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Abstract

Summary: One of the major issues in genome-wide association studies is to solve the missing her-

itability problem. While considering epistatic interactions among multiple SNPs may contribute to

solving this problem, existing software cannot detect statistically significant high-order inter-

actions. We propose software named LAMPLINK, which employs a cutting-edge method to enu-

merate statistically significant SNP combinations from genome-wide case–control data. LAMPLINK

is implemented as a set of additional functions to PLINK, and hence existing procedures with

PLINK can be applicable. Applied to the 1000 Genomes Project data, LAMPLINK detected a combin-

ation of five SNPs that are statistically significantly accumulated in the Japanese population.

Availability and Implementation: LAMPLINK is available at http://a-terada.github.io/lamplink/.

Contact: terada@cbms.k.u-tokyo.ac.jp or sese.jun@aist.go.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

Genome-wide association studies (GWASs) have identified hundreds

of loci associated with various complex human traits (Welter et al.,

2014). These studies conduct screening of individual single nucleo-

tide polymorphisms (SNPs) using statistical tests to assess the associ-

ation of each SNP with a phenotype. However, this procedure is

known to cause the ‘missing heritability’, namely, a large proportion

of heritability remains unexplained by loci identified (Maher, 2008),

hence it is increasingly important to evaluate combinatorial effects

of SNPs (Wei et al., 2014).

Several types of software have been developed to detect inter-

actions among SNPs related to a phenotype (Purcell et al., 2007;

Zhang and Liu, 2007; Calle et al., 2010; Wan et al., 2010; Kam-

Thong et al., 2012; Van Lishout et al., 2013). However, few methods

can simultaneously overcome two major problems. One is that statis-

tical validity is not performed. Most methods that can enumerate

higher-order interactions do not evaluate statistical significance of the

results. The other is that a combination size is limited in practical ap-

plication. Existing statistical techniques such as logistic regression and

multifactor dimensionality reduction can be used to find combinator-

ial effects. When we investigate all combinatorial effects, these tech-

niques have to be applied to all possible combinations, which is too

computationally intensive. Both problems need to be overcome if

high-order interaction analysis is to be successfully performed.

A recently proposed statistical method called Limitless Arity

Multiple-testing Procedure (LAMP) (Terada et al., 2013) provides a

possibility of detecting statistically significant higher-order inter-

actions. LAMP is a multiple testing procedure for listing statistically

significant combinatorial effects by introducing a theoretical upper

bound of family-wise error rate tighter than Bonferroni correction.

Its application to GWAS analysis may uncover synergistic effects of

SNPs associated with diseases.
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We therefore developed LAMPLINK, a software that incorpor-

ates LAMP with a widely used GWAS analysis software PLINK

(Purcell et al., 2007). Applied to the 1000 Genomes Project data, it

detected a combination of five SNPs accumulated in the Japanese

population with statistical significance.

2 Methods and implementation

LAMPLINK is implemented by adding options for detecting statis-

tically significant high-order interactions of SNPs to PLINK (version

1.07), allowing for use of all options and files in LAMPLINK.

Figure 1 shows a typical analytical procedure for detecting SNP

combinations using LAMPLINK. LAMPLINK performs a case–con-

trol analysis for GWAS data using Fisher’s exact test or chi-squared

test, and enumerates statistically significant combinations associated

with a given phenotype. The additional options are shown in

Supplementary Table S1, and the details of LAMPLINK are

described in Supplementary Text. LAMPLINK runs with C and

Python 2.7 on Linux.

2.1 Detection of statistically significant SNP

combinations
The ––lamp option with ––model-dom (or ––model-rec) can be

used for enumerating statistically significant SNP combinations

(Procedure 1 in Fig. 1a). The input and output filenames are specified

with the ––file (or ––bfile for binary format) and ––out op-

tions, respectively. When you set ––model-dom, LAMPLINK detects

statistically significant combinations of SNPs according to a dominant

exclusive model, whereas ––model-rec uses a recessive exclusive

model. These two genetic models are defined in Supplementary Text.

LAMPLINK results are exported to files:

‘<lamp_out_filename>.lamp’ and ‘<lamp_out_filename>.lamplink’.

The former file reports all SNP combinations statistically significantly

associated with the phenotype. The latter file reports detailed informa-

tion about each SNP in a format similar to the result generated by

PLINK for association analysis. All columns of the result files are listed

in Supplementary Table S2.

2.2 Elimination of redundant SNP combinations
Procedure 1 may end up listing combinations of SNPs that are in the

same linkage disequilibrium (LD) region, which may prevent under-

standing of SNP–phenotype associations. The ––lamp-ld-remove

option is useful to filter out uninformative combinations (Procedure

2 in Fig. 1a). Using this option eliminates SNP combinations whose

members have r2 higher than the user-specified threshold, on the as-

sumption that they are located in the same LD region. If all r2 scores

computed for SNP pairs in each chromosome are higher than the

threshold, the combination is removed.

3 Analysis of exome data

We applied LAMPLINK to human exome data provided by the

1000 Genomes Project (The 1000 Genomes Project Consortium,

2010), including 12 758 SNPs and 697 individuals from seven popu-

lations. We demonstrated a case–control study by regarding 105

Japanese individuals as cases and the remaining as controls. We de-

tected combinations of SNPs accumulated in Japanese with statis-

tical significance. All of the settings and commands for this

demonstration are described in Supplementary Text. The experi-

ments were run on a machine with an Intel Xeon E5-2680v2 proces-

sor at 2.6 GHz running Red Hat Enterprise Linux 6.4.

We compared the time performance of LAMPLINK with the

––epistatic option in PLINK, which exhaustively analyzes the

relationship of pairs of SNPs to a phenotype. The calculation time of

LAMPLINK was 21.281 s, whereas PLINK required over 150 min

to investigate all pairs of SNPs, showing that LAMPLINK has the

ability to identify combinatorial effects of SNPs within a short time

despite investigating all possible combinations of SNPs. A detailed

time performance analysis of LAMPLINK is provided in

Supplementary Text.

Procedure 1 detected 106 statistically significant SNP combin-

ations, including 10 SNP combinations that consisted of three or

more SNPs (Supplementary Table S3). These combinations could

not be detected by PLINK.

Figure 1(b) illustrates two statistically significant combinations

(IDs 3 and 10 in Supplementary Table S3). ID 3 consisted of three

SNPs located within the genes PCDHGA1, VPS13C and VNN3.

These SNPs are located within different genes on different chromo-

somes (Fig. 1d). ID 10 consisted of five SNPs. Four SNPs are located

within the same gene MTRR, and hence this combination is elimi-

nated in Procedure 2 (Fig. 1c). We discuss these results in detail in

Supplementary Text.

These two results show that LAMPLINK has the ability to detect

statistically significant SNP combinations from genome-wide case–

control data. By replacing the phenotype with a disease, it might be

Fig. 1. Overview of LAMPLINK. (a) Workflow to detect statistically significant

SNP combinations. (b) Two significant combinations including three and five

SNPs (IDs 3 and 10 in Supplementary Table S3) detected in Procedure 1. Each

petal corresponds to the P-value of a single SNP, and the central circle repre-

sents that of the SNP combination. Color shows the adjusted P-values. The

P-value of the combination was smaller than the P-values of any single SNP,

suggesting the existence of an epistatic effect among the three SNPs.

(c) Detected combination after Procedure 2. ID 10 has been eliminated be-

cause it includes pairs of SNPs whose r2 � 0:8. (d) Manhattan plot of P-values

from the test of the association between the Japanese population and other

populations. Crosses represent significant SNP combinations in (b). The hori-

zontal line indicates the adjusted significance level (5.49e-07)
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possible to identify causal mutations of complex diseases.

LAMPLINK is the first implementation that can detect statistically

sound high-order interactions from tens of thousands of markers.

Hence, LAMPLINK may contribute to the identification of com-

binatorial effects from multiple markers by re-analysis of existing

GWAS datasets.

4 Future work

LAMPLINK currently supports two genetic models (dominant and

recessive exclusive models), but it cannot handle the combination of

recessive and dominant models (known as the jointly recessive-

dominant model for two loci; Li and Reich, 2000) due to a theoret-

ical limitation in LAMP. Future work includes supporting the jointly

recessive-dominant model as well as the threshold (Greenberg,

1981) and additive models (Neuman and Rice, 1992), which may

help solving the problem of missing heritability.

We also plan to incorporate other statistical models into

LAMPLINK for analyzing various types of data. For example, statis-

tical assessment using the Mann–Whitney U-test or a regression

model is useful to analyze numerical traits data. Additionally,

LAMP has been developed to avoid spurious results caused by a con-

founding variable (e.g. age or gender of patients) (Terada et al.,

2016). Incorporating these methods will greatly improve the versa-

tility of our software.
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