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Abstract.—Molecular phylogenetic and phylogeographic reconstructions generally assume time-homogeneous substitution
processes. Motivated by computational convenience, this assumption sacrifices biological realism and offers little
opportunity to uncover the temporal dynamics in evolutionary histories. Here, we propose an evolutionary approach
that explicitly relaxes the time-homogeneity assumption by allowing the specification of different infinitesimal substitution
rate matrices across different time intervals, called epochs, along the evolutionary history. We focus on an epoch model
implementation in a Bayesian inference framework that offers great modeling flexibility in drawing inference about any
discrete data type characterized as a continuous-time Markov chain, including phylogeographic traits. To alleviate the
computational burden that the additional temporal heterogeneity imposes, we adopt a massively parallel approach that
achieves both fine- and coarse-grain parallelization of the computations across branches that accommodate epoch transitions,
making extensive use of graphics processing units. Through synthetic examples, we assess model performance in recovering
evolutionary parameters from data generated according to different evolutionary scenarios that comprise different numbers
of epochs for both nucleotide and codon substitution processes. We illustrate the usefulness of our inference framework
in two different applications to empirical data sets: the selection dynamics on within-host HIV populations throughout
infection and the seasonality of global influenza circulation. In both cases, our epoch model captures key features of temporal
heterogeneity that remained difficult to test using ad hoc procedures. [Bayesian inference; BEAGLE; BEAST; Epoch Model;
phylogeography; Phylogenetics.]

Molecular phylogenetic models typically consider
sequence evolution as a continuous-time Markov chain
(CTMC) that operates along the branches of a bifurcating
tree. As a description of the character substitution
process, CTMCs take their values from a finite set
of discrete states called the state space and satisfy
the Markov property. The Markov property ensures
that the process is memoryless, implying that the
conditional probability distribution of future states
only depends upon the present state, and not on the
preceding sequence of events. CTMCs are characterized
by matrices of infinitesimal rates that quantify the
probabilities of exchanging discrete characters in an
infinitely small time interval.

Current CTMC models are not limited to nucleotide
or amino acid data, frequently accommodate large state
spaces, such as codon substitution models (Goldman
and Yang 1994; Muse and Gaut 1994), and generalize
to many discrete data types including spatial locations
(e.g., cities or countries) in phylogeographic inference
(Lemey et al. 2009) or hosts in analyses of viral cross-
species transmission (Faria et al. 2013a; Mather et al.
2013). In the latter cases, not only the state space can
be large but also the underlying substitution rate matrix
may be asymmetric.

Phylogenetic inference often resorts to substitution
processes that are stationary, homogeneous, and
reversible. Stationarity dictates that the process is at
equilibrium, such that the frequency distribution of
realized states remains constant over the course of
evolution. Homogeneity ensures that the process is
constant in pattern throughout evolutionary history,
thereby treating evolution as a lineage- or time-
independent process. This implies that nonstationarity
induces nonhomogeneity, as the process of evolution
depends upon the equilibrium frequencies. However,
a process can be stationary but not homogeneous, e.g.,
through the specification of different instantaneous rate
parameters for different partitions of the underlying
tree topology. Finally, reversibility is a frequently
applied restriction to the rate matrix describing
molecular evolutionary processes that leads to a
reduced number of free parameters. Collectively, these
restrictive assumptions make strong abstraction of the
underlying substitution process to ease mathematical
and computational tractability.

In recent decades, substantial work has aimed at
relaxing the standard assumptions in CTMC processes,
in order to uncover more complex evolutionary
processes and assess their impact on phylogenetic
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reconstruction. To accommodate nonstationarity, Yang
and Roberts (1995), Galtier and Gouy (1998) and
Galtier et al. (1999), for example, have proposed models
that allow branch-specific nucleotide compositions.
Although this includes general treatments involving
separate composition parameters for each tree branch,
large trees will inevitably lead to over-parameterized
models. To address this problem, Foster (2004) has
developed an approach that maps a restricted, but
fixed number of nucleotide composition vectors with
estimable frequencies to the tree. Set in a Bayesian
framework, this approach also integrates over the
tree topology and finds improved posterior support
estimates for topologies in examples with compositional
heterogeneity, as opposed to inference under a stationary
model that would suffer from attraction artifacts due
to similar compositional biases. Further developments
have uncoupled compositional shifts from particular
nodes in the tree while estimating the total number
of events of compositional drift distributed across the
tree using a compound Poisson process (Blanquart and
Lartillot 2006). Blanquart and Lartillot (2008) have also
combined such approaches for amino acid evolution
with models that take site-specific substitution patterns
induced by protein structure and function into account.

Models also exist to tackle nonhomogeneity in the
instantaneous rates of character exchange rather than
perturbing stationarity. Homogeneous substitution rates
can be relaxed both among sites (Huelsenbeck and
Nielsen 1999) and among branches (e.g., Foster et al.
2009), and in both cases this captures additional
complexity in the substitution process in different
data sets. In codon substitution models, among
branch variation in the nonsynonymous to synonymous
substitution rate ratio (dN/dS =ω) allows testing and
quantifying varying selective pressure among lineages
(Yang 1998).

Tree-based modeling of heterogeneity in the pattern of
evolution typically finds its use when applied to widely
divergent taxa representing relatively rich speciation
histories and possibly involving lineage-specific
adaptation. However, a change in the evolutionary
process may also apply to an entire population at a
particular point in time, in which case the evolutionary
shift simultaneously cuts across all lineages at that time
point in the underlying genealogy, creating discretized
time intervals that we refer to as epochs. Goode et al.
(2008) first consider such a scenario; they develop an
extension of a codon substitution model with discrete
site classes that allows for a time-specific change in ω and
in the transition/transversion rate ratio (�), and estimate
probabilities that sites belong to a particular class.
Specifying such change-points requires trees measured
in time and so Goode et al. (2008) adopt a strict molecular
clock model on a fixed tree topology in order to apply
the model to HIV envelope sequences sampled from
a single patient over a period of three years. Because
the rapidly evolving virus population accumulates
significant substitutions over such a short time-scale,
one can estimate the rate of evolution by incorporating

the sampling dates of the sequences (the “dated tip”
model, Rambaut 2000). The authors demonstrate that
many sites classified as neutral or under positive
selection before therapy appear to be under strong
negative selection upon treatment initiation.

Although we do not pursue codon substitution models
with different site classes in this work, we build upon
the approach of Goode et al. (2008) in several important
ways. By implementing a similar model of time-specific
evolutionary changes in the Bayesian Evolutionary
Analysis by Sampling Trees (BEAST) software package
(Drummond et al. 2012), we connect the epoch models
to different relaxed clock models that often provide
a more realistic description of the tempo of evolution
(Drummond et al. 2006; Drummond and Suchard 2010).
More importantly, we generalize the epoch model to any
finite discrete data type and any number of transition
times. The former is critical to accommodate discrete
phylogeographic inference (Lemey et al. 2009), for which
Bahl et al. (2011) recently demonstrate the need to
incorporate time-specific migration rates. Our Bayesian
approach also does not condition on a fixed tree topology
but averages over all plausible evolutionary histories.
This integration naturally accounts for uncertainty
in the tree and in how the epoch transition times
translate to varying branch-specific change points.
Jointly estimating the epoch-associated rate matrices
and the unknown evolutionary history also ensures that
we can fully exploit our Bayesian phylogeographic (or
discrete trait evolutionary) inference, which explicitly
connects sequence evolution to the trait diffusion process
(Lemey et al. 2009). Finally, our implementation also
allows us to make use of recent marginal likelihood
estimators to assess model fit for different epoch
parameterizations (Baele et al. 2012).

Statistical phylogenetic inference can be comput-
ationally demanding, especially when confronted with
the current flood of sequence data. However, recently
new algorithms have been developed to exploit massive
parallelization on graphics processing units (GPUs),
offering dramatic speed increases for statistical inference
under complex evolutionary models (Suchard and
Rambaut 2009; Baele and Lemey 2013). By partitioning
the time component into discrete intervals, the epoch
model further adds to the computational burden, but
it also represents an opportunity to exploit massive
parallel computation (Suchard and Rambaut 2009;
Suchard et al. 2010). To apply the epoch substitution
heterogeneity in conjunction with large-state space
models to large data sets, we implement our model
as part of the Broad-platform Evolutionary Analysis
General Likelihood Evaluator (BEAGLE) library for
evaluating the likelihood of sequence evolution on trees
(Ayres et al. 2012), taking the effort to accommodate
multiple scales of parallelization to keep computation
time manageable.

Following Goode et al. (2008), we focus mainly
on rapidly evolving populations for which significant
divergence accumulates between sequences sampled
at different time points, both from the simulation
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perspective and for the real data sets. Using a simulation
study we demonstrate that our model can be fit to
complex data sets and consistently captures time-specific
evolutionary parameters, but is not restricted to time-
stamped data. We further demonstrate the use of
our model by examining two real-life examples. The
first application tests and quantifies changes in dN/dS
associated with HIV disease progression in several
different patients. This analysis aims at testing different
hypotheses explaining why viral divergence stabilizes
close to disease onset in HIV infection (Shankarappa
et al. 1999). The second application employs epoch
modeling to accommodate seasonality in the inference
of global influenza dispersal dynamics.

METHODS

Time-Homogeneous Substitution Models
Continuous-time Markov chain substitution models

provide the cornerstone of computational phylogenetics.
Given a discrete trait obtaining K distinct states, a K×K
infinitesimal rate matrix Q characterizes its CTMC.
Matrix Q contains instantaneous transition rates qij ≥0
for i �= j and satisfies Q1=0, where 1 and 0 are column
vectors of size K.

From the rate matrix Q, a stochastic matrix P is
computed over time t≥0 via matrix exponentiation

P(t)=exp(tQ)=
∞∑

j=0
(tQ)j/j!. For an overview of methods

to numerically approximate a matrix exponential, we
refer to Moler and Loan (1978). Drawing realizations
with probabilities defined by P gives rise to a stochastic
process {X(t) : t≥0} satisfying the Markov property,
such that for every n≥0, given the time points 0≤
t0 ≤ t1 <...< tn ≤ tn+1 and discrete states i0,i1,...,in,in+1
it holds that P

{
X(tn+1)= in+1 |X(tn)= in,...,X(t0)= i0

}=
P

{
X(tn+1)= in+1 |X(tn)= in

}
. In general, one refers to

the elements of P as finite-time transition probabilities
between the K discrete state-space elements. Let us
denote a transition probability between two states i and
j over time u to t+u by

pij
(
u,t+u

)=P
{
X(t+u)= j |X(u)= i

}
. (1)

In the phylogenetic setting, researchers often further
constrain these processes to be time-homogeneous
and time-reversible. Time-homogeneity mandates that
transition probabilities depend only on the difference t
between times u and t+u,

pij
(
u,t+u

)=pij
(
0,t

)≡pij
(
t
)
. (2)

Time-reversible CTMCs satisfy detailed balance, such
that �ipij(t)=�jpji(t) for all i, j and t, where �j =
pij(∞) for all j return the stationary distribution of the
CTMC and are independent of starting state i. Finally,
common practice in phylogenetics reparametrizes the
elements of Q into relative rates through the constraint

∑
i�iqii =−1 and then, for studies involving phylogenies

set in calendar time, multiplies Q by a rate scalar r to form
the argument to P(t). In this case, we define

pij(u,t+u,r)={
exp(rtQ)

}
ij , (3)

where {·}ij extracts the ij-th element.
Felsenstein (1981) provides an efficient algorithm for

computing the likelihood of a phylogenetic tree F given
discrete traits and the finite-time transition probabilities
along each branch of F. Label the nodes x1,...,x2N−1 in
an N-tipped F set in calendar time. Now, consider a trio
of nodes u, v and w where node u lies at time tu in the past
and is parent to both nodes v and w, at times tv and tw,
respectively, in F. Then we imagine that an unobserved
discrete trait i evolves independently into j at node v over
the time interval [tu,tv] with rate scalar rv and into k at
node w over [tu,tw] with rate scalar rw.

Visiting all the nodes in post-order fashion, we
can integrate out these unobserved traits, calculating
successive contributions to the partial likelihood for each
node via

Lxu (i)=
⎡
⎣∑

j

pij(tu,tv,rv)Lxv (j)

⎤
⎦

×
⎡
⎣∑

k

pik(tu,tw,rw)Lxw (k)

⎤
⎦. (4)

For tip nodes in F, we assign Lxu (i) to either
0 or 1 depending on whether trait i is (partially)
observed or not. Finally, the full likelihood of F
becomes

∑
i Lx2n−1 (i)�i, where x2N−1 is the root node.

For multiple traits or sequences of length L and
for among-site rate mixtures with C categories, one
assumes conditional independence across sites and
rate categories and simply aggregates site-category
contributions. The serial computational order of this
recursion is O(K2 ×N×C×L).

Central to the recursive tree-pruning in Equation
(4) is specification of the branch-specific transition

probabilities P(tu,tv,rv)=
{

pij(tu,tv,rv)
}

for all i,j. These
are commonly homogeneous and conveniently collapse
into functions of just the branch length tu −tv instead
of the more elaborate starting and ending time. A strict
molecular clock assumption specifies that all ru are
equal, but this is not a necessary restriction of our
model because we can allow for the introduction of
lineage-specific rate variation in addition to the time-
heterogeneity in substitution processes that we tackle
next.

Relaxing Time-Homogeneity
The epoch model finds its use in situations where

the usual time-homogeneity assumption is violated in
specifying P(tu,tv,rv). To model nonhomogeneity in
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•tu
P1(tu,T1,rv)

•T1
P2(T1,tv,rv)
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FIGURE 1. Collapsing branches. Transition probability matrix
P(tu,tv,rv) governs the nonhomogeneous substitution process along
a branch from time tu to tv and is the matrix-product of transition
matrices P1(tu,T1,rv) and P2(T1,tv,rv), where T1 is the epoch change-
point time between homogeneous processes 1 and 2. We assume rate
scalar rv remains constant along the entire branch.

process through time, we assume that there exist S
unique substitution processes characterized through
rate matrices Qs for s=1,...,S, and that, at any given
point in time, one of these processes is active across
all of the extant lineages in F. We then model how
the active process changes over time via a change-point
process with M+1 ordered boundaries at times −∞=
T0 <T1 < ···<TM−1 <TM = tmax, where tmax is the time
of the most recently observed tip in F, and M indicator
functions �m ∈ {1,...,S} that identify which Q�m is active
during the time epoch [Tm−1,Tm]. For the examples in
this article, we assume that S, M and (Tm,�m) for all m
are fixed through marked biological constraints.

To compute P(tu,tv,rv) for each branch in F under
this change-point process, we return to the Markov
property of CTMCs that says one only needs to keep
track of the immediate past in determining transition
probabilities for the future. This greatly simplifies and
regularizes computation, allowing for its parallelization.
Assume tu lies in epoch m′ and tv lies in epoch m′′. If
m′ =m′′, then no new work is necessary. We compute
these transition probabilities directly via Equation (3)
from an eigen-decomposition of Qm′ ; Suchard and
Rambaut (2009) describe parallelization of this work
across branches and rate categories. On the other
hand, if m′ �=m′′, the branch traverses m′′−m′ epoch
boundaries at which times Q changes. To handle
these discontinuities, we imagine a data augmentation
procedure to break the nonhomogeneous process into
a conditionally independent series of homogeneous
processes and then integrate out the augmented data.

Figure 1 illustrates this action for a branch that spans
a single boundary at T1 with Q1 governing the process
before the boundary and Q2 after the boundary. Letting
X(T1)=k represent the augmented state of the stochastic
process at the boundary, we compute

pij(tu,tv,rv)=
∑

k

{
exp[rv(T1 −tu)Q1]

}
ik

×{
exp[rv(tv −T1)Q2]

}
kj , (5)

for all i,j, or equivalently in compact matrix form

P(tu,tv,rv)=exp[rv(T1 −tu)Q1]×exp[rv(tv −T1)Q2]
=P1(tu,T1,rv)×P2(T1,tv,rv), (6)

where P1(tu,T1,rv) and P2(T1,tv,rv) are shorthand
notation used in the figure and again in the next section

where it is clear that we are considering substitution
models for neighboring epochs.

We colloquially refer to the action of Equation (6) as a
transition probability matrix convolution to remind the
reader that we are integrating out an unobserved state
in the middle, but in a strict sense, this action is simply
matrix multiplication and exemplifies a Chapman–
Kolmogorov equation (see, e.g., Feller, 1968), stating that
every stochastic process emitting discrete outcomes as
a function of time can be marginalized over one of its
variables.

For general m′ �=m′′, we arrive at

P(tu,tv,rv)=exp[rv(Tm′ −tu)Q�m′ ]

×
m′′−1∏

�=m′+1

exp[rv(T�−t�−1)Q��
]

×exp[rv(tv −Tm′′ )Q�m′′ ]. (7)

Each matrix convolution in Equation (7) is O(K3),
potentially commanding a high computational burden
compared to the likelihood recursion when K is large
and many branches in F transect multiple boundaries.
Fortunately, these operations are very regular and both
fine- and coarse-grain parallelization offers a solution to
the computational burden.

We implement our epoch model in the BEAGLE
library (Ayres et al. 2012) interfaced through the
BEAST software package (Drummond et al. 2012). Our
BEAST/BEAGLE implementation supports extensive
parallel computing on state-of-the-art computer
hardware, including GPUs through the Compute
Unified Device Architecture (CUDA) framework
(Nickolls et al. 2008). In the Supplementary Information
(http://dx.doi.org/10.5061/dryad.qp747), we describe
our implementation in BEAGLE to achieve efficient
fine-scale parallelization, i.e., parallelism where many
threads execute small—in the sense of computational
complexity and time required for completion—portions
of the full task as well as the coarse-grain parallel
implementation in BEAST, where a handful of threads
are responsible for executing relatively complex and
time-consuming tasks.

RESULTS

Performance Assessment using Simulation
To evaluate the performance of the epoch model, we

conduct a simulation study, in which replicate data are
generated along an evolutionary history inferred from a
real data set with samples collected at different points in
time. Specifically, we use a maximum clade credibility
(MCC) tree summarizing a Bayesian phylogenetic
inference of human influenza A hemagglutinin gene
sequences sampled through different epidemic seasons
(Drummond and Suchard 2010).

http://dx.doi.org/10.5061/dryad.qp747
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FIGURE 2. Epoch simulation scenarios on an influenza A maximum clade credibility tree topology. In the two-epoch example illustrated at
the top, the transition time is set at t1 =7, creating two epochs with substitution processes governed by infinitesimal rate matrices Q1 and Q2
respectively, separated by the light and dark gray areas and the dotted line. In the three-epoch example illustrated at the bottom, transition times
are put at t1 =7 and t2 =15, creating three epochs with substitution processes governed by infinitesimal rate matrices Q1, Q2 and then again Q1,
as indicated by the alternating dark and light areas.

In Figure 2, we illustrate the tree topology and the
transition times defined for both a two-epoch and three-
epoch specification. This tree has 69 tips, is rooted and
time-scaled, effectively covering a period of about 18
years. For each replicate data set, we simulate 1000
nucleotide sites under the Hasegawa, Kishino, and
Yano (HKY) model (Hasegawa et al. 1985). We set
the substitution rates and base frequencies to values
estimated from the real data set.

In a first scenario, we test whether the epoch
model correctly identifies a homogeneous nucleotide
substitution process. We simulate an alignment evolving
under the HKY model with a�parameter (the transition–
transversion bias) value of 10.0 for the whole timespan
of the tree. In the analyses of replicate data, we specify
a boundary time T1 =7.0 (7 years before the most recent
sampling date) creating M=3 ordered boundaries with
S=2 substitution processes governing character changes
between them. We then run an MCMC chain, starting
from a randomly generated tree topology and assuming
proper log-normal priors on parameters �1 and �2. We
repeat the simulation and inference process 100 times
and report estimator coverage, mean (derived from the

estimated values) and mean squared error (MSE) in
Table 1.

Estimator coverage reflects the probability that the
true value from which the data derive falls within the
model estimated nominal credible interval and hence
predicts the performance of the methods across a wide
ensemble of data sets. While Bayesian credible intervals
do not need to yield nominal coverage, we still obtain
coverages of 96% and 98% for �1 and �2, respectively.

In a second simulation scenario, we consider a
heterogeneous substitution process in which the recent
substitution history (more recent than T1 =7.0) is
governed by an HKY model with �=1.0, and alters to
an HKY model with �=10.0 beyond that boundary time.
By analyzing 100 simulation replicates generated under
these settings, we arrive at a coverage of 98% for �1 and
96% for �2.

In a third nucleotide simulation scenario, we consider
S=3 epochs, where before time T1 =7.0 substitutions
occur under an HKY model with a � value of 1.0, between
T1 and T2 =15.0 under an HKY model with �=10.0 and
after T2 again under an HKY model with �=1.0. The
resulting coverages are 95%, 95%, and 89% for �1, �2,
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TABLE 1. Estimator performance for simulated data sets

Simulated Estimated
Coverage Mean MSEa Coverage Mean MSE Coverage Mean MSE

Nucleotides �1
b �2 �3

�1 =10 0.96 10.068 1.005 0.98 10.283 1.097 — — —
Dated tips �1 =1, �2 =10 0.98 1.007 0.008 0.96 10.446 1.551 — — —

�1 =1, �2 =10, �3 =1 0.96 1.010 0.009 0.96 9.993 2.435 0.95 1.017 0.026
Contemporaneous �1 =1, �2 =10, �3 =1 0.96 1.049 0.002 0.95 10.002 3.723 0.92 1.022 0.061

codon ω1
c ω2 ω3

ω1 =1 0.94 0.993 0.048 0.93 1.014 0.53 — — —
Dated tips ω1 =0.1, ω2 =1 0.90 0.103 0.001 0.93 1.011 0.054 — — —

ω1 =0.1, ω2 =1, ω3 =0.1 0.92 0.102 0.001 0.89 1.096 0.274 0.96 0.110 0.02
Contemporaneous ω1 =0.1, ω2 =1, ω3 =0.1 0.93 0.100 0.001 0.96 1.067 0.051 0.95 0.103 0.002

Notes: The table lists the parameter values used to generate data in the first major column and coverage of their estimates, along with measures of
variance and bias, in the second major column. Consecutive rows present the results for the first, second, and third nucleotide model simulation
for dated-tip samples and the third nucleotide model simulation for contemporaneous sequences (ultrametric tree), followed by the the results
of first, second, and third codon model simulation for dated-tip samples and the third codon model simulation for contemporaneous sequences.
aMean Squared Error.
bHKY model’s transition-transversion bias parameters.
cYang codon model’s nonsynonymous to synonymous substitution rate ratio.

and �3 respectively. As we introduce more epochs, we
observe a concomitant increase in MSE. This can be
expected as partitioning the time into more intervals will
typically leave corresponding epochs less informed as
less branch length is located in each epoch. For the same
value of �=1.0 in the three-epoch model, the MSE is
somewhat higher for the oldest epoch (0.071) compared
to the most recent epoch (0.021), which is also in line with
more branch length informing the latter (Fig. 2).

Epoch models are not restricted to nucleotide models;
they can also relax time-homogeneity in full codon
substitution models, such as the Goldman–Yang (GY94)
codon model (Goldman and Yang 1994). We here
examine the performance of such codon models in an
epoch setting. As before, we first test a homogeneous
substitution scenario and check whether the model
is able to recover homogeneous values for the ω
parameters across epochs. To this end, we simulate 500
nucleotide triplets under the GY94 codon model with
an ω parameter value of 1.0. Performing 100 simulation
replicates yields a coverage of 94% for ω1 and 93% for
ω2. To asses the coverage in a heterogeneous codon
substitution scenario, we set the true values to ω1 =0.1
and ω2 =1.0, with a transition time T1 =7.0 between the
epochs, which results in a coverage of 90% and 93% for
ω1 and ω2, respectively. We observe a somewhat higher
MSE under the homogeneous scenario for ω2 despite the
fact that we use the same value for both homogeneous
and heterogeneous simulations in this case (ω2 = 1.0), but
the coverage is the same for both simulation scenarios
(93%). This highlights the importance of considering the
uncertainty of point estimates when assessing potential
differences between epoch parameters.

Analogous to the nucleotide simulations, we also
asses the epoch model performance when the data
are simulated over three heterogeneous epochs, with

sequences evolving under the GY94 codon model with
ω1 =0.1 before T1 =7.0, then with ω2 =1.0 and after time
T2 =15.0 with ω3 =0.1. We obtain a coverage of 92%, 89%
and 96% for ω1, ω2 and ω3 respectively. Also in this case
the MSE is higher for the oldest epoch compared to the
most recent epoch.

For both nucleotide and codon models we also explore
how well epoch parameters can be recovered from
contemporaneous sequence data, without sequences
sampled throughout the past epochs. To this end, we set
all sampling dates to time t=0, effectively transforming
the tree topology to be ultrametric (all tips at equal
distance from the root, Supplementary Information,
http://dx.doi.org/10.5061/dryad.qp747). We list the
results for these simulations under the rows labeled as
“contemporaneous” in Table 1. The resulting coverages
for contemporaneously sampled sequences are 96%, 95%
and 92% for �1, �2, and �3 respectively and 93%, 96%,
and 95% for ω1, ω2, and ω3, respectively. We note
that the MSE is generally lower for estimates produced
for the contemporaneous data because the ultrametric
transformation implies that more branches inform the
epochs.

Within-Host HIV Selection Dynamics
We re-analyze within-host HIV-1 sequence data from

eight patients extensively sampled throughout infection
starting close to the time of seroconversion (Shankarappa
et al. 1999). These patients have previously been
classified as moderate or slow progressors based on
progression time, or the time it takes for CD4+ T
cell counts to drop below 200 cells/�l (Williamson
2003). The data consist of env C2V5 sequences collected
over a 6–13.7-year period with an average of 12 time

http://dx.doi.org/10.5061/dryad.qp747
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FIGURE 3. Estimates of dN/dS ratio for within-host HIV analyses.
Vertical lines represent 95% highest posterior density intervals for
the dN/dS ratio estimates. Parameter ω is estimated under the
homogeneous model, while ω1 and ω2 are obtained using the epoch
model.

points per patient (see Supplementary Information). The
original investigation of HIV-1 diversity and divergence
over time in these patients reveals a consistent
pattern of divergence stabilization at late-stage infection
(Shankarappa et al. 1999). This has led to two different
hypotheses that may explain these patterns. The immune
relaxation hypothesis posits that the damaged immune
system during the symptomatic stage leads to reduced
selection pressure on the virus, which relaxes the
need for fixing immune escape mutations in the
viral population. The cellular exhaustion hypothesis,
on the other hand, states that the decreased target
cell availability in late-stage infection provides less
opportunity for viral replication. While the former only
impacts nonsynonymous changes, the latter is expected
to reduce both synonymous and nonsynonymous rates
of substitutions.

To distinguish between these hypotheses, we ask
whether ω decreases at late-stage infection, as defined
by the progression time for each patient. This rate ratio
is an explicit parameter of the GY94 codon substitution
model (Goldman and Yang 1994), which we can extend
with an epoch specification. For each patient, we
compare a standard homogeneous model to a two-epoch
specification with a separate GY94 model before and
after boundary time T1 set to progression time for that
patient. We exclude patient 11 from the original study
because no sequence data are available after progression
time for this patient (Shankarappa et al. 1999). The
two-epoch discretization allows estimating a separate ω
parameter for the two infection stages in each patient,
with ω2 denoting the dN/dS ratio before progression and
ω1 denoting the same parameter after progression.

Figure 3 presents the results for the ω parameter
estimates. The ω estimates indicate a general decrease
in dN/dS after progression time (ω1 <ω2, Fig. 3). The
most pronounced differences in ω before and after
progression time can be observed for patients 1, 2, 6, and
7. For patients 2, 3, 7, and 9, the drop in mean ω estimates
suggests a shift in neutral or even positive selection
(ω2 ≥1) to negative selection (ω1 <1). The homogeneous

TABLE 2. Bayes factor test for decreased selection after progression

Patient Posterior probability log Bayes factor

Patient 1 >0.999 7.418
Patient 2 >0.999 9.602
Patient 3 0.898 2.174
Patient 5 0.430 −0.282
Patient 6 >0.999 9.210
Patient 7 >0.999 8.112
Patient 8 0.933 2.627
Patient 9 0.895 2.142

Joint evidence: 0.894 2.14

Notes: We report the posterior probability that ω1 <ω2 and the
corresponding Bayes factor against the alternative that ω1 ≥ω2.

ω estimate is generally closer to ω2, which can be
expected because most evolutionary history takes place
prior to progression time.

Despite the observation that the Bayesian credible
intervals for patient 1, 2, 6, and 7 estimates do not overlap,
this does not provide a formal test to evaluate their
differences. Therefore, we conduct a Bayes factor (BF)
test (Suchard et al. 2005) that expresses the posterior
odds over the prior odds that ω1 <ω2 for the individual
analyses of each patient. To determine the posterior
odds, we note that the MCMC sample average of
an indicator function that the parameter values fall
within one competing model space converges to the
posterior probability of that model. The prior odds in
our case is simply 1. The log Bayes factors listed in
Table 2 suggest generally strong evidence for a declining
selective pressure after progression, with one notable
exception for patient 5. We also provide a Bayes factor
that summarizes the joint evidence for ω1 <ω2, which
suggest an overall support in favor of the immune
relaxation hypothesis (log BF = 2.14), in accordance
with previous findings suggesting a general decrease
in nonsynonymous divergence at late-stage infection
(Williamson et al. 2005; Lemey et al. 2007).

Seasonal Circulation Dynamics of Human Influenza A
In a second application of the epoch model, we

focus on discrete diffusion processes to infer spatio-
temporal history from viral gene sequences. This type
of phylogeographic inference, where the sampling
locations are considered as discrete geographic traits, has
gained popularity in recent years, at least partly because
of a flexible and efficient Bayesian implementation that
connects dispersal dynamics to sequence evolution in
time-measured phylogenies (Lemey et al. 2009). Recently
Bahl et al. (2011) have applied this Bayesian inference
framework to investigate the circulation dynamics of
global influenza A H3N2 through time. Since the authors
were interested in capturing the heterogeneity in these
dynamics over successive seasonal epidemics between
2003 and 2006, they consider discrete traits that are
the product of sampling location and sampling time
(epidemic season). Not only does this discretization by
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TABLE 3. Marginal likelihood estimates

Marginal likelihood

Model PS SS

homogeneous −827.29 −825.07
7-epoch −806.36 −803.40
14-epoch −798.77 −795.63

Notes: Comparison in terms of model fit between a homogeneous
model, an epoch model with time discretized into S=7 epochs
alternating between 2 different rate matrices and an epoch model with
time discretized into S=14 epochs, alternating between 4 separate rate
matrices. PS, path sampling; SS, stepping stone sampling.

sampling time seem counterintuitive for a model that
emits discrete outcomes as a continuous function of time,
it also considerably increases the dimensionality of the
CTMC rate matrix and thus the number of parameters
to inform by the sparse spatial data.

Here, we explore epoch time-discretization as a more
appropriate alternative to detect temporal heterogeneity
in influenza dispersal. We revisit the Bahl et al.
(2011) data set that consists of 525 influenza A H3N2
hemagglutinin sequences sampled from Australia,
Europe, Japan, New York, New Zealand, Southeast Asia,
and Hong Kong (n=75 each) from 2003 to 2006. In a first
epoch model extension of the discrete phylogeographic
approach, we specify alternating epochs for the time
intervals encompassing northern hemisphere spring
and summer and the time intervals encompassing
northern hemisphere autumn and winter. The discrete
diffusion parameters are shared across rate matrices
for the spring and summer epochs as well as for
the autumn and winter epochs, effectively producing
two rate matrices compared to a single matrix for the
homogeneous model. Figure 4 schematically represents
this S=7 epoch parameterization. Following Kass and
Raftery (1995) we report rates that yield a Bayes factor
support interpreted as ‘strong evidence’.

We apply a Bayesian stochastic search variable
selection (BSSVS) procedure to identify the best
supported diffusion rates within each epoch using a
Bayes factor test, as available in the SPREAD software
(Bielejec et al. 2011). Rates yielding a Bayes factor
over 20 are represented in Figure 4A and B for the
spring and summer epoch, and autumn and winter
epoch, respectively. This suggests seasonal dynamics
with spring and summer circulation to a large extent
mirroring autumn and winter circulation. The spring
and summer epoch appears to be dominated by
circulation from Southeast Asia and Hong Kong to
the Southern hemisphere (New Zealand), circulation
within the Southern hemisphere and also circulation
from the Southern to the Northern hemisphere.
During the autumn and winter epoch on the other
hand, we infer mostly circulation from Southeast Asia
to the Northern hemisphere, circulation within the
Northern hemisphere and occasional circulation from
the Northern to the Southern hemisphere.

To evaluate the improvement of explicitly modeling
these largely opposing dynamics, we compared model
fit with a homogeneous model using path sampling
and stepping-stone sampling, two reliable estimators of
marginal likelihood (Baele et al. 2012). Proper priors were
used for all parameters during the various analyses,
as well as the model selection, since such priors have
been shown to be essential when performing marginal
likelihood estimation (Baele et al. 2013). The results of
the model comparison are listed in Table 3 and provide
evidence for the two-epoch model outperforming
the homogeneous model. When we further extend
our phylogeographic epoch time-discretization to four
epochs, modeling separate dynamics for each individual
season, we observe additional improvements in terms
of marginal likelihoods but with diminishing returns
with respect to the two-epoch vs. homogeneous
comparison (see Supplementary Information for a visual
summary of well supported circulation rates in each
season).

DISCUSSION AND CONCLUSIONS

Goode et al. (2008) demonstrate that a change in
evolutionary pattern affecting all individuals of a
population can be modeled by specifying different
substitution models across different time intervals rather
than over different lineages. Here, we extend this
approach and further demonstrate how epoch modeling
can uncover temporal heterogeneity in discrete character
evolution in phylogenetic histories. We are mainly
interested in heterogeneity resulting from variation
in the relative intensities of substitutions across time
and not heterogeneity induced by nonstationarity. We
embed the epoch model in a Bayesian phylogenetic
framework that focuses entirely on time-measured trees
and integrates over all plausible evolutionary histories
for the observed sequence data. Our simulations show
that the model is able to recover different scenarios
of heterogeneity under different substitution models,
but epoch parameters can also reflect an underlying
process that is in fact homogeneous, thus avoiding false
positives (see Table 1). Following Goode et al. (2008),
we primarily focus on time-stamped sequence data from
rapidly evolving pathogens for which the ecological
and evolutionary dynamics occur on the same time
scale and potentially interact. However, our approach
does not necessarily require sequence data sampled
throughout different epochs. In fact, the simulation
study demonstrates that the epoch model can also
capture time-heterogeneity in the substitution process
inferred from contemporaneous sequence data. In this
case, the amount of evolutionary history, as measured
by branch length within each epoch, determines how
accurately epoch parameters can be inferred.

We apply our model both in the context of sequence
evolution and spatial dispersal dynamics. For the
former, we focus on within-host HIV-1 evolution
and explicitly test different hypotheses that explain
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FIGURE 4. A two-epoch phylogeographic model applied to seasonal influenza H3N2. A. Maximum clade credibility (MCC) tree with branches
colored according to modal discrete location states at each node. The gray time intervals represent the epoch model with a single discrete rate
matrix shared across northern hemisphere spring and summer (light gray) time intervals and another rate matrix shared across the northern
hemisphere autumn and winter (dark gray) time intervals. B. Diffusion rates supported by a Bayes factor >20 for spring and summer epoch
intervals. The width of the arrows reflects the magnitude of the Bayes factor support. C. Diffusion rates supported by a Bayes factor >20 for
autumn and winter epoch intervals.
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the stabilization in sequence divergence in late-stage
infection (Shankarappa et al. 1999). This phenomenon
has been attributed to weakened selection pressure
(immune relaxation) or to a decrease in average viral
replication rate (cellular exhaustion) (Williamson et al.
2005). Various studies have attempted to distinguish
between both scenarios by contrasting the accumulation
of nonsynonymous and synonymous substitutions using
different methodologies (Williamson et al. 2005; Lemey
et al. 2007; Lee et al. 2008). While two studies provide
strong support for the immune relaxation hypothesis
using different methodologies (Williamson et al. 2005;
Lemey et al. 2007), Lee et al. (2008) suggest that both
synonymous and nonsynonymous evolutionary rates
decline as disease progresses. Here, we explicitly model
a change in the dN/dS ratio in codon substitution
models while integrating over the underlying within-
host HIV-1 phylogeny, and formally evaluate the support
for a decrease in dN/dS using Bayes factors. This
demonstrates strong overall support in favour of the
immune relaxation hypothesis.

Although the hypothesis we test here does not
require investigating site-specific selection patterns, we
note that codon models that accommodate different
categories of sites also have interesting applications
in the epoch framework. This has been demonstrated
by Goode et al. (2008), who employed a particular
codon parameterization to allow for sites to switch
among a neutrally evolving class, a class of negatively
selected sites and a class of positively selected sites (cf.
M2, Nielsen and Yang 1998) before and after the start
of HIV-1 antiretroviral therapy. Using this approach,
the authors showed that a considerable number of
sites, which are identified as neutral under a time-
homogenous model, are under some form of selection
in one of the two epoch time periods, implying that
neutrality may be context-dependent. Codon models
that accommodate different categories of sites have not
yet been implemented in BEAST, at least partly because
they are computationally prohibitive. Incorporating
such models in an epoch approach would contribute
even more to the computational burden. We hope
however that the parallel implementations we pursue
here may still allow practitioners to explore such
extensions in future research.

Our second application exemplifies the use of
epoch time-discretization in phylogeographic inferences
that consider sampling locations as discrete traits.
In particular, we demonstrate how epoch modeling
can capture seasonality in human influenza A H3N2
circulation dynamics, without the need to complicate
location traits with sampling time. Based on a data
set previously analyzed by Bahl et al. (2011), we
infer different epidemiological connections between the
northern hemisphere spring-summer epoch and the
autumn–winter epoch.

In both cases Southeast Asia (and Hong Kong) appear
to play a central role in seeding the seasonal epidemics
in the different hemispheres (Fig. 4). However, we
remain cautious in interpreting the support for diffusion

rates in the context of source-sink dynamics because
strong evidence for such a rate being nonzero does
not necessarily imply that the diffusion rate itself is
high (Faria et al. 2013b). For example, the connection
we identify between Europe and New Zealand during
the northern hemisphere autumn and winter epidemic
may represent a few introductions into New Zealand
without extensive onwards transmission. Therefore, it
remains difficult to assess which rates govern potential
source-sink dynamics.

The specification of two alternating epochs yields
a better model fit than a homogeneous model
while providing a more parsimonious parameterization
compared to the use of discrete traits that are based
on both sampling location and epidemic season as in
Bahl et al. (2011). Model fit differences are more readily
detected in this application because an additional epoch
adds an entirely new set of parameters. Incorporating
more epochs further increased model fit (Table 3), albeit
with diminishing returns, but it is clear that there
are limits to the flexibility that can be incorporated
in phylogeographic reconstructions, which represent
inherently data-sparse inferences. In this respect, it is
interesting to note that approaches are available to share
information across epochs while still allowing for the
detection of differences among them (Suchard et al.
2003). This can be achieved by specifying hierarchical
priors, both on standard rate parameters (Edo-Matas
et al. 2011) as well as, more recently, on the rate indicators
in a BSSVS procedure (Cybis et al. 2013). Assuming that
phylogeography represents a major application for the
epoch model, further research is needed to explore these
approaches as well as other sparse parameterizations of
discrete dispersal processes.

The two data sets we examine represent examples
with clear prior hypotheses that correspond to fixed
transition times. It may also be of interest to apply
the model when the transition times are unknown.
Although it would be straightforward to estimate the
time of a fixed number of epoch transition in our MCMC
framework, estimating the number of epochs may be
more challenging. However, our previous experience
with change-point processes in phylogenetics (Suchard,
Weiss, et al. 2003) suggests that it should be possible
to introduce prior distributions over these quantities
and jointly infer them when uncertainty remains in
their specification. Instead of trying to identify the most
appropriate discretization of time, one may potentially
use epoch modeling to approximate more complex
functions of time. Rodrigo et al. (2008) outline two
approaches to allow rate matrices to vary as a function
of time, one of which approximates that function by
partitioning time into a fine grid of intervals. This is
likely to be a computationally expensive avenue, but its
performance will mostly depend on the availability of
dense sampling throughout time (Rodrigo et al. 2008).

An interesting direction for further research using
the epoch model is to couple epoch-specific parameters
to external covariates. For the within-host HIV data
sets we analyze here, it may be interesting to ask
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whether ω varies with changes in CD4+ counts
or viral load. In our Bayesian framework, we can
address this question through formulating a hierarchical
phylogenetic model (Edo-Matas et al. 2011) over the
epoch-specific parameters, considering the covariates
as fixed-effects. We can further estimate the posterior
probabilities of all possible linear models that may or
may not include the covariates using Bayesian stochastic
search variable selection (Kuo and Mallick 1998). In
addition to external covariates, we can also consider
connecting the evolutionary parameters in an epoch
model to population size parameters in nonparametric
models of population size change through time, such as
the Bayesian skyline (Drummond et al. 2005), skyride
(Minin et al. 2008), and skygrid models (Gill et al. 2013).

By adding an additional layer of complexity to
our evolutionary models and inference framework, we
further increase the computational demands in a field
that is already computationally intensive. Our Bayesian
approach integrates over all possible evolutionary
scenarios, which is challenging for a large number
of sequences even when specifying the simplest of
evolutionary models. To mitigate the additional burden
imposed by our epoch time-discretization and the
operations involved, we have implemented our model
in the high-performance BEAGLE library allowing us
to perform the calculations on GPU architectures.
Although this has proven extremely useful, in particular
for large state-space models such as codon substitution
models (Suchard and Rambaut 2009), more research
is needed to further stretch the limits of practical
computational restrictions.

In summary, our work has extended the phylodynamic
framework with a model that is capable of quantifying
and testing temporal heterogeneity in discrete state
transition processes, which is proving useful to
detect changing selective dynamics in rapidly evolving
viral populations as well as fluctuations in historical
circulation dynamics.

SOFTWARE AVAILABILITY

BEAST source code is freely available at http://code.
google.com/p/beast-mcmc/ (last accessed March 18,
2014) under the terms of GNU LGPL license. Compiled,
ready-to-use binaries targeting major platforms can be
obtained from http://beast.bio.ed.ac.uk (last accessed
March 18, 2014). The BEAGLE library is free, open-
source software licensed under the GNU LGPL. Both
the source code and binary installers are available
from www.code.google.com/p/beagle-lib/. SPREAD
is licensed under the GNU Lesser GPL, and its
source code is freely available at https://github.
com/phylogeography/SPREAD (last accessed March
18, 2014). Compiled, runnable packages are hosted
at http://rega. kuleuven.be/cev/ecv/software/spread
(last accessed March 18, 2014).
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