneity. 
Workload range was also the only significant variable in 
the multivariate model that explained 64% of the between 
study variation. The meta-regression showed that greater 
workload ranges led to significantly greater effect sizes 
(p < 0.001). This is to be expected, as a study that has 
compared RPE results at, for example, 40% and 50% of 
1RM (a 10% range) will show a smaller effect size than 
one that has used 10% and 90% of 1RM (an 80% range). 
This variable could only be coded for studies that actively 
manipulated workload; therefore, any studies that 
adjusted repetition time, number of repetitions or sets, 
or rest time could not be included. As a result, only 56 
cohorts were included in the univariate analysis and 50 
cohorts in the multivariate analysis. It is likely that a far 
larger amount of the total between study variance would 
have been explained if exercise intensity, calculated using 
all 5 of the above variables, could have been quantified 
for each study.

Muscle Action
There were no statistically significant differences in valid-
ity between dynamic, concentric, or eccentric contrac-
tions (p < 0.05); whereas isometric contractions showed 
significantly (p = 0.004) higher validity coefficients than 
the other contraction types. It is possible that, due to the 
elongated nature of most isometric contractions, this 
increase in validity is linked in some way to the increased 
validity shown in studies that manipulated repetition 
time, when compared to number of repetitions or rest 
interval time. However, as none of the included studies 
directly compared isometric contractions to any other 
type, further investigation is required to explain the 
underlying mechanisms behind these differences.

Previous research has demonstrated that both RPE 
and perceived pain values are significantly lower dur-
ing eccentric contractions than during concentric [26, 
50] and dynamic [26] contractions at the same absolute 
loads. This difference seems to be due to the increased 
1RM capacity during eccentric contractions when com-
pared to concentric. Indeed, RPE was consistent between 
eccentric and concentric contractions when each con-
traction was conducted at the same relative load, based 
on the 1RM for each contraction type [96]; with eccentric 
loads approximately 20% higher than concentric loads at 
the same RPE levels [97].

Scale Characteristics
Scale Used, Points and Fixed Maximum
Nine different RPE scales were used in the studies 
included in this review, including Borg’s 6–20, Borg’s 
CR-10, the OMNI-RES, Estimated-Repetitions-to-Failure 
(ERF) [28], Borg’s scale verbal cues only [29], Isometric 
Exercise Scale (IES) [30–32], Numerical Rating Scale 
[11, 18], Perceived Task Duration (PTD) [33], and Resist-
ance Exercise Specific Scale with Repetitions in Reserve 
[19]. The specific RPE scale used did not influence the 
reported effect sizes. Likewise, differences in the RPE 
scale properties, number of points and fixed maximum, 
had no effect on the validity of RPE.

Ratings of perceived discomfort or pain (RPD) is often 
used as an analogue of RPE to monitor EI. Indeed, the 
CR-10 scale was designed for use as a muscular pain scale 
and later validated as an exertion scale [1]. Compari-
son of perceived discomfort and perceived exertion has 
yielded similarly high correlation coefficients (r = 0.71–
0.86) [50], suggesting that both RPD and RPE are valid 
metrics that can be used to monitor EI. However, it has 
been suggested that RPE ratings are higher at a set inten-
sity than RPD [50, 98].

It is common within RPE research to use correlation 
with a previously validated RPE scale to show the valid-
ity of a new scale to measure the construct of perceived 
exertion; for example, Lagally and Robertson [22] com-
pared the OMNI-RES and Borg 6–20 scales (r = 0.94–
0.97), Hackett et al. [28] compared ERF and OMNI-RES 
(r = 0.96), Shepherd et  al. [33] compared the CR-10 
and PTD (r = 99), and Lea et al. [30] compared IES and 
CR-10 (r = 0.97). These results, in addition to providing 
the intended construct validity, further support the find-
ings of our analysis that many RPE scales, despite having 
different designs, properties, and intended uses can be 
used interchangeably without affecting the validity of the 
results.

Mode
The results of our meta-regression revealed that there 
were no statistically significant differences in validity 
coefficients between estimation and production modes 
(p > 0.05). During aerobic exercise, Chen et al. [2] showed 
higher validity coefficients for production mode than 
estimation mode for all outcome measures except ven-
tilation, which had a low number of production stud-
ies. This difference may be due to the higher validity 
coefficients seen in the current analysis for estimation 
mode during resistance exercise, where it is possible that 
changes in intensity are more noticeable and quantifiable.

Pincivero, 2011 [13] suggested that when compared 
to estimation mode, both older and younger adults 
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significantly underproduce isometric leg extension tor-
ques at higher RPE levels. However, Morrin et  al. [20] 
showed no significant differences in the %MVC achieved 
between estimation and production trials during isomet-
ric hand grip exercise. These conflicting results prompt 
further investigation to explore possible differences.

Hampton et  al. [29] showed that production mode 
could be used to produce distinct levels of force at 5 dif-
ferent RPE levels. Morrin et al. [20] suggested that pro-
duction RPE was sufficiently accurate to self-regulate 
isometric hand grip training for reducing BP. Likewise, 
OMNI-RES ratings of 3, 6 and 9 have been show to accu-
rately and reliably produce intensities that are appro-
priate for improving muscular fitness [56]. A 12-week 
training intervention, at an RPE of 4 on the OMNI-RES 
scale, was sufficient to increase post training 1RM in 
7 different exercises [17]. Similarly, a 12-week training 
intervention, prescribed at RPE ratings from 13 to 18 
on the Borg 6–20 scale, produced increases in maximal 
leg press (58%), knee extension strength (20%), and knee 
extension power (27%) [99]. These results suggest that 
RPE can be used in both production mode and estima-
tion mode as a valid and accessible means of prescribing 
and monitoring EI, respectively.

Rating Type
This study demonstrated that differences in the rat-
ing type, i.e., RPE-AM (active muscles), RPE-O (overall 
body) or S-RPE (sessional), did not significantly influence 
the strength of the validity coefficients obtained, suggest-
ing that all three of these methods can be used to moni-
tor EI. Results consistently show that RPE-AM ratings 
are higher than RPE-O ratings [4, 5, 22, 37, 41, 49, 58, 
100], with increasing divergence in these ratings as inten-
sity increases [57, 101]. Ribeiro et  al. [102] showed no 
significant difference between RPE-AM and RPE-O rat-
ings, during circuit weight training; however, this study 
assessed both RPE types 10, 20 and 30 min after the exer-
cise had finished, when they would normally be assessed 
immediately following a repetition or set, which could 
account for these conflicting results.

There are conflicting results in the current literature 
regarding the outcome of S-RPE compared to RPE-O. 
It has been suggested that mean RPE-O, taken imme-
diately after each set, elicits significantly higher rat-
ings than S-RPE [103, 104]. Conversely, Day et  al. [39] 
showed non-significant differences in RPE-O (taken 
immediately post set) and S-RPE (taken 30  min post 
exercise) at 50% and 70% 1RM, and no differences at 90% 
1RM. Likewise, Costa et  al. [105] showed no difference 
between RPE-O, collected immediately after the last set, 
and S-RPE collected 30 min post exercise. In addition to 
these results, there are conflicting results concerning the 

implementation of S-RPE; Kraft et al. [106] suggests there 
is no difference between S-RPE taken at 10- and 30-min 
post exercise, while Singh et al. [103] showed significant 
differences between S-RPE taken at 5- and 10-min when 
compared to 30-min. Singh suggests that 30-min S-RPE 
is a better overall indicator of training session intensity.

The optimum implementation of S-RPE requires fur-
ther investigation, but the results of our analysis would 
suggest that all three types of RPE rating can all be used 
to accurately measure EI.

Anchoring Procedure
Anchoring is regularly used as part of the standardised 
instructions given to users to explain how to use the 
given RPE scale properly. Anchoring aims to give the user 
a clear understanding of what one or more points on the 
scale mean in relation to EI. This is often done by anchor-
ing the extremities of the scale, so that the user can then 
estimate what the other points should feel like based on 
those anchors. It is suggested that providing standardised 
instructions and anchoring is important to accurately 
gauge EI [107].

There are several methods of anchoring, includ-
ing: memory anchors, exercise anchors and combined 
memory-exercise anchors. Memory anchors call upon 
previous experience, for example, maximal is the hard-
est exertion previously experienced [48–50]. Exercise 
anchors utilise exercise at a set percentage of the user’s 
maximum, followed by an explanation of what level 
on the RPE scale that exercise is; for example, isomet-
ric holds at 10% and 100% of MVC for 5 s are 1 and 10 
in the CR-10 respectively [108], or following a 1RM lift 
the participant is told that that is ‘maximal exertion’ on 
the scale [107]. Finally, the combined memory-exercise 
anchor uses both methods, anchoring some points on 
the scale using exercise and others using the participant’s 
memories and estimations [22, 97, 109]. Legally et al. [7] 
compared these anchoring methods at 6 intensities from 
40 to 90% MVC; their results showed no significant dif-
ferences in the mean rating at each intensity between 
anchoring groups, however, the exercise and memory-
exercise groups did show better reliability between the 
first two sessions, when compared to the memory group. 
It would seem that valid results can be obtained using 
all three anchoring methods. While reliability was sug-
gested to be improved across the first two sessions with 
the inclusion of an exercise anchor [7], it is likely that this 
difference will diminish in later sessions due to familiar-
ity with the specific exercise. It should also be noted that 
no studies were identified that compared any anchoring 
procedures with a non-anchored group, it may therefore 
be an assumption that anchoring is important to increase 
validity and/or reliability.
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Study Characteristics
Outcome Measure
Moderator analysis showed that RPE validity was not 
statistically significantly affected by the outcome meas-
ure used to quantify resistance EI. Likewise, the second-
ary analysis, using EMG as the only outcome measure, 
showed a very large effect size comparable to that shown 
in the primary analysis. These results further emphasise 
the accuracy of RPE as a measure of both external and 
internal (physiological exertion) measures of exercise 
intensity, as was shown previously during team sports [3]. 
In aerobic exercise, Chen et al. [2] showed differences in 
validity coefficients based on the outcome measure used; 
additionally, there were contradictory moderator results 
dependent on the outcome measure used. It is possible 
that this shows a genuine improvement in RPE validity 
during resistance exercise over aerobic exercise when 
using certain outcome measures; conversely, this could 
simply be a consequence of the specific outcome meas-
ures and research articles included in each analysis.

EI Variable Manipulated
While the outcome measure used did not significantly 
affect validity, in the studies that used EI as the outcome 
measure, the variable used to modify EI did affect valid-
ity. The meta-regression analysis showed that signifi-
cantly higher validity coefficients were shown in studies 
that manipulated workload (p < 0.001) or repetition time 
(p < 0.002), when compared to the use of total number of 
repetitions or rest interval time.

The accuracy of RPE to express changes in workload 
is well supported within the current literature. It has 
been suggested that RPE is sufficiently accurate to per-
ceive differences in load at 20% intervals of 1RM, during 
dynamic  biceps curls and knee extensions [16]; 10% dif-
ferences in bench press power [66]; and 10-degree dif-
ferences in knee angle during isometric wall squatting 
[31]. Fisher et al. [98] showed no differences in peak RPE 
or RPD between loads of 30% and 80% of 1RM in a test 
to fatigue. However, as both conditions were tested to 
fatigue, peak RPE and RPD would be expected to be the 
same (i.e., maximal) in both conditions. This was evident 
in a study by Vasquez et al. [83], that showed significant 
differences in RPE between different %1RM workloads 
at set repetition numbers but showed no significant dif-
ferences between RPE at volitional fatigue. Genner and 
Weston [110] found that volume load (workload × total 
repetitions) shows stronger relationships with S-RPE 
than workload alone (%1RM); this result warrants further 
investigation.

The increased strength of the validity coefficients 
for repetition time could be related to the significantly 
greater coefficients seen with isometric exercise over the 

other forms of muscle contraction, as isometric contrac-
tions are normally sustained contractions and often con-
trolled using contraction time; however, it is not clear 
whether the quantifiability of repetition time makes RPE 
during isometric contractions more accurate, or whether 
greater validity coefficients for isometric exercise have 
contributed to increased validity with repetition time 
modification.

The reduced validity shown with rest interval time 
should be interpreted with caution, as only two stud-
ies [48, 77] were included in the meta-analysis using rest 
time as the EI variable. Therefore, it is unclear whether 
manipulation of rest time really does produce lower 
validity coefficients, when compared to adjusting work-
load or repetition time, or whether there  were just insuf-
ficient data at this time. Significant increases in S-RPE 
were shown with reduced rest interval when volume load 
was matched between conditions [111]. Senna et al. [112] 
and [113] showed inconsistent trends towards higher 
RPE ratings with lower rest times, however, these studies 
did not control the number of repetitions completed in 
each set, meaning significantly greater numbers of repeti-
tions were achieved in the longer rest interval conditions. 
Additionally, Tibana et al. [114] showed no differences in 
RPE following exercise using either a 1.5- or 3-min rest 
period, but once again, these trials were both completed 
until volitional fatigue meaning that both conditions 
should elicit a maximal RPE response.

Gearhart et  al. [115] explored differences in RPE dur-
ing exercise with matched volume loads (tonnage); sig-
nificantly higher RPE-AM ratings were seen with higher 
loads and fewer repetitions (5 reps @ 90% 1RM) com-
pared to lighter weights with higher repetitions (15 reps 
@ 30% 1RM). Likewise, Kraft et al. [110] suggested that 
load had a greater effect on RPE than training volume 
changes. However, neither of these studies controlled 
the repetition time, meaning repetition time could have 
been increased in the higher load conditions without this 
increase being included in the exercise intensity calcula-
tion. In support of this, no significant differences were 
shown in RPE-O or S-RPE between conditions with 
matched volume load, but different workloads, when 
rest interval and repetition time were controlled [105]. 
In contrast, RPE was shown to increase with workload 
increase, despite matched volume load, during eccen-
tric elbow flexion with standardised repetition and rest 
interval times. These conflicting findings and differences 
in procedures make interpretation difficult and prompt 
further investigation with full control over all EI variables 
[89].

Most of the studies included in the current review and 
meta-analysis, have manipulated one or more EI variable 
without measuring or controlling at least one of the other 
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variables. Most commonly repetition time and rest inter-
val are not measured, controlled, or reported. As shown 
in this analysis, changes in repetition time and rest inter-
val time are correlated with changes in RPE. Additionally, 
increases in workload have been shown to inversely cor-
relate with repetition velocity when repetition velocity/
time are not controlled [19]. Ideally, studies looking to 
accurately manipulate exercise intensity should control 
and report all five of these EI variables, otherwise uncon-
trolled variables may change and thus magnify or nullify 
an expected change or create an unexpected change.

RPE Reliability
Only 13 [4, 11, 28, 30–32, 37, 39, 55, 56, 59, 68, 76] of 
the 75 studies in the meta-analysis and 3 studies in the 
qualitative analysis [115–117] reported a measure of 
RPE repeatability. While single validity measurements 
are legitimate for RPE to be considered useful in a real-
world exercise setting, especially when it is being used to 
prescribe exercise intensities, its results must be shown 
to be reliable between exercise sessions. In estimation 
mode, RPE-AM showed ‘good’ to ‘excellent’ reliability 
with intra-class correlation coefficients (ICC) of r = 0.67–
0.96 [4, 28, 30–32, 37, 59, 76, 115], RPE-O showed ‘fair’ 
to ‘excellent’ reliability (r = 0.58–0.76) [4, 37], and S-RPE 
showed excellent reliability (r = 0.95; 95% CI = 0.90–
0.97) [116]. These studies used various forms of exercise 
including isometric exercise [11, 30–32, 117], dynamic 
bench press and squatting [28], and mixed upper and 
lower body circuit training [39]. RPE was also shown to 
be reliable (r = 0.88; 95% CI = 0.89–0.91) during a home-
based intervention [32], and when used in production 
mode (r = 0.69–0.95) [56].

Two studies [7, 68] showed lower ICC results than the 
rest of the included studies. The first [7] showed ICC 
results ranging from r = 0.07 to 0.80. The authors suggest 
that the lower scores were due to high inter-subject vari-
ance, and that while the ICC scores were low, agreement 
between the two sessions was much higher (60–90%). 
The second study [68] showed significantly lower RPE 
scores on the second testing day, when compared to the 
first day (p < 0.05) and showed ICC scores of r = − 0.05 
to 0.46. It was argued that habituation with the exercise 
task, through additional testing days, could have reduced 
the between day differences as shown in previous studies 
[117].

Overall, these results suggest that RPE can be a reliable 
measure and prescribing tool; however, more research 
is required to confirm that RPE is reliable across a range 
of exercise intensities, participants, and exercise modes, 
and to elucidate which factors may positively and nega-
tively affect its reliability.

Additional Considerations for the Use of RPE
The current RPE literature has highlighted several pos-
sible confounding factors, that were outside the scope 
of this article’s statistical analysis but are worthy of 
consideration by practitioners using RPE in varied situ-
ations, environments, and with different populations; 
some of these considerations are outlined below:

Higher chronic perceived stress was associated with 
lower RPE and HR responses, in otherwise healthy par-
ticipants, during strenuous resistance exercise [118]. 
Small but significant increases in RPE were shown fol-
lowing acute static stretching of the hamstrings [119]. 
No differences were shown in RPE or BLa between 
bodybuilders and powerlifters, during heavy resistance 
exercise with short rest intervals [55]. Likewise, the use 
of knee wraps during back squatting did not affect RPE 
results [47]. Conversely, blood flow restriction caused 
a significant increase in RPE at set exercise intensi-
ties [74]. Muscle activation and RPE were significantly 
increased when conducting push-up and leg raise exer-
cises with an unstable base of support (i.e., a swiss ball) 
[120]. In support of this, whole body vibration at 40 Hz 
with a 4 mm amplitude, increased respiratory exchange 
ratio and RPE concurrently during back squatting. This 
was suggested to be due to an increase in type 2 fast 
twitch fibre activation for stabilisation [23].

In clinical or recently clinical populations, RPE was 
shown to be a good predictor of resistance exercise inten-
sity in prostate cancer survivors [121], patients with  mul-
tiple sclerosis produced statistically similar torque values 
at set RPE scores as healthy participants [122], and there 
was no significant difference in RPE during isometric 
endurance exercise in patients with chronic fatigue syn-
drome when compared to healthy participants [62]. More 
research is required to examine the usefulness of RPE in 
clinical populations, and the conditions and factors that 
may affect its accuracy.

Limitations
There were several limitations in the present review. 
Firstly, we were only able to include studies written in 
the English language. Despite this, studies were included 
from a total of 11 countries, including 7 countries where 
English is not the first language: Brazil, Spain, Switzer-
land, Italy, Denmark, Taiwan, and France.

Secondly, some evidence of publication bias was 
present in the forest plot, indicating that some studies 
could exist that show less favourable results and have 
not been published. However, the Classic and Orwin’s 
fail safe tests showed that such a large number of non-
significant studies would be required to change the 
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validity level, and as such, it is extremely unlikely that 
this would have affected our results.

Finally, there was high between-study variance in the 
reported effect sizes, including a large amount of unex-
plained heterogeneity following the moderator analy-
sis. This could largely be the consequence of the varied 
study designs, study populations, outcome measures 
and data reporting in the included studies. For exam-
ple, exercise modalities including TheraBand exercise 
[4, 37], isometric wall squatting [30–32], and simulated 
manual work movements [53] were included. Addition-
ally, we allowed any rating scale type for perceived pain 
or exertion. Inevitably, when including such a large 
number and variety of studies, greater between study 
variance is expected. Moreover, identifying, group-
ing, and coding these varied characteristics, in order 
to find moderators and explain heterogeneity, becomes 
increasingly difficult.

Conclusions
In conclusion, these results suggest that RPE provides 
a valid measure of exercise intensity and physiological 
exertion during resistance exercise, with effect sizes 
comparable to or greater than those shown during 
aerobic exercise. As such, RPE may provide an easily 
accessible means of prescribing and monitoring resist-
ance exercise training. Larger validity coefficients were 
seen in studies using greater workload ranges, isomet-
ric muscle action, and when EI was manipulated using 
workload or repetition time. Conversely, participant 
age, sex, training status, RPE scale used, and outcome 
measure used did not affect the validity coefficients 
reported. Further research is required to demon-
strate RPE’s reliability and to further explore the pos-
sible moderating factors that could elicit different RPE 
results between populations and exercise types.
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