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Connecting concepts in the brain by mapping
cortical representations of semantic relations
Yizhen Zhang 1, Kuan Han1, Robert Worth 2 & Zhongming Liu 1,3,4,5✉

In the brain, the semantic system is thought to store concepts. However, little is known about

how it connects different concepts and infers semantic relations. To address this question, we

collected hours of functional magnetic resonance imaging data from human subjects listening

to natural stories. We developed a predictive model of the voxel-wise response and further

applied it to thousands of new words. Our results suggest that both semantic categories and

relations are represented by spatially overlapping cortical patterns, instead of anatomically

segregated regions. Semantic relations that reflect conceptual progression from concreteness

to abstractness are represented by cortical patterns of activation in the default mode network

and deactivation in the frontoparietal attention network. We conclude that the human brain

uses distributed networks to encode not only concepts but also relationships between

concepts. In particular, the default mode network plays a central role in semantic processing

for abstraction of concepts.
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Humans can describe the potentially infinite features of the
world and communicate with others using a finite num-
ber of words. To make this possible, our brains need to

encode semantics1, infer concepts from experiences2, relate one
concept to another3,4, and learn new concepts5. Central to these
cognitive functions is the brain’s semantic system6. It is spread
widely over many regions in the association cortex7–9, and it also
partially overlaps with the default-mode network10. Based on
piecemeal evidence from brain imaging studies11,12 and patients
with focal lesions13, individual regions in the semantic system
are thought to represent distinct categories or domains of
concepts11,13 grounded in perception, action, and emotion
systems14,15.

However, little is known about how the brain connects con-
cepts and infers semantic relations16,17. As concepts are related to
one another in the real world, cortical regions that represent
concepts are also connected, allowing them to communicate and
work together as networks18. It is thus likely that the brain
represents semantic relations as emerging patterns of network
interaction19. Moreover, since different types of concepts may
express similar relations, it is also possible that the cortical
representation of a semantic relation may transcend any specific
conceptual domain. Testing these hypotheses requires a com-
prehensive study of the semantic system as a set of distributed
networks, as opposed to a set of isolated regions. Being com-
prehensive, the study should also survey cortical responses to a
sufficiently large number of words from a wide variety of con-
ceptual domains1, ideally using naturalistic stimuli20.

Similar to a prior work1, we developed a predictive model of
human functional magnetic resonance imaging (fMRI) responses
given >11 h of natural story stimuli. In this model, individual
words and their pairwise relationships were both represented as
vectors in a continuous semantic space21, which was learned from
a large corpus and was linearly mapped onto the brain’s semantic
system. Applying this model to thousands of words and hundreds
of word pairs, we have demonstrated the distributed cortical
representations of semantic categories and semantic relations,
respectively. Our results also shed new light on the role of the
default-mode network in semantic processing.

Results
Word embeddings predicted cortical responses to speech. To
extract semantic features from words, we used a word2vec model
trained to predict the nearby words of every word in large cor-
pora21. Through word2vec, we could represent any word as a
vector in a 300-dimensional semantic space. Of this vector
representation (or word embedding), every dimension encoded a
distinct semantic feature learned entirely by data-driven meth-
ods21, instead of by human intuition or linguistic rules1,22,23. To
relate this semantic space to its cortical representation, we defined
a voxel-wise encoding model24—a multiple linear regression
model that expressed each voxel’s response as a weighted sum of
semantic features1 (Fig. 1).

To estimate the voxel-wise encoding model, we acquired
whole-brain fMRI data from 19 native English speakers listening
to different audio stories (from The Moth Radio Hour: https://
themoth.org/radio-hour), each repeated twice for the same
subject. We used different stories for different subjects in order
to sample more words collectively. We also counterbalanced the
stories across subjects, such that the sampled words for every
subject covered similar distributions in the semantic space
(Supplementary Fig. 1) and included a common set of frequent
words (Supplementary Fig. 2 and Supplementary Table 1), while
every semantic category or relation of interest was sampled
roughly evenly across subjects (Supplementary Figs. 3 and 4). In

total, the story stimuli combined across subjects lasted 11 h and
included 47,356 words (or 5228 words if duplicates were
excluded). The voxel-wise encoding model was estimated based
on the fMRI data concatenated across all stories and subjects.

By 10-fold cross-validation25, the model-predicted response
was significantly correlated with the measured fMRI response
(block-wise permutation test, false discovery rate or FDR q<0:05)
for voxels broadly distributed on the cortex (Fig. 2). The voxels
highlighted in Fig. 2 were used to delineate an inclusive map of
the brain’s semantic system, because the cross-validation was
applied to a large set of (5228) words, including those most
frequently used in daily life (Supplementary Fig. 2). This map,
hereafter referred to as the semantic system, was widespread
across regions from both hemispheres, as opposed to only the left
hemisphere, which has conventionally been thought to dominate
language processing and comprehension26.

We also tested how well the trained encoding model could be
generalized to a new story never used for model training and
whether it could be used to account for the differential responses
at individual regions. For this purpose, we acquired the voxel
response to an independent testing story (6 m 53 s, 368 unique
words) for every subject and averaged the response across
subjects. As shown in Fig. 3a, we found that the encoding model
was able to reliably predict the evoked responses in the inferior
frontal sulcus (IFS), supramarginal gyrus (SMG), angular gyrus
(AG), superior temporal gyrus (STG), middle temporal visual
area (MT), left fusiform gyrus (FuG), left parahippocampal gyrus
(PhG), and posterior cingulate cortex (PCC) (block-wise
permutation test, FDR q<0:05). These regions of interest (ROIs),
as predefined in the human brainnetome atlas27 (Fig. 3b, see
details in Supplementary Table 2), showed different response
dynamics given the same story, suggesting their highly distinctive
roles in semantic processing (Fig. 3c). Despite such differences
across regions, the encoding model was found to successfully
predict the response time series averaged within every ROI except
the right FuG (Fig. 3c), suggesting its ability to explain the
differential semantic coding (i.e., stimulus–response relationship)
at different regions.

Distributed cortical patterns encoded semantic categories.
Since the encoding model was generalizable to new words and
sentences, we further used it to predict cortical responses to
>9000 words from nine categories: tool, human, plant, animal,
place, communication, emotion, change, quantity (Supplemen-
tary Table 3), as defined in WordNet28 and are representative of
different conceptual domains. We confined the model prediction
to the voxels in the semantic system for which the model fit was
significant during cross-validation (Fig. 2). Within each category,
we averaged the model-predicted responses given every word and
mapped the statistically significant voxels (one-sample t-test, FDR
q < 0:01). This map represented each category being projected
from the semantic space to the cortex, and thus was interpreted as
the model-predicted cortical representation of each category. We
found that individual categories were represented by spatially
overlapping and distributed cortical patterns (Fig. 4). For exam-
ple, the category tool was represented by the SMG, posterior
middle temporal gyrus (pMTG), FuG, and inferior frontal gyrus
(IFG); this representation was more pronounced in the left
hemisphere than the right hemisphere. Such categories as human,
plant, and animal were also represented more by the left hemi-
sphere than the right hemisphere. The category place was
represented by bilateral PhG, dorsolateral prefrontal cortex, and
AG. In contrast, communication, emotion, change, and quantity,
showed stronger representations in the right hemisphere than in
the left hemisphere. Although the size of word samples varied
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across categories (Supplementary Table 3), the sample size was
sufficiently large for every category, since the resulting category
representation had reached or approached its maximum extent at
the given sample size (Supplementary Fig. 5). See Supplementary
Method 6 for more details about testing the effect of sample size
on categorical representation.

To each voxel in the semantic system, we assigned a single
category that gave rise to the strongest voxel response, thus
dividing the semantic system into category-labeled parcels
(Fig. 5a). The resulting parcellation revealed how every category
of interest was represented by a different set of regions, as
opposed to any single region. In addition, the distinction in left/
right lateralization was noticeable and likely attributable to the

varying degree of concreteness for the words from individual
categories. The concepts lateralized to the left hemisphere
appeared relatively more concrete or exteroceptive, whereas those
lateralized to the right hemisphere were more abstract or
interoceptive (Fig. 5b). This intuitive interpretation was sup-
ported by human rating of concreteness (from 1 to 5) for every
word in each category29. The concreteness rating was high
(between 4 and 5) for the categories lateralized to the left
hemisphere, whereas it tended to be lower yet more variable for
those categories dominated by the right hemisphere (Fig. 5c).

Co-occurring activation and deactivation encoded word rela-
tion. Through the word2vec model, we could also represent
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semantic relations as vectors in the semantic space30. Specifically,
we represented the relationship between any pair of words based
on their difference vector in word embedding. We chose word
pairs from the SemEval-2012 Task 2 dataset31. Every chosen word
pair had been human rated as an affirmative example of one of
ten classes of semantic relation: whole-part, class-inclusion,
object-attribute, case relations, space-associated, time-associated,
similar, contrast, object-nonattribute, and cause-effect (Supple-
mentary Table 4). For the first six classes, the relation vectors in
the semantic space were found to be more consistent across word
pairs in the same class than those in different classes (Supple-
mentary Fig. 6). For each of the first six classes, the relation
between every pair of words could be better identified based on
the relation vectors of the other word pairs in the same class than
those from any different class, showing the top-1 identification
accuracy from 40% to 83% against the 10% chance level (Sup-
plementary Fig. 7).

For a given word pair, their relation vector could be further
projected onto the cortex through the encoding model. For an
initial exploration, we applied this analysis to 178 word pairs that
all shared a whole-part relationship. For example, in four word
pairs, (hand, finger), (zoo, animal), (hour, second), and (bouquet,

flower), finger is part of hand; animal is part of zoo; second is
part of hour; flower is part of bouquet. Individually, the words
from different pairs had different meanings and belonged to
different semantic categories, as finger, animal, second, and
flower were semantically irrelevant to one another. Nevertheless,
their pairwise relations all entailed the whole-part relation, as
illustrated in Fig. 6a. By using the encoding model, we mapped
the pairwise word relationship onto voxels in the semantic system
(as shown in Fig. 2), averaged the results across pairs, and
highlighted the significant voxels (paired permutation test, FDR
q < 0:05). The resulting cortical map represented each semantic
relation being projected from the semantic space to the cortex,
reporting the model-predicted cortical representation of that
relation. We found that the whole-part relation was represented
by a cortical pattern that manifested itself as the co-occurring
activation of the DMN32 (including AG, MTG, and PCC) and
deactivation of the frontoparietal network33,34 (FPN, including
LPFC, IPC, and pMTG) (Fig. 6b). This cortical pattern encoded
the whole-part relation independent of the cortical representa-
tions of the individual words in this relation. The co-activation
and deactivation pattern indicated that conceptual progression
from part to whole manifested itself as increasing deactivation of
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FPN alongside increasing activation of DMN, whereas progres-
sion from whole to part was shown as the reverse cortical pattern
varying in the opposite direction, as illustrated in Fig. 6c.

Similarly, we also mapped the cortical representations of
several other semantic relations. Each relation was projected to a
distinct cortical pattern (Fig. 7). Specifically, the class-inclusion
relation, e.g., (color, green) where color includes green, was
represented by the activation of AG and MTG and the
deactivation of IFG and STG (Fig. 7b). The object-attribute
relation, e.g., (fire, hot) where fire is hot, was represented by an
asymmetric cortical pattern including activation primarily in the
left hemisphere and deactivation primarily in the right hemi-
sphere (Fig. 7c). The case relations, e.g., (coach, player) where a
coach teaches a player, was represented by a cortical pattern
similar to that of the whole-part relation (Fig. 7d), despite a lack
of intuitive connection between the two relations. The space-
associated relation, e.g., (library, book) where book is an
associated item in a library, was represented by activation of
AG and PCC and deactivation of STG (Fig. 7e). Lastly, the time-
associated relation, e.g., (morning, sunrise) where sunrise is a
phenomenon associated with morning, was also represented by a
bilaterally asymmetric pattern (Fig. 7f). A graph-based illustration

of the representational geometry further highlights the distinction
across semantic relations in terms of their bilateral (a)symmetry
and engagement of individual ROIs (Supplementary Fig. 8).
However, several nominal (human-defined) relations, e.g., similar,
contrast, object-nonattribute, and cause-effect, were projected
onto either no or fewer voxels (Supplementary Table 4 and
Supplementary Fig. 9).

The voxel-wise univariate analysis restricted the representation
of each semantic relation to one cortical pattern while ignoring
the interactions across voxels and regions. This limitation led us
to use a principal component analysis (PCA) to decompose the
cortical projection of the difference vector of every word pair in
each semantic relation. This multivariate analysis revealed two
cortical patterns that were statistically significant (one-sample t-
test, p < 0:01) in representing the semantic relation of object-
attribute, case relations, or space-associated, but only revealed one
pattern for the relation of whole-part, class-inclusion, time-
associate, or cause-effects (Supplementary Fig. 9). Interestingly,
when two cortical patterns represented one class of semantic
relation, they seemed to correspond to different subclasses of that
relation (Fig. 8). For the relation of object-attribute, one cortical
pattern corresponded to inanimate object-attribute, e.g., (candy,
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Fig. 4 Cortical representations of semantic categories. For each category, the color indicates the mean of the normalized response (or the z score)
averaged across word samples in the category (Supplementary Table 3). The color-highlighted areas include the voxels of statistical significance (one-
sample t-test, one-sided, FDR q<0:01).
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sweet), and the other corresponded to human-attribute, e.g.,
(coward, fear) (Fig. 8a). Similarly, the two cortical patterns for
case relations corresponded to agent-instrument and action-
recipient, respectively (Fig. 8b). The space-associated relation was
distinctively represented for its two subclasses: space-associated
item and space-associated activity (Fig. 8c). The cortical patterns
that represented a semantic relation, as obtained with either the
multivariate or univariate analysis, highlighted generally similar
regions (Supplementary Fig. 9).

Discussion
Using fMRI data from subjects listening to natural story stimuli,
we established a predictive model to map the cortical repre-
sentations of semantic categories and relations. We found that

semantic categories were not represented by segregated cortical
regions but instead by distributed and overlapping cortical pat-
terns, mostly involving multimodal association areas. Although
both cerebral hemispheres supported semantic representations,
the left hemisphere was more selective to concrete concepts,
whereas the right hemisphere was more selective to abstract
concepts. Importantly, semantic relations were represented by co-
occurring activation and deactivation of distinct cortical net-
works. Semantic relations that reflected conceptual progression
from concreteness to abstractness were represented by the
co-occurrence of activation in the default-mode network and
deactivation in the attention network. Interestingly, some
semantic relations could each be represented by two cortical
patterns, corresponding to intuitively distinct subclasses of the
relation. Our findings suggest that the human brain represents a
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continuous semantic space. To support conceptual inference and
reasoning, the brain uses distributed cortical networks to encode
not only concepts but also relationships between concepts.
Notably, the default-mode network plays an active role in
semantic processing for abstraction of concepts. In the following,
we discuss our methods and findings from the joint perspective of
machine learning and neuroscience in the context of natural
language processing.

Central to this study is the notion of embedding concepts in a
continuous semantic space21. Although we use words to study
concepts, words and concepts are different. The vocabulary is
finite, but concepts are infinite. We view words vs. concepts as
discrete vs. continuous samples from the semantic space. Moving
a concept in the semantic space may create a new concept or
arrive at a different concept. This provides the flexibility for using
concepts to describe the world, as is understood by the brain and,
to a lesser extent, as is expressed in language.

Moreover, concepts are not isolated but related to one another.
Since we view concepts as points in the semantic space, we
consider conceptual relationships to be continuous vector fields in
the same space. A position in the semantic space may experience
multiple fields, and different positions may experience the same
field. Thus, a concept may relate to other concepts in various
ways, and different pairs of concepts may hold the same relation4.
Because semantics reflect cognitive functions that enable humans
to understand and describe the world, we hypothesize that
the brain not only encodes such a continuous semantic space1

but also encodes semantic relations as vector fields in the
semantic space.

Machine learning leverages the notion of continuous semantic
space for natural language processing21,35,36, and provides a new

way to model and reconstruct neural responses1,24,37–39. For
example, word2vec can represent millions of words as vectors in a
lower-dimensional semantic space21. Two aspects of word2vec
have motivated us to use it for this study. First, words with similar
meanings share similar linguistic contexts and have similar vector
representations in the semantic space40. Second, the relationship
between two words is represented by their difference vector,
which is transferable to another word. For an illustrative example,
“(man−women)+ queen” results in a vector close to “king”30.
As such, word2vec defines a continuous semantic space and
preserves both word meanings and word-to-word relationships.

In addition, word2vec learns the semantic space from large
corpora in a data-driven manner21. This is different from defining
the semantic space based on keywords that are hand selected22,
frequently used1, minimally grounded41, or neurobiologically
relevant23,42. Although those word models are seemingly more
intuitive, they are arguably subjective and may not be able to
describe the complete semantic space. We prefer word2vec as a
model of word embedding, because it leverages big data to learn
natural language statistics without any human bias. We assume
that the brain encodes a continuous semantic space similarly as is
obtained by word2vec. Since word2vec is not constrained by any
neurobiological knowledge, we do not expect it to encode the
exactly same semantic space as does the brain. Instead, we
hypothesize that the word2vec-based semantic space and the
brain are similar up to linear projection (i.e., transformation
through linear encoding).

Our results support this hypothesis and reveal a distributed
semantic system (Fig. 2). In this study, the semantic system
mapped with natural stories and thousands of words resembles
the semantic system mapped with meta-analysis of the activation
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foci associated with fewer words6. As in that paper, our results
also highlight a similar set of semantics-encoded regions (Fig. 2),
most of which are associated with high-level integrative processes
that transcend any single modality8,9. However, our map of the
semantic system is largely bilateral, rather than being dominated
by the left hemisphere as suggested by Binder et al.6, although the
activation foci analyzed by Binder et al. are actually distributed on
both hemispheres (see Fig. 2 in Binder et al.6). Importantly, the
two hemispheres seem to be selective to different aspects of
semantics. Unlike prior findings43,44, our results suggest that the
left hemisphere tends to encode exteroceptive and concrete
concepts, whereas the right hemisphere tends to encode inter-
oceptive and abstract concepts (Figs. 4 and 5).

Our semantic system shows a cortical pattern similar to that
reported by Huth et al.1. This similarity is not surprising, because
both studies use similar natural speech stimuli and encoding
models. However, unlike Huth et al.1, we do not emphasize the
semantic selectivity of each region or tile the cortex into regions
associated with distinct conceptual domains. On the contrary,

none of the conceptual categories addressed in this study is
represented by a single cortical region. Instead, individual cate-
gories are represented by spatially distributed and partly over-
lapping cortical networks (Fig. 4), each of which presumably
integrates various domain-defining attributes by connecting the
regions that encode different attributes11,14,15. In this regard, our
results lend support to efforts that address semantic selectivity by
means of networks, as opposed to regions18,19.

The primary focus of this study is on semantic relations
between words. Extending the earlier discussion about the
semantic space, the relationship between words is represented by
their vector difference, of which the direction and magnitude
indicate different aspects of the relationship. Let us use (minute,
day) as an example. Of their relation vector, the direction indi-
cates a part-to-whole relation, and the magnitude indicates the
offset along this direction. Starting from minute and relative to
day, a larger offset leads toward month or year, a smaller offset
leads toward hour, and a negative offset leads toward second. Our
results suggest that the direction of relation vector tends to be
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generalizable and transferrable across word pairs in the same
semantic relation (Supplementary Figs. 6 and 7). This leads us to
hypothesize that the semantic space includes continuous vector
fields, each of which represents a semantic relation and is likely
applicable to various concepts or even domains of concepts.
When a vector field is visualized as many field lines, the points
(i.e., concepts) that each field line passes through are related to
one another by the same semantic relation (as illustrated by
Fig. 6a).

In a nominal relation (e.g., whole-part), each word pair takes a
discrete sample from the underlying vector field (Fig. 6a). Pro-
jecting a number of such relational samples onto the cortex
reveals one or multiple cortical patterns that encode the relation.
Such cortical patterns often manifest themselves as co-occurring
activation and deactivation of different regions (Figs. 6, 7, and 8).
We interpret this co-activation and co-deactivation as an emer-
ging pattern when the brain relates two concepts that hold a
meaningful relation, reflecting the progression from one concept
to the other. This pattern encodes generalizable differential
relations between concepts, as opposed to concepts themselves,
serving differential coding that transcends any conceptual
domain or category (Fig. 6). Speculatively, this network-based
coding of semantic relation is an important mechanism that
supports analogical reasoning45, e.g., matching similar relations
with different word-pair samples31. This plausible mechanism of
the brain might further facilitate humans learning new concepts

by connecting them to existing concepts through established
semantic relations.

It is also noteworthy that a semantic relation as defined by
human intuition may not exactly match the relation as repre-
sented by the brain. It is possible that a nominal relation may be
heterogeneous and contain multiple subclasses each being
represented by a distinct cortical pattern. Results obtained with
multivariate pattern analysis (MVPA) support this notion
(Fig. 8). It is also reasonable that a nonsensical relation, e.g.,
object-nonattribute, does not have any cortical representation
(Supplementary Fig. 9).

Although we view word relations and categories as distinct
aspects of the semantic space, the two aspects may engage
similar cortical networks under specific circumstances. For
example, our results indicate that the space-associated relation
and the place category are represented by similar cortical pat-
terns (Figs. 4f and 7e). This is unsurprising because the space-
associated word pairs are often associated with place. Such a
relation-category association is intrinsic to natural language
statistics, and similarly applies to the time-associated rela-
tion and the quantity category. This does not imply that the
semantic relations are always associated with specific semantic
categories (Supplementary Fig. 10). There is no evidence for a
generalizable relation-category association. See Supplementary
Method 5 for more details about evaluating the association
between relations and categories.
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patterns were min–max normalized to [−1, 1]. The table lists the top-4 word pairs, of which the cortical projection was most similar (in terms of cosine
similarity) with the first (left) or second (right) cortical pattern associated with each relation. See Supplementary Fig. 9 for results about other relations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15804-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1877 | https://doi.org/10.1038/s41467-020-15804-w |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


We interpret the co-activation/deactivation patterns as “anti-
correlated networks” with respect to the cortical representations
of semantic relations. This interpretation is reasonable given the
notion of “activate together wire together”. Task-related patterns
of cortical activation resemble those emerging from spontaneous
activity or resting state networks46. In the context of semantics,
the anti-correlated networks reported herein encode a semantic
relation, or the direction in which one concept relates to another.
For example, conceptual progression from part to whole has a
cortical signature as co-occurring activation in DMN and deac-
tivation in FPN (Fig. 6b). The opposite direction from whole to
part involves the same regions or networks but reverses their
polarity in terms of activation or deactivation. In this example,
the cortical co-activation/deactivation pattern is nearly identical
to the anti-correlated networks observed with resting state
fMRI47, and therefore it is likely to be intrinsic and supported by
underlying structural connections.

Our results suggest that DMN is involved in cortical processing
of not only concepts but also semantic relations. This finding
underscores the fact that DMN plays an active role in language
and cognition10,48–51, rather than only a task-negative and default
mode of brain function32. In particular, several semantic rela-
tions, such as whole-part and class-inclusion, are all mapped onto
DMN (Figs. 6 and 7), suggesting that DMN is likely associated
with the semantic regularity common to those relations. Indeed,
words being whole or class are more abstract and general,
whereas those being part or inclusion are relatively more detailed
and specific. As such, these relations all indicate (to a varying
degree) conceptual abstraction. This progression involves DMN,
increasing or decreasing its activity as a concept (of various types)
becomes more abstract or specific, respectively. Moreover,
concrete concepts, e.g., tool, plant, animal, are represented by
regions outside the DMN, whereas more abstract concepts,
e.g., communication, emotion, quantity, are represented by
cortical regions that reside in, or at least overlap with, DMN
(Figs. 4 and 5).

These observations lead us to speculate that DMN underlies a
cognitive process for abstraction of concepts. This interpretation
is consistent with findings from several prior studies51,52. For
example, Spunt et al. have shown that conceptualizing the same
action at an increasingly higher level of abstraction gives rise to
an increasingly greater responses at regions within DMN52.
Sormaz et al. have shown evidence that activity patterns in DMN
during cognitive tasks are associated with whether thoughts are
detailed, rather than whether they are task related or unrelated51.
In contrast to DMN, another network, FPN, seems to play an
opposite role in semantic processing. FPN is often activated by
attention-demanding tasks and is intrinsically anti-correlated
with DMN47. Our results suggest that FPN is increasingly acti-
vated when the brain is engaged in conceptual specification.

Although our experimental design is justifiable by practical and
methodological considerations, it is worth further noting poten-
tial limitations, additional justifications and future directions. In
this study, we used different stories for different subjects to collect
a large set (47,356 words) of stimulus–response samples for
training the encoding model. It is logistically difficult to acquire
enough data from a single subject. A typical fMRI experiment
lasts <2 h to avoid fatigue, while >11 h of fMRI scans as needed
for the desired sample size would be too long to be realistic. This
study design might be of potential concern that individual dif-
ferences, e.g., laterality26,53, are confounded with the words used
for model training. If a subset of subjects is overrepresented for
one semantic dimension and a different subset is overrepresented
for a different dimension, the trained encoding model would
reflect the idiosyncratic variation across individuals. To mitigate
this concern, we had counterbalanced the stories across subjects.

By counterbalancing, the stories for different subjects similarly
sampled the semantic space (Supplementary Fig. 1), the semantic
categories or relations of interest (Supplementary Figs. 3 and 4),
as well as a common set of frequently used words (Supplementary
Fig. 2). In addition, the use of audio stories as naturalistic stimuli
gave rise to highly reproducible cortical responses across subjects,
as shown in prior studies20 and reinforced by our results (Sup-
plementary Fig. 11). See Supplementary Method 2 for more
details on testing the effects of individual variance.

It might appear counterintuitive that some intuitive semantic
relations, e.g., similar and contrast, did not map onto any
informative voxels despite an adequate sample size (Supplemen-
tary Fig. 9). In fact, it is not surprising at all because such relations
are both symmetric. For example, (hot, cold) holds a contrast
relation, while (cold, hot) also holds the same relation. Likewise,
the similar relation is also symmetric. In contrast, other relations,
e.g., whole-part, and case relations, are asymmetric. The relation
is directed such that flipping two words in a pair changes the
relation. Since we use differential vectors to evaluate word rela-
tions, our method is more suited for addressing asymmetric
relations, instead of symmetric relations.

In this study, the sample size varied across categories or rela-
tions. A potential concern might be that the varying sample size
could influence the area to which a category or relation was
projected. However, this was not a flaw in study design and did
not invalidate our findings. Note that the sample-size difference is
intrinsic to how English words are distributed across categories or
relations. It was our intention to limit our samples to established
datasets from published studies with human behavioral data
available and associated with words or word relations29,31.
Moreover, there was no significant correlation between the
sample size and the number of voxels that represented a category
(r= 0.0017, p= 0.99) or relation (r ¼ �0:24; p ¼ 0:50).

Central to this study, we bridge linguistic models and fMRI
data during naturalistic audio-story stimuli. Our findings about
cortical representations of semantic categories or relations are
based on generalizing a predictive model beyond the data used to
train the model. While the generalization is supported by our
results on model cross-validation and testing, it is desirable to
validate some of our model-predicted findings with experimental
data in future studies. Importantly, our computational model-
based strategy enables high-throughput investigation of how the
brain encodes concepts and relations beyond what is feasible for a
single experiment. Hypotheses informed by the model may also
lend inspiration to future experimental studies. Moreover, it will
also be useful to incorporate neurobiological principles and
refines the word2vec model in order to improve the correspon-
dence between the word embedding and the word representation
on the human cortex.

Methods
Subjects, stimuli and experiments. Nineteen human subjects (11 females, age
24.4 ± 4.8, all right-handed) participated in this study. All subjects provided
informed written consent according to a research protocol approved by the
Institutional Review Board at Purdue University. While being scanned for fMRI,
each subject was listening to several audio stories collected from The Moth Radio
Hour (https://themoth.org/radio-hour) and presented through binaural MR-
compatible headphones (Silent Scan Audio Systems, Avotec, Stuart, FL). A single
story was presented in each fMRI session (6 m 48 s ± 1 min 58 s). For each story,
two repeated sessions were performed for the same subject.

Different audio stories were used for training vs. testing the encoding model.
For training, individual subjects listened to different sets of stories. When
combined across subjects, the stories used for training amounted to a total of 5 h
33 m (repeated twice). This design provided a large number of stimulus–response
samples beneficial for training the encoding model, which aimed to map hundreds
of semantic features to thousands of cortical voxels. For testing, every subject
listened to the same single story for 6 m 53 s; this story was different from those
used for training.
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In an attempt to sample a sufficiently large number of words in the semantic
space, we intentionally chose audio stories of diverse contents. Since different
subjects listened to distinct (training) stories, we further counterbalanced the
stories across subjects. For different subjects, the stories included different words
(2492 ± 423) but sampled similar distributions in the semantic space
(Supplementary Fig. 1)54. For each semantic category or relation of interest, the
associated words were roughly evenly sampled across subjects (Supplementary
Figs. 3 and 4). The stories presented to each subject also included a set of common
words used frequently in daily life (Supplementary Fig. 2). In total, the training
stories include 5228 unique words. By counterbalancing the stories across subjects,
we attempted to avoid any notable sampling bias that could significantly confound
the idiosyncratic variation across subjects with the variation of the sampled words
across subjects. See Supplementary Method 1 for more details.

Data acquisition and processing. T1 and T2-weighted MRI and fMRI data
were acquired in a 3T MRI system (Siemens, Magnetom Prisma, Germany) with
a 64-channel receive-only phased-array head/neck coil. The fMRI data were
acquired with 2 mm isotropic spatial resolution and 0.72 s temporal resolution
by using a gradient-recalled echo-planar imaging sequence (multiband= 8, 72
interleaved axial slices, TR= 720 ms, TE= 31 ms, flip angle= 52°, field of view=
21 × 21 cm2).

Since our imaging protocol was similar to what was used in the human
connectome project (HCP), our MRI and fMRI data were preprocessed by using
the minimal preprocessing pipeline established for the HCP (using software
packages AFNI, FMRIB Software Library, and FreeSurfer pipeline). After
preprocessing, the images from individual subjects were co-registered onto a
common cortical surface template (see details in55). Then the fMRI data were
spatially smoothed by using a gaussian surface smoothing kernel with a 2 mm
standard deviation.

For each subject, the voxel-wise fMRI signal was standardized (i.e., zero mean
and unitary standard deviation) within each session and was averaged across
repeated sessions. Then the fMRI data were concatenated across different sessions
and subjects for training the encoding model.

Modeling and sampling the semantic space. To represent words as vectors, we
used a pretrained word2vec model21. Briefly, this model was a shallow neural
network trained to predict the neighboring words of every word in the Google
News dataset, including about 100 billion words (https://code.google.com/archive/
p/word2vec/). After training, the model was able to convert any English word to a
vector embedded in a 300-dimensional semantic space (extracted through software
package Gensim56 in python). Note that the basis functions learned with word2vec
should not be interpreted individually, but collectively as a space. Arbitrary rota-
tion of the semantic space would end up with an equivalent space, even though it
may be spanned by different semantic features. The model was also able to extract
the semantic relationship between words by simple vector operations30. Individual
words were extracted from audio stories using Speechmatics (https://www.
speechmatics.com/), and then were converted to vectors through word2vec.

Voxel-wise encoding model. We mapped the semantic space, as modeled by
word2vec, to the cortex through voxel-wise linear encoding models, as explored in
previous studies1,24,38,39. For each voxel, we modeled its response to a word as a
linear combination of the word features in the semantic space.

xi ¼ ai þ biy þ εi; ð1Þ

where xi is the response at the i-th voxel, y is the word embedding represented as a
300-dimensional column vector with each element corresponding to one axis (or
feature) in the semantic space, bi is a row vector of regression coefficients, ai is the
bias term, and εi is the error or noise.

Training the encoding model. We used the (word, data) samples from the training
stories to estimate the encoding model. As words occurred sequentially in the audio
story, each word was given a duration based on when it started and ended in the
audio story. A story was represented by a time series of word embedding sampled
every 0.1 s. For each feature in the word embedding, its time-series signal was
further convolved with a canonical hemodynamic response function (HRF) to
account for the temporal delay and smoothing due to neurovascular coupling57.
The HRF-convolved feature-wise representation was standardized and down-
sampled to match the sampling rate of fMRI.

It follows that the response of the i-th voxel at time t was expressed as Eq. (2)

xiðtÞ ¼ ai þ biyðtÞ þ εiðtÞ: ð2Þ
We estimated the coefficients ðai; biÞ given time samples of ðxi; yÞ by using

least-squares estimation with L2-norm regularization. That is, to minimize the
following loss function defined separately for each voxel.

Li ¼
1
T

XT

t¼1

xi tð Þ � ai � biy tð Þð Þ2þλi k bi k22; ð3Þ

where T is the number of temporal samples, and λi is the regularization parameter
for the i-th voxel.

We applied 10-fold generalized cross-validation25 in order to determine the
regularization parameter. Specifically, the training data were divided evenly into ten
subsets, of which nine were used for model estimation and one was used for model
validation. The validation was repeated ten times such that each subset was used
once for validation. In each time, the correlation between the predicted and
measured fMRI responses was calculated and used to evaluate the validation
accuracy. The average validation accuracy across all ten times was considered as the
cross-validation accuracy. We chose the optimal regularization parameter that
yielded the highest cross-validation accuracy. Then we used the optimized
regularization parameter and all training data for model estimation, ending up with
the finalized model parameters denoted as ðâi; b̂iÞ.

Cross validating the encoding model. We further tested the statistical sig-
nificance of 10-fold cross-validation for every voxel based on a block-wise per-
mutation test58. Specifically, we divided the training data into blocks; each block
had a 20-s duration. We kept the HRF-convolved word features intact within each
block but randomly shuffled the block sequence for each of 100,000 trials of per-
mutation. Before or after the block-wise shuffling, the word feature time series had
the nearly identical magnitude spectrum, whereas the shuffling disrupted any
word-response correspondence. For every trial of permutation, we ran the 10-fold
cross-validation as aforementioned, resulting in a null distribution that included
100,000 cross-validation accuracies with permutated data. Against this null dis-
tribution, we compared the cross-validation without permutation and calculated
the one-sided p value while testing the significance with FDR q<0:05.

Following this 10-fold cross-validation, the model had been validated against
5228 unique words. Thus, at the voxels of statistical significance, the word-evoked
responses were considered to be predictable by the encoding models. Using the
voxels of significance, we further created a cortical mask and confined the
subsequent analyses to voxels in the created mask.

Testing the encoding model. We also tested how well the encoding model could
be generalized to a new story never used for model training and further evaluated
how different regions varied in their responses to the same input stimuli. For this
purpose, the trained encoding model was applied to the testing story, generating a
voxel-wise model prediction of the fMRI response to the testing story.

x̂iðtÞ ¼ âi þ b̂iyðtÞ; ð4Þ
where yðtÞ is the HRF-convolved time series of word embedding extracted from the
testing story.

To evaluate the encoding performance, we calculated the correlation between
the predicted fMRI response x̂i and the actually measured fMRI response xi . To
evaluate the statistical significance, we used a block-wise permutation test58 (20-s
window size; 100,000 permutations) with FDR q<0:05, similar to the analysis for
cross-validation.

Since the measured fMRI responses to the testing story were averaged across
sessions and subjects, the average responses had a much higher signal to noise
ratio, or lower noise ceiling59, allowing us to visually inspect the encoding
performance based on the response time series and to exam the response variation
across regions. However, the testing story only included 368 unique words. Where
the model succeeded in predicting the voxel response to the testing story was
expected to be incomplete, relative to where the model would be able to predict
given a larger set of word samples, e.g., as those used for cross-validation.

In addition, we extracted the fMRI responses at ROIs predefined in the Human
Brainnetome Atlas, which is a connectivity-based parcellation reported in an
independent study27. We averaged the measured and model-predicted fMRI
responses within each given ROI, and compared them as time series (see Fig. 3c).
The corresponding statistics regarding the location, size, and prediction
performance of each ROI are listed in Supplementary Table 2.

Mapping cortical representation of semantic categories. Using it as a predictive
model, we further applied the estimated encoding model to a large vocabulary set
including about 40,000 words29. At each voxel, we calculated the model-predicted
response to every word and estimated the mean and the standard deviation for the
response population and normalized the model-predicted response to any word as
a z value.

Then we focused on the model prediction given 9849 words from nine
categories: tool, human, plant, animal, place, communication, emotion, change,
quantity (Supplementary Table 3). See Supplementary Method 3 for more details
about collecting samples for semantic categories. Every word had been rated for
concreteness, ranging from 1 (most abstract) to 5 (most concrete). For each word,
we used word2vec to compute its vector representation, and then used the voxel-
wise encoding model to map its cortical representation.

As words were grouped by categories, we sought the common cortical
representation shared by those in the same category. For this purpose, we averaged
the cortical representation of every word in each category, and thresholded the
average representation based on its statistical significance (one-sample t-test, FDR
q < 0:01). We evaluated whether a given category was differentially represented by
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the left vs. right hemisphere, by counting for each hemisphere the number of voxels
associated with that category. We also evaluated the semantic selectivity of each
voxel, i.e., how the voxel was more selective to one category than the others. For a
coarse measure of categorical selectivity, we identified, separately for each voxel of
significance, a single category that resulted in the strongest voxel response among
all nine categories and associated that voxel with the identified category (or by
“winners take all”).

Assessing word relations in the semantic space. Vector representations of
words obtained by word2vec allow word relations to be readily extracted and
applied with simple vector arithmetic30. For example, an arithmetic expression of
“hand− finger+ second” in the semantic space leads to a vector close to that of
“hour” in terms of cosine similarity. In this example, the subtraction extracts the
relationship between hand and finger, which is intuitively interpretable as a whole-
part relationship as a finger is part of a hand. It follows that the addition transfers
this whole-part relationship to another word second, ending up with the word
hour, while a second is indeed part of an hour.

Beyond this illustrative example, we examined a number of word pairs that held
one out of ten classes of semantic relations, as defined in or derived from the
SemEval-2012 Task 2 dataset31. In this dataset, individual word-pair samples were
scored by humans (by crowdsourcing) in terms of the degree to which a word pair
could be viewed as an illustrative example of a specific semantic relation. The score
ranged from −100 to 100 with −100 being the least and 100 being the most
illustrative. For each class of semantic relation, we only included those word pairs
with positive scores such that the included word pairs were affirmative samples that
matched human understandings in a population level. We excluded the reference
relation and separated the space-time relation into space-associated and time-
associated relations. In brief, the ten semantic relations (and their sample sizes)
were whole-part (178 pairs), class-inclusion (113), object-attribute (63), case
relations (106), space-associated (58), time-associated (44), similar (160), contrast
(162), object-nonattribute (69), cause-effect (107). See details in Supplementary
Table 4. Also see Supplementary Method 3 for details about collecting samples of
semantic relations.

We investigated how generalizable semantic relations could be represented by
differential vectors in the semantic space by using a leave-one-out test for each class
of semantic relation. Specifically, we used the differential vector between any pair of
words as the vector representation of their relation (or the “relation vector”). For a
given class of semantic relation, we calculated the cosine similarity between the
relation vector of every word pair in the class and the average relation vector of all
other word pairs in the same class (or the “matched relational similarity”) and
compared it against the cosine similarity with the average relation vector in a
different class (or the “unmatched relational similarity”). The matched relational
similarity indicated the consistency of relation vectors in the same class of semantic
relation. Its contrast against the unmatched relational similarity was evaluated with
paired t-test (FDR q<0:001). See more details in Supplementary Method 4 and the
related results in Supplementary Fig. 6.

Mapping cortical representation of semantic relation. Applying the encoding
model to the differential vector of a word pair could effectively generate the cortical
representation of the corresponding word relation. With this notion, we used the
encoding model to predict the cortical representations of semantic relations. For
each class of semantic relation, we calculated the relation vector of every word pair
in that class, projected the relation vector onto the cortex using the encoding
model, and averaged the projected patterns across word-pair samples in the class.
For the averaged cortical projection, we tested the statistical significance for every
voxel based on a paired permutation test. In this test, we flipped every word pair at
random for 100,000 trials. For every trial, we calculated the model-projected cor-
tical pattern averaged across the randomly flipped word pairs, yielding a null
distribution per voxel. Against this voxel-wised null distribution, we compared the
average voxel value projected from non-flipped word pairs and calculated the two-
sided p value with the significance level at FDR q < 0:05. The resulting pattern of
significant voxels was expected to report the primary cortical representation of each
semantic relation of interest.

Complementary to the voxel-wise univariate analysis, we also applied an
MVPA to the cortical projection of word relations60. Unlike the univariate
analysis, MVPA was able to account for interactions between voxels and uncover
likely multiple cortical patterns associated with each semantic relation of
interest. Specifically, given a class of semantic relation, we concatenated the
cortical pattern projected from every word-pair samples in that class and
calculated a covariance matrix describing the similarity of representations
between samples61,62. By using principal component analysis (PCA), we
obtained a set of orthogonal components (i.e., eigenvectors), each representing a
cortical pattern that accounted for the covariance to a decreasing extent. We
chose the top-10 principal components and calculated the pattern-wise cosine
similarity between every component and the cortical projection of every word-
pair sample. For each component, we averaged the cosine similarity across all
samples of the given semantic relation and tested the statistical significance
based on one-sample t-test (p<0:01). Specifically, for any relation with multiple
significant components, we grouped and sorted the word pairs based on their
corresponding cosine similarities with each component. For each component, we

listed the top-4 word pairs with the highest cosine similarity in order to gain
intuitive understanding as to whether the component was selective to a sub-class
of that relation. See more details in Supplementary Method 7.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw and processed imaging datasets, as well as the supplementary data that support
the findings of this study, are shared via a public repository in the Open Science
Framework (https://osf.io/eq2ba/). The DOI of this dataset is https://doi.org/10.17605/
OSF.IO/EQ2BA. The raw imaging datasets will also be shared via the OpenNeuro
platform (https://openneuro.org/).

Code availability
The code for training and testing the voxel-wise encoding model is also shared via the
public repository in the Open Science Framework (https://osf.io/eq2ba/).
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