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Abstract: Meat is a rich source of energy that provides high-value animal protein, fats, vitamins,
minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed
to fulfill nutritional requirements. However, the increasing burden on the livestock industry has
triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to
differentiate different meat samples on the basis of metabolites. The metabolic difference between
various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled
with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal
partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the
gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was
found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent
separation and successfully differentiated samples from all four types of meat. Lactate, creatine,
choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and
α-mannose were found as the major discriminating metabolites between white (chicken) and red meat
(chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine,
creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The
relative quantification of differentiating metabolites was performed using one-way ANOVA and
Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification
of novel signatures (potential biomarkers) to characterize meats from different sources and could
potentially be used for quality control purposes in order to differentiate different meat types.

Keywords: metabolomics; NMR; multivariate data analysis; biomarkers; halal meat

1. Introduction

Meat is one of the most consumed foods around the world [1]. The importance of meat
as a dietary source could be established from its rich nutritional contents which includes
proteins, good fats like omega-3-fatty acids, and the abundant presence of vitamins like B6
and B12 and zinc [1,2]. However, in the case of fats, their content varies according to the
type of meat and the amount of meat consumed by the individual [3].

High economic value and increased demand for meat have burdened the meat in-
dustry, which leads to the substitution of high-quality meat with low quality [4]. The
situation has also triggered the deliberate adulteration of high-priced meat species with
cheaper ones. Identification of meats of various food species is of utmost importance
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because of social, forensic and public health reasons. The adulterated meat often enters
the supply chain and jeopardizes the sentiments as well as the health of the people. A
person may have an allergy or other medical issues with eating a particular type of meat;
therefore, it is mandatory or morally/legally obligatory to properly label the meat type in
order to avoid health issues. Recently, beef meatballs were found to be adulterated with
wild boar meat [5], while some of the European marketed food items were reported to
have undeclared horse meat [6]. Similarly, in the United Kingdom a number of meat pies
labeled as halal were found to have pork DNA [7]. Furthermore, the followers of Islam and
Judaism have some religious concern regarding the consumption of non-halal meat, which
would cause a decline in the consumption of meat products and affect their sentiments [8].
Therefore, pinpointing the meat source from different food animals is an important issue
regarding social and forensic concerns [9]. Thus, keeping in view of the current alarming
situation, it is of immense importance to use advanced analytical techniques, which could
facilitate to differentiate between meat samples from various species and sold in the market
as a substitute of the others, which normally are not demanded or would not be healthy
from public health concern.

Metabolomics is an emerging field and a powerful tool for discovering biomarker
signatures, particularly for early disease detection, and also contributing to assessing the
quality and safety of food and raw food items [10]. Metabolomics focuses on the high-
throughput characterization of small molecules (metabolites) in biological matrices and
provides a broader view of changes occurring in metabolites over time [11]. The qualitative
and quantitative analysis of these metabolites is performed through different analytical
techniques such as Nuclear magnetic resonance (NMR) and mass spectrometry (MS) [12].

Nuclear Magnetic Resonance (NMR) is a universal, qualitative and quantitative ana-
lytical technique used to identify and quantify chemicals from complex biological mixtures.
The unbiased view of the sample composition, simple sample preparation, non-destructive
sampling, short analysis time and simultaneous quantitation of multiple compounds are
the features that make NMR the method of choice for metabolomics studies. NMR, along
with multivariate data analysis (MvDA) (e.g., Principal component or Partial least square
discriminant analysis), is a power full tool that generates a wealth of data that can be
processed to identify important biomarkers (bio-chemicals/metabolites) that can help to
solve many biological puzzles. Previously, 1H-NMR spectroscopy was used to differentiate
beef from horse meat, and triglyceride ratio was identified as a major discriminating fac-
tor [13]. A similar approach has been used to perform metabolite profiling of different beef
secretions [14] and also differentiation of irradiated and non-irradiated ground beef [15].
Likewise, Xiao et al. [16] studied chemical composition of the forerunner flavor substance
of Wuding chicken at different ages by using 1H-NMR spectroscopy.

Additionally, Bischof et al. [17] used 1H-NMR spectroscopy technique in order to
analyze the effect of dry and wet aging on the beef metabolome. Another study was
conducted using an untargeted NMR metabolomic approach to evaluate the raw meat
metabolome including the metabolic differences between multiple muscle specimens of
locally farmed Jiulong yaks [18]. A similar platform was used to study the effect of dark
cutting meat on meat quality attributes and concentrations of post-mortem glycolytic
metabolites in Angus x Nellore cross breed cattle [19]. Two-dimensional quantitative NMR
spectroscopy in combination with MvDA was also proved to be an efficient method to
distinguish the breast meat of four native chicken strains from broiler breast meat [20].
Muroya et al. [21] discussed in detail the significance of NMR along with MvDA as a
practical tool to monitor meat quality traits effectively.

The previous studies were more concerned to investigate the effect of various treat-
ments, e.g., forerunner flavor substance [16], dry and wet aging [17] or dark-cutting
meat [19] on the metabolome of animal’s meat. Likewise, earlier reports also highlighted
the potential biomarkers related to meat quality traits with a focus on specific aspects
such as animal genetic background [22], sensory attributes [23], feeding system [22] and
formulations [24], including processes such as postmortem storage [25] and hygiene con-
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trol. [21]. Additionally, most of the literature revealed the discriminatory analysis of
multiple muscle specimens belonging to the same species. Here, we have used 1H-NMR
based metabolomics to differentiate various meat types belong to different species. The
aim of the current study is to address the issue of meat adulteration, particularly in the
regions where low-priced meat e.g., donkey meat, is mixed with high-priced meat like
beef and chevon. Moreover, the present data also exhibited metabolites responsible for
differentiating white meat (chicken) from red meat.

2. Results

2.1. 1H-NMR Identification of Metabolites in Different Meat Samples

The comparison between representative 1H-NMR spectra of Chevon (MS), Chicken
(CM), Beef (BM) and Donkey meat (DM) is shown in Figure 1. The stacked 1H-NMR spectra
of all the biological replicates of each meat type are shown in Supplementary Figure S1.
Visual inspection of Figure 1 shows that all the meat groups had similar peaks in 1H-
NMR spectra; however, the higher signal intensities in CM indicated a higher level of
metabolites in the Chicken group. In Figure 1, spectra shown from all four meat types
were stacked together; some of the identified signals were not seen in a few meat types,
which might be due to the higher intensity of signals in CM. In total, 37 metabolites
were identified from all four meat types. The list of identified metabolites is shown in
Table 1. The identified metabolites included amino acids (alanine, asparagine, aspartic
acid, glutamine, isoleucine, leucine, and valine), dipeptide (carnosine), organic acids (3-
hydroxybutyrate, acetate, creatine, formic acid), vitamins (biotin, glutathione), sugars
(glucose, glycerol and α-mannose), nucleosides (inosine, hypoxanthine, uracil), and energy
related metabolites e.g., lactate, carnitine, or ADP/AMP/ATP. Overall, stacked 1H-NMR
spectra were dominated by signals of creatine and lactate.

Table 1. Metabolites identified in different meat samples.

Number Metabolites Multiplicity

1 Acetate 1.92 (s)
2 ADP/AMP/ATP 6.11(d), 8.27(s); 8.54(s)
3 Alanine 1.48/1.43 (d)
4 α -Mannose 5.18 (d)
5 Asparagine 2.94 (m), 4.00 (dd)
6 Aspartic acid 3.90 (dd)
7 Biotin 2.22 (t), 3.10 (m)
8 Butyric acid 0.860 (t); 2.175 (t)
9 Betaine 3.27 (s), 3.90 (s)

10 Carnosine 8.18 (s), 8.06 (s), 7.12 (s), 2.7 (m), 4.5 (m), 2.97 (dd)
11 Carnitine 2.40 (m), 3.23 (s)
12 Choline 3.18 (s), 4.06 (m)
13 Creatine 3.04 (s), 3.93 (s)
14 Dimethylamine 2.73 (s)
15 Formate 8.45 (s)
16 fumarate 6.51 (s)
17 Glucose 4.64 (d), 5.24 (d)
18 Glutamate 2.06 (m), 2.37 (m), 3.76 (m)
19 Glutamine 2.12 (m), 2.44 (m), 3.70 (m)
20 Glycerol 3.54 (dd), 3.62 (dd)
21 Glutathione 2.54 (m); 2.97 (dd)
22 Glycine 3.51 (s)
23 3-hydroxybutyrate 1.20 (d); 2.400 (m); 2.430 (m)
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Table 1. Conts.

Number Metabolites Multiplicity

24 Hypoxanthine 8.17 (s), 8.20 (s)
25 IMP 8.53 (s), 8.21 (s)

26 Inosine 3.88 (m), 3.83 (m), 4.28 (m), 4.44 (m), 6.03 (d),
6.12 (d), 8.18 (s), 8.28 (s)

27 Isoleucine 0.92 (t); 0.99 (d); 1.23 (m); 3.64 (d)
28 leucine 0.94 (d), 0.96 (d), 3.72 (m)
29 Lactate 1.32 (d), 4.11 (q)
30 Malate 4.29 (dd)
31 Methionine 2.14 (m), 2.66 (dd), 3.78 (m)
32 Niacinamide 7.60 (m), 8.71 (dd), 8.94 (m)
33 Phenylalanine 7.32 (m), 7.37 (m), 7.42 (m)
34 Valine 0.99 (d), 1.02 (d), 2.28 (m)
35 Phosphocholine 3.20 (s), 4.17 (m)
36 Pyruvate 7.67 (s)
37 Uracil 5.83 (d)

Molecules 2021, 26, x FOR PEER REVIEW 4 of 16 
 

 

19 Glutamine 2.12 (m), 2.44 (m), 3.70 (m) 

20 Glycerol 3.54 (dd), 3.62 (dd) 

21 Glutathione 2.54 (m); 2.97 (dd) 

22 Glycine 3.51 (s) 

23 3-hydroxybutyrate 1.20 (d); 2.400 (m); 2.430 (m) 

24 Hypoxanthine 8.17 (s), 8.20 (s) 

25 IMP 8.53 (s), 8.21 (s) 

26 Inosine 
3.88 (m), 3.83 (m), 4.28 (m), 4.44 (m), 6.03 (d), 6.12 

(d), 8.18 (s), 8.28 (s) 

27 Isoleucine 0.92 (t); 0.99 (d); 1.23 (m); 3.64 (d) 

28 leucine 0.94 (d), 0.96 (d), 3.72 (m) 

29 Lactate 1.32 (d), 4.11 (q) 

30 Malate 4.29 (dd) 

31 Methionine 2.14 (m), 2.66 (dd), 3.78 (m) 

32 Niacinamide 7.60 (m), 8.71 (dd), 8.94 (m) 

33 Phenylalanine 7.32 (m), 7.37 (m), 7.42 (m) 

34 Valine 0.99 (d), 1.02 (d), 2.28 (m) 

35 Phosphocholine 3.20 (s), 4.17 (m) 

36 Pyruvate 7.67 (s) 

37 Uracil 5.83 (d) 

 

Figure 1. H-NMR spectra of MS (Chevon); DM (Donkey); BM (Beef); CM (Chicken). 1, Acetate; 2, ADP/AMP/ATP; 3, al-

anine; 4, α-Mannose; 5, Asparagine; 6, Aspartic acid; 7, Biotin; 8, Butyric acid; 9, betaine; 10, carnosine; 11, carnitine; 12, 

choline; 13, creatine; 14, dimethylamine; 15, formate, 16, fumarate; 17, glucose; 18, glutamate; 19, glutamine; 20, glycerol; 

21, glutathione; 22, glycine; 23, 3-hydroxybutyrate; 24, hypoxanthine; 25, IMP; 26, inosine; 27, isoleucine; 28, leucine; 29, 

lactate; 30, malate; 31, methionine; 32, niacinamide; 33, phenyalanine; 34, valine; 35, phosphocholine; 36, pyruvate; 37, 

uracil. 

  

Figure 1. H-NMR spectra of MS (Chevon); DM (Donkey); BM (Beef); CM (Chicken). 1, Acetate; 2, ADP/AMP/ATP; 3, alanine;
4, α-Mannose; 5, Asparagine; 6, Aspartic acid; 7, Biotin; 8, Butyric acid; 9, betaine; 10, carnosine; 11, carnitine; 12, choline;
13, creatine; 14, dimethylamine; 15, formate, 16, fumarate; 17, glucose; 18, glutamate; 19, glutamine; 20, glycerol; 21, glutathione;
22, glycine; 23, 3-hydroxybutyrate; 24, hypoxanthine; 25, IMP; 26, inosine; 27, isoleucine; 28, leucine; 29, lactate; 30, malate;
31, methionine; 32, niacinamide; 33, phenyalanine; 34, valine; 35, phosphocholine; 36, pyruvate; 37, uracil.

2.2. Multivariate Data Analysis

The processed 1H-NMR data were subjected to principal component analysis (PCA)
in order to observe the similarities and differences among the meat types. In PCA, five
components were able to explain 83% of the variation. PC1 contributed 39%, whereas PC2
was able to explain 18% variation present in the data (Figure 2). PCA score plot showed a
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separation among CM and the rest of the groups. BM and DM were clustered together on the
negative side of PC1, whereas half of the MS samples were overlapped with BM and DM, and
half were projected close to the CM group with a positive PC1 score. Altogether, PCA was not
able to differentiate all four meat groups. Later, orthogonal partial least square-discriminant
analysis (OPLS-DA) was applied to the same data. The OPLS-DA score plot showed a clear
differentiation among meat types (Figure 3A). The model showed high goodness of fit and
fairly good predictability, with R2Y equal to 0.86 and Q2 equal to 0.63. The model was
validated through a 200 permutation test and Q2 of value −0.693 was found, as shown in
Figure 3B. The OPLS-DA score plot showed a clear separation between white meat (CM) and
red meat (MS, BM, DM). The CM group was separated from the rest of the meat groups and
clustered on the positive side of PLS1, whereas the other three meat groups belonged to red
meat, which were projected to the negative side of PLS1. However, MS was different from BM
and DM on the basis of PLS2 with a positive PLS2 score, while BM and DM were clustered
together on the lower left quadrant, having a negative PLS2 score. The corresponding loading
plot shows the metabolites responsible for the separation of meat groups in the score plot
(Figure 3C). The signals of lactate, creatine, phosphocholine, choline, leucine, isoleucine, valine
and acetate were found on the positive side of PSL1 corresponded to the CM group, whereas
Glutamate, 3-hydroxybutyrate and α-mannose were present in higher level in the MS group
while carnitine and formate were found to be responsible for the separation of BM and DM,
placed on lower left quadrant of loading scatter plot (Figure 3C). The loading column plot of
PLS1 is shown in Supplementary Figure S2.
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Although component 3 also showed separation between BM and DM (data shown
in Supplementary Figure S3), we excluded the CM group from the analysis, and the rest
of the data were subjected to OPLS-DA in order to study the difference between red meat
types. The model showed high goodness of fit with high predictability and with R2Y equal
to 0.97 and Q2 0.72, respectively. A tight clustering among the samples of all three meat
types and a clear separation between meat groups can be seen in the score plot (Figure 4A).
Like in the previous model, MS was clearly differentiated from BM and DM found on the
positive side of PLS1, while BM and DM were observed on the negative side of PLS1 but
well separated on the base of PLS2 projecting to positive and negative PLS2 quadrants,
respectively. The model was validated through a 200 permutation test and Q2 value −0.6
was found as shown in Figure 3B. Along with the number of metabolites shown in the
loading plot, lactate was the major compound responsible for the separation of MS from
BM and DM (Figure 4C). Moreover, carnitine and creatine were found corresponding to BM,
while formate, carnosine, uracil and pyruvate were found to be the major differentiating
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metabolites corresponding to DM. Due to a higher number of variables (chemical shifts),
it was difficult to show the chemical shifts of all the identified metabolites in the loading
scatter plot; therefore, some of the metabolites listed in the loading plot were identified
after “zooming in” the loading plot in Simca software. However, for the convenience of the
reader, important loading column plots have been added in Supplementary Figure S4.
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2.3. Relative Quantification

The relative quantification of the differentiating metabolites was done by using one-
way ANOVA and Tukey test (for multiple comparisons), as shown in Figure 5. The
relative quantification table and graph also showed the comparative level of differentiating
metabolites (between white and red meat and also among the red meats) in all the studied
meat types (Supplementary Table S1).
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differences of metabolites between groups were calculated by using one-way analysis of variance and a Tukey multiple
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3. Discussion

Nuclear Magnetic Resonance (NMR) is a universal, qualitative and quantitative ana-
lytical technique. It is a powerful method that can interpret the structure, dynamics and
biological interaction of macromolecules. NMR spectroscopy can be used to identify and
quantify chemicals from complex mixtures. An unbiased view of the sample composition
and simultaneous quantification of multiple compounds are the features that make NMR the
method of choice for metabolomics studies [26]. It is a non-destructive and reliable technique
that does not require greater sample preparation time and is fast in working. Hence, NMR
can be used to make databases in situations where a lot of samples are to be analyzed in a
diminutive time [22]. Targeted metabolite profiling or quantitative metabolomics helps in
identifying and quantifying multiple compounds. This can be done by comparing the mixture
of chemical compounds present in the NMR data sample to a spectral library of reference
derived from pure compounds of known concentrations. When these certain compounds
are identified, they are statistically analyzed to identify essential biomarkers. Quantitative
metabolomics can be selective; that is, they can approach a specific class of compounds such
as amino acids or nucleic acids, or it can be widespread to all detectable compounds [27].

There are many reports on using NMR spectroscopy along with MvDA to perform
meat characterization, e.g., to study the geographical origin of meat, for differentiation
among various cattle breeds together with identification of healthy or diseased animal
meat, quality control and to study the effects of various treatments (i.e., effects of different
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feeds) on meat quality. Previously, along with muscle tissues, 1H-NMR spectroscopy has
been used vigorously to carry out the metabolite profiling of urine, liver, serum and plasma
samples obtained from various animals [28,29]. The Apulian lamb meat samples collected
from three different locations in southern Italy were differentiated on the basis of their
geographical origin by using NMR spectroscopy [30].

The level of some of the metabolites seems to play a very important role in order
to differentiate meat of different species or even the breeds within the same species. For
example, the level of lactate was reported to be a decisive factor in differentiating different
cross-breeds of pig [31]. In another study, lactate along with other metabolites was found
to be affected by the cross breeds of pig, whereas carnosine was correlated to the low value
of sensory traces related to the flavor of the meat [23]. In the current study, lactate was not
only found to differentiate chicken from chevon, beef and donkey meat, but it was also
observed as a major differentiating metabolite to separate chevon from beef and donkey
meat. In cured meat, the presence of lactic acid bacteria is desirable compared to other
aerobic spoilage bacterial strains; it ensures maximum shelf-life, safety and stability of
fermented meat [32]. Moreover, the higher level of carnosine in donkey meat might also
indicate lower sensory traits of donkey meat than beef and chevon.

Lactic acid is an immediate source of energy under stress conditions. The amount of lactic
acid produced depends upon the stress condition prior to postmortem. Therefore, in stressed
muscle, an excess of lactic acid will be generated to keep balance in ATP content right after
slaughter [33]. Furthermore, the concentration of lactic acid produced in the body depends on
the type of muscle and its glycogen content [34]. Oxidative muscle utilizes an ample amount
of lactate, which serves as an eminent source of energy [35]. Lactic acid is continuously
produced in the body and converted back to pyruvate under normal conditions. However,
after slaughter, the flow of lactate ions from muscles to interstitial fluid becomes slow, thus
maintaining postmortem homeostasis. Therefore, excess of lactic acid will decrease pH,
which will ultimately affect meat quality [33]. In the present study, the amount of lactic acid
produced in red meat is comparatively high as compared to white meat, so it is an attribute
for differentiating among meat samples. Furthermore, donkey meat has a significantly
high concentration of lactic acid in comparison to beef and chevon. This implies that high
postmortem lactic acid production in donkey meat would affect its quality and palatability.
The onset of rigor mortis causes a decline in ATP, which degrades immediately into ADP,
AMP and eventually IMP. IMP is further depleted into inosine and hypoxanthine [36]. Inosine
serves as a biomarker in determining meat quality [37]. Additionally, previous data showed
that inosine protects mice against γ-radiation-induced death by reducing the production
of ROS [38]. In our study, we found that inosine is responsible for differentiating between
donkey, chevon and beef meat samples. It is substantially present in high concentrations in
beef and donkey, which would affect its flavor and quality.

Amino acids are the key compounds in growth and immunity, as well as in regu-
lating metabolic pathways [39]. Concomitantly, they play a crucial role in developing
meat flavor [40]. Amino acids like alanine, glycine and serine impart a sweet taste while
histidine, arginine, isoleucine and leucine impart a sour taste [41]. Branched-chain amino
acids (BCAAs) like leucine, isoleucine and valine serve as signaling molecules in various
metabolic pathways such as mammalian target of rapamycin (mTOR) [42]. BCAA plays a
substantial role in regulating lipolysis, thus ameliorating glucose consumption and improv-
ing meat quality [43]. A previous work conducted on finishing pigs reported that leucine
supplementation could improve pork texture meliorating protein content and enhancing
meat quality [44]. BCCAs are also responsible for improving glucose uptake and utilization
by upregulating glucose transporters, thus promoting muscle growth [45]. In the current
study, high levels of BCAAs are present in red meat, contrary to white meat. Therefore,
it suggests that BCAA would be responsible for enhancing proteinaceous content of red
meat, thus claiming it as a potent source of nutritional amino acid. Additionally, a high
BCAA content would influence meat quality.
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Choline is an indispensable micro-nutrient. It has prominent role in cell membrane
integrity and muscle function, as well as in the synthesis of neurotransmitters [46]. Choline
serves as a precursor for methyl metabolism, which is involved in creatine biosynthe-
sis [47]. Previous interventions showed that a diet deficient in choline causes serious health
problems in humans and animals [48]. Choline can be used in the treatment of fatty liver
syndrome [49]. Besides having a dietary role, choline supplementation could improve
meat quality. Li et al. [50] studied the impact of rumen-protected choline (RPC) on the
longissimus dorsi muscle of lambs. They inferred that supplying lamb with RPC resulted
in high pH values post mortem, while low shear force, which influences meat quality. The
low pH values are mainly due to the accumulation of lactic acid. High pH values of lamb
muscles supplemented with 0.25% RPC might be due to a decline in the production of
lactic acid. Therefore, a high choline level would be beneficial both for animals and human.
Interestingly, in current metabolomics study, the amount of choline was high in red meat
samples (BM, DM, MS) as compared to white meat (CM). As we know that choline is part
of a membrane, a high choline level in the red meat samples under study might be related
to membrane properties, influencing meat quality. Furthermore, red meat would serve as a
source of dietary choline for humans.

Creatine, an amino acid derivative, plays a key role in energy metabolism by maintain-
ing ATP level and hampering the generation of ADP, which would ultimately lead to the
formation of reactive oxygen species [51]. Creatine assimilates in the body through intake
of meat and meat products, and it escalates muscle performance [52]. A previous study
showed that supplementation of creatine to pigs would change postmortem metabolism
and affect meat quality [53]. Likewise, Li et al. [54] studied the relation between creatine
supplementation on meat quality and postmortem metabolism. He inferred that pigs
supplemented with creatine prior to slaughter showed a decline in lactic acid concentration.
Therefore, creatine slows down the decrease in postmortem pH levels by maintaining
phosphate in muscle cells [47].

In the current work, we observed that creatine is responsible for discriminating
between meat samples. Moreover, in contrast to other meat groups, the concentration
of creatine was significantly high in chevon and donkey. These findings suggest that an
elevated level of creatine would prevent the change in pH due to postmortem lactate
production, thus improving meat quality. Carnosine, a naturally occurring dipeptide, is
found abundantly in skeletal muscles. It acts as a pH buffer in muscles, a neurotransmitter,
an antioxidant and an inhibitor for the end products of glycation and lipoxidation [55].
Carnosine is also involved in reducing the amount of free radicals by directly interacting
with ROS [56]. Besides having a nutritive role, carnosine contributes to meat quality. A
previous study conducted by Hu et al. [57] assessed the dietary role of carnosine on meat
quality, growth performance and oxidative stability. They inferred from their findings that
supplementation of carnosine influences both chicken meat quality and quantity. Similarly,
Cong et al. [58] demonstrated that dietary supplementation of carnosine resulted in high pH
level, redness and cohesiveness of broiler muscle, thus enhancing meat quality. Moreover,
carnosine augmentation has enhanced the activities of antioxidant enzymes. Carnosine was
also reported to be associated with umami flavor and meat tenderness [59]. In the present
study, we observed that carnosine is one of the key metabolites that discriminate between
red meat samples (MS, BM and DM). Therefore, a high amount of carnosine would impact
meat tenderness and other meat quality traits. Carnitine also provides cellular energy by
transporting long-chain fatty acids across the mitochondrial membrane [60]. In our work,
we have observed a statistically significant increase in the concentration of carnitine in beef
as compared to other meat samples. Moreover, it also takes part in differentiating between
chevon, beef and donkey. Therefore, it would serve as a source of energy in different meat
types, particularly in beef. In the present study, we have identified several energy-related
metabolites like carnosine, carnitine and BCAA, which not only add nutritional value to
meat but also contribute to sensory attributes and quality attributes of meat.
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Although we have identified 37 metabolites in four meat groups, not all of them con-
tributed to discriminating the meat types. A literature survey and current data showed that
in the case of meat, there are some specific metabolites that contribute more than others
in meat characterization. Previously, alanine, carnitine, creatine, glutamine, succinate,
acetate, betaine, creatinine, glycerol and glycine were found responsible for differentiat-
ing Korean and Australian beef samples, whereas betaine, carnosine, creatine, glycerol,
glycine, leucine, isoleucine and valine separated New Zealand beef from United States
beef [61]. Similarly, valine, leucine, isoleucine, glutamate, glutamine, carnosine, lysine,
arginine, acetate, pyruvate, carnitine and taurine were involved in discriminating four
cattle breeds [62]. Kim et al. [63] identified glutamate, isoleucine, leucine, tryptophan,
phenylalanine, valine and tyrosine as major metabolites for separating dry-aged beef from
wet-aged beef samples. Likewise, Kodani et al. [64] reported acetic acid, alanine, glutamic
acid, isoleucine, leucine, phenylalanine, tyrosine, valine, carnitine, carnosine, creatine and
lactic acid to be important metabolites to discriminate Japanese black cattle on the basis of
their ages. Interestingly, in almost all the above-mentioned reports, OPLS-DA was admired
as a good choice for discriminating meat samples. Consistent with previous reports, we
have also found OPLS-DA as a good choice for differentiating meat groups and regarding
metabolites, lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carni-
tine, glutamate, 3-hydroxybutyrate and α-mannose, which have already been reported as
important biomarkers in meat characterization, were found as the major discriminating
metabolites between white (chicken) and red meat (chevon, beef and donkey). Meanwhile,
inosine, lactate, uracil, carnosine, formate, pyruvate, carnitine, creatine and acetate were
responsible for differentiating chevon, beef and donkey meat.

NMR-based metabolomics has also been successfully applied to white meat to study
the effects of breed [65], age [66,67], pH [68], diet [69] and different treatments (i.e., boiling
processes) [70] on meat quality as well as the cause of infections, i.e., pectoralis muscle
dystrophy [71]. Contrary to previous data, our results depict a clear metabolic difference
between white and red meat and also differentiate the meat types that belong to red meat.
We have found NMR-based metabolomics to be a powerful tool to differentiate different
meat groups and can be used as a good analytical tool in the meat industry to address the
issue of meat adulteration. The discriminating metabolites identified in the result of MvDA
can be used as potential biomarkers for quality control purposes, particularly in countries
facing the problem of illegal supply/marketing of meat types that are strictly banned to
consume either by religious law or under the jurisdiction of the country.

4. Materials and Methods
4.1. Chemicals

The chemicals used in this research were 6% perchloric acid (HClO4), potassium
carbonate (K2CO3) and liquid nitrogen. Deuterium oxide (D2O) (Cat-No: 14D-099) and
sodium-3-trimethylsilylpropanoic acid (TMSP or TSP) (Cat-No: I-18625) were obtained
from Cambridge Isotope Laboratories (Andover, MA 01810, USA).

4.2. Biological Samples Collection

For sample collection, one cut of fresh meat (gluteal muscle) weighing approx. 1 g was
taken from six goats and six cows from Punjab Agriculture and Meat Company (PAMCO)
slaughter house near Shahpur Kanjraan, Lahore. Similarly, six different chicken meat samples
(gluteal muscle) weighing approx. One gram of each was collected from a local chicken vendor
in Lahore. The six donkey meat samples were collected from the University of Veterinary and
Animal Sciences (UVAS) Pattoki campus. For the classification purpose, samples from goat,
beef, chicken and donkey were labeled as chevon sample (MS), beef meat (BM), chicken meat
(CM) and donkey meat (DM), respectively. All the samples were collected in sterile tubes
containing liquid nitrogen and transported in an ice box. After the collection, all 24 properly
labeled samples were stored at −8 ◦C until further processing. The animal protocol was
approved by the animal care committee of Government College University, Lahore.
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4.3. Sample Preparation for NMR Spectroscopy

Meat samples were prepared for NMR analysis according to established protocol [29].
All frozen meat samples were pulverized with pestle and mortar into fine powder with
the help of liquid nitrogen. Then, from each sample, 0.12 g (120 mg) pulverized meat was
weighed and kept in sterile eppendorf. Later, 0.5 mL (500 µL) of ice-cold 6% perchloric
acid was added in each eppendorf containing powdered tissue and was vortexed for 30 s.
After vortex, samples were incubated on ice for 10 min and then centrifuged for 15 min at
12,000 rpm and the temperature kept constant at 4 ◦C. Supernatant was obtained and pellets
were discarded. For the adjustment of pH of solution, K2CO3 was used and pH was kept in
between 7–8. All these neutralized samples were again incubated on ice for 30 min. After
ice incubation, samples were again centrifuged at 12,000 rpm at 4 ◦C for the removal of
KClO4 (potassium perchlorate) precipitates. The resulting supernatant of samples obtained
was lyophilized into fine powder and stored at −80 ◦C until NMR analysis.

4.4. NMR Spectroscopy

For acquisition of NMR spectroscopy, all the lyophilized samples were dissolved in
500 µL D2O, with 0.01% Trimethylsilylpropanoic (TSP) used as a reference compound. The
pH of all the solutions was 7.4, and the final volume was 550 µL.

1H-NMR data acquisition was done at 600 MHz (Avance neo) NMR spectrometer. The
experiments were run with 128 scans and 64 K data points using Bruker’s pulse program
“ZG” without solvent suppression. Line broadening (lb = 0.3) was used while processing;
however, no zero filling was added.

4.5. NMR Spectral Data Analysis

Each spectrum obtained was analyzed by using MestReNova (14.1.2) software (Escon-
dido, CA, USA). Phase and base line correction was done manually. Internal standard (TSP)
was used as chemical shift reference and set at 0.0 ppm. This internal standard shift defines
all chemical shifts for metabolites and helps in the identification. The intensities of 1H-NMR
spectra were scaled to total intensity and reduced to integrated regions of equal width (0.01
ppm) corresponding to the region of δ 0.5–δ 10.0. Later, normalization of NMR spectra
was done to the sum of all integral regions, in total, 950 variables were obtained which
subjected to MvDA. Spectral libraries such as Human Metabolome Database (HMDB) and
previously published literature were used for metabolite identification. One-way ANOVA
and Tukey test was used for the metabolite quantification using Graph Pad Prism (8.4.3)
software (San Diego, CA, USA).

After spectral processing, the NMR data were subjected to MvDA by using SIMCA
(Umetrics, Version 14.1). In total, 24 NMR spectra were subjected to principal component
analysis (PCA) and partial least square analysis (PLS). The regions of δ 4.8–δ 4.9 were
excluded from the analysis because of the residual signal of the deuterated solvent. PCA
was performed with the SIMCA-P software based on a Pareto scaling method. Pareto
scaling provides a better weight to the variables of the data with superior intensity. It is
conducted for a big dynamic range in the data set [59]. The data were further subjected to
orthogonal partial least square-discriminant analysis (OPLS-DA).

4.6. Statistical Analysis

The differentiating metabolites obtained from MvDA were relatively quantified by
using Graphpad prism software (8.44 version). A one-way ANOVA was performed to
check a significant level of differences in meat groups on the basis of metabolites, while
Tukey’s test of multiple comparision was conducted to evaluate paired differences between
the means of metabolites [59]. The statistical analysis was performed with a 95% confi-
dence level, and a probablistic value (p < 0.05) indicates statistical significance. Further,
descriptive statistics was applied to calculate the standard error mean of each metabolite
using Graphpad prism (8.44 version).
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5. Conclusions

Here, we have used 1H-NMR spectroscopy along with MvDA to differentiate various
meat types. The spectral data acquired from NMR provided useful information, and a total
of 37 metabolites were identified in chicken, chevon, beef and donkey meat. In MvDA,
models developed were successfully validated and were able to discriminate all the meat
groups. The discriminating metabolites can be used as potential biomarkers to differentiate
meats that are difficult to characterize on the basis of visual inspection. Our results verified
1H-NMR-based metabolomics as a robust technique to be used in the meat industry for
quality control. Moreover, the current study can also be useful for the countries facing the
problem of meat adulteration.

Supplementary Materials: The following are available online, Figure S1: Stacked 1H-NMR spectra
of 6 biological replicates of Beef, Donkey meat, Chicken and Chevon, Figure S2: Loading column plot
of OPLS-DA separating CM, BM, DM and MS, Figure S3: (A) Score plot (PLS1 vs. PLS3) of OPLS-
DA based on whole range of 1H-NMR signals (δ 0.5–δ 10.0) of “CM” = Chicken; “MS” = Chevon;
“BM” = Beef; “DM” = Donkey (B) Validation through 200 permutation test, Figure S4: Loading
column plot of OPLS-DA separating BM, DM and MS. 1, isoleucine; 2, leucine; 3, lactate; 4, Acetate;
5, glutamate; 6, 3-hydroxybutyrate; 7, creatine; 8, phosphocholine; 9, carnitine; 10, glycerol; 11, inosine;
12, malate; 13, uracil; 14, carnosine; 15, hypoxanthine; 16, formate.

Author Contributions: Conceptualization: M.T.A., M.S.; methodology: A.A.S., M.W.M.; software:
M.T.A.; validation, M.T.A., S.U.C., M.W.M.; formal analysis: S.S.-u.-H.; investigation: M.T.A., M.S.; re-
sources: H.M., S.S.-u.-H.; data curation: M.T.A., S.U.C.; writing—original draft preparation: M.T.A., M.S.,
A.A.S.; writing—review and editing: M.W.M., A.T., H.M.; visualization: S.S.-u.-H., S.U.C.; supervision:
M.T.A., H.M., U.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All the animal experiments were approved by the Institu-
tional Animal Care and Use Committee of the Government College University Lahore (approval
number: 16810, date of approval 10 August 2018).

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data presented in this study is available within the article or
supplementary material.

Acknowledgments: The authors would like to thank Muhammad Imran who extended all his
support and assistance in collecting animal meat samples.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: All the data processed and used during the current study is available from the
Institute of Industrial Biotechnology, Government College University Lahore on request.

References
1. McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption:

An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [CrossRef]
2. Jalil, H.; Hussain, S.S.; Siddiqi, A.F. An empirical study of meat supply chain and prices pattern in Lahore (Pakistan): A case

study. Int. J. Supply Chain Manag. 2019, 2, 44–52.
3. Ahmad, R.S.; Imran, A.; Hussain, M.B. Nutritional Composition of Meat. In Meat Science and Nutrition; Arshad, M.S., Ed.;

IntechOpen: London, UK, 2018; pp. 61–77. [CrossRef]
4. Abd El-Aziz, D.M. Molecular and histological investigation of adulterated ready-to-eat heated meat products with chicken

substances. Int. Food Res. J. 2018, 25, 1948–1952.
5. Guntarti, A.; Martono, S.; Yuswanto, A.; Rohman, A. Analysis of beef meatball adulteration with wild boar meat using real-time

polymerase chain reaction. Int. Food Res. J. 2017, 24, 2451–2455.
6. Findus Beef Lasagne Contained up to 100% Horsemeat, FSA Says. Available online: https://www.bbc.com/news/uk-21375594

(accessed on 15 August 2020).
7. Traces of Pork DNA Found in Halal Prison Meat. Available online: https://www.bbc.com/news/uk-21302925 (accessed on

22 August 2020).

http://doi.org/10.1016/j.meatsci.2009.08.029
http://doi.org/10.5772/intechopen.77045
https://www.bbc.com/news/uk-21375594
https://www.bbc.com/news/uk-21302925


Molecules 2021, 26, 4643 14 of 16
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