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Molecular dynamics simulations 
and experimental studies 
reveal differential permeability 
of withaferin‑A and withanone 
across the model cell membrane
Renu Wadhwa1,6, Neetu Singh Yadav2,6, Shashank P. Katiyar2, Tomoko Yaguchi1, 
Chohee Lee1,3, Hyomin Ahn1,3,4, Chae‑Ok Yun3,4,5, Sunil C. Kaul1* & Durai Sundar2*

Poor bioavailability due to the inability to cross the cell membrane is one of the major reasons for 
the failure of a drug in clinical trials. We have used molecular dynamics simulations to predict the 
membrane permeability of natural drugs—withanolides (withaferin-A and withanone) that have 
similar structures but remarkably differ in their cytotoxicity. We found that whereas withaferin-A, 
could proficiently transverse through the model membrane, withanone showed weak permeability. 
The free energy profiles for the interaction of withanolides with the model bilayer membrane 
revealed that whereas the polar head group of the membrane caused high resistance for the passage 
of withanone, the interior of the membrane behaves similarly for both withanolides. The solvation 
analysis further revealed that the high solvation of terminal O5 oxygen of withaferin-A was the major 
driving force for its high permeability; it interacted with the phosphate group of the membrane that 
led to its smooth passage across the bilayer. The computational predictions were tested by raising and 
recruiting unique antibodies that react to withaferin-A and withanone. The time-lapsed analyses of 
control and treated cells demonstrated higher permeation of withaferin-A as compared to withanone. 
The concurrence between the computation and experimental results thus re-emphasised the use 
of computational methods for predicting permeability and hence bioavailability of natural drug 
compounds in the drug development process.

Drug design and development is a multidimensional and extensive regimen. Many potent drugs fail in later 
stages of trials leading to huge loss of time and resources. Inappropriate pharmacokinetics of molecules is one 
of the major causes of such failure. These pharmacokinetic properties generally include low bioavailability, 
short elimination half-life and variable behavior due to genetic or environmental factors. Especially for orally 
administered drugs, bioavailability is very critical for proper absorption that largely depends on their solubility 
and membrane permeability.

In eukaryotic systems, both active and passive transport modes are available for the transport of a mol-
ecule through a lipid membrane1. Active transport requires ATP to transport the molecule across a membrane, 
while passive transport involves diffusion of molecule across the membrane without any external assistance or 
energy input. However, the rate of passive diffusion across a bilayer is proportional to the partition coefficient 
between membrane and external medium, diffusion coefficient of the compound through the membrane, and 
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concentration gradient of compounds across the bilayer. Further, the important physico-chemical properties 
responsible for the process of membrane binding and diffusion are lipophilicity, molecular weight and polarity2.

Studies on characterization and kinetics of drug permeability have shown that majority of molecules get 
absorbed in the body via passive diffusion for which a drug must penetrate the apical membrane3,4. Thus, passive 
transport across the apical cell membrane represents an essential step of drug design, bioavailability and efficacy. 
Membrane penetration potential analysis of candidate drugs becomes important for elimination of molecules 
that may fail later due to poor bioavailability or chose the ones with specificity for only the diseased cells.

Withanolides (C28-steroidal lactones), a class of secondary metabolites from Solanaceae plant family are long 
known to possess anti-cancer5–10, anti-stress, anti-neurodegenerative11, and anti-microbial activities12. Withaf-
erin-A extracted from Ashwagandha (Withania somnifera) has been studied the most amongst all withanolides 
that share the same core structure13. Interestingly, despite having quite similar structures, Withaferin-A (Wi-A) 
and Withanone (Wi-N) differ remarkably in their activities. Wi-A is a C1, C6 epoxy compound carrying hydroxyl 
groups on C13 and C27, while Wi-N is a C6, C7 epoxy compound having hydroxyl groups on C7 and C8 (Fig. 1). 
Wi-N, although less potent as compared to Wi-A in cytotoxic assays for cancer cells, has been earlier shown to 
be safe for normal cells14–17. Various factors such as molecular size, structural conformations, type and position 
of the functional groups affect the interactions of withanolides with their biological targets. Permeability across 
cell membrane can also be anticipated to be the reason behind this differential activity.

Though experimental18–20 and theoretical studies21–23 have been carried out in the past for investigating 
drug permeability, Molecular Dynamics Simulations (MDS) is now widely used for the estimation of partition 
of a drug in a membrane24,25. Since in vivo studies of intestinal membrane permeability are expensive and may 
prove potentially harmful for the volunteers, the in vitro models such as partitioning in isotropic system26,27, 

Figure 1.   The 2D pictorial representation of the natural compounds: (A) withaferin-A and (B) withanone. (C) 
The representation of the system used in MD simulations: a drug molecule (in vdw representation at the top of 
membrane) interacts with and traverse through a bilayer surrounded by water.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2352  | https://doi.org/10.1038/s41598-021-81729-z

www.nature.com/scientificreports/

transport across artificial membranes28 and transport across cultured epithelial cell monolayer29,30 have been the 
valuable tools. However, these models do not take into account the molecular properties of membrane that play 
an important role in governing the permeability of a solute. Computational methods, on the other hand, hold 
remarkable potential to investigate the structure-permeability relationships. Nonetheless, full atom computational 
models of membranes such as POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), POPS (1-palmitoyl, 
2-oleoyl-sn-glycero-3-phosphoserine) etc. have been used to study the interactions of small molecules with the 
membrane and their permeability characteristics. These membrane models exhibit the structural and dynamic 
features of membrane bilayer, which have been investigated and verified by MDS31,32.

Cholesterol is one of the major components of eukaryotic cell membrane and also reported to have a large 
effect on the membrane permeability33. Generally solute permeability across the high cholesterol content mem-
branes is low34–36. By measuring the potential of mean force (PMF) barriers of dynamic drugs, hypericin and its 
derivatives, it has been reported that cholesterol significantly influences the permeation of these molecules37. 
It was shown that the calculated rate of permeation is lower at high cholesterol content due to increase in PMF 
barrier. Therefore, adding cholesterol molecules to POPC lipid membrane helps in bringing the simulation 
environment closer to the actual cell membrane system. Such mixed membrane models have been used suc-
cessfully to predict the permeability of drugs such as ibuprofen, cimitedine, six-β-blocker, aliphatic amine, and 
carboxylic acid drugs using the MDS38,39.

The partition of a drug could be either predicted by long nano-second classical MDS40,41, or by the Potential 
of Mean Force (PMF) methods42,43. Using MDS on various fluorescent azaaromatic probes on water-membrane, 
it has been earlier shown that the probe localization is determined by the electrostatic dipole–dipole and van der 
Waals interactions44. Further, it was also shown that 2,6 Bis (1H-Benzimidazole-2-yl) pyridine (BBP) preferred 
to locate around 15-16 Å from the DPPC (1,2dipalmityol-sn-glycero-3-phosphatidycholine) membrane center42. 
A MDS study of 17 amino acids in lipid bilayer showed that the partitioning of charged and polar side chain 
amino acids were accompanied by water defects45. Furthermore, the solute size, polarizability and free energy of 
transfer from water to membrane also affected the transfer of solute from water into membrane.

In the present study, we have elucidated the mechanism of permeation of two natural drug molecules (Wi-A 
and Wi-N) through POPC bilayer using computer simulations, which were further validated by recruiting 
unique withanolide-recognizing antibodies in cell-based assays. In-spite of having very little difference in their 
structures, Wi-A molecules successfully crossed the bilayer with low free energy associated with it, while the 
passage of Wi-N was associated with high free energy barrier. We present here a computational assay which 
would be useful for predicting permeation and bioavailability of drug compounds in drug development process.

Methods
Parameterization and placement of withanolides.  The geometry optimization and the charge of 
Wi-A and Wi-N molecules were calculated at 6-31G* level by using GAMESS-US40 and further refinement was 
carried out by using Restrained Electrostatic Potential Fit (RESP) using the RED-Tool package41. In each system, 
one drug molecule was placed in the aqueous phase by aligning the the plane of the molecule with the plane of 
the membrane (Fig. 1).

Molecular dynamics (MD) simulations.  Three MD simulations- (1) POPC membrane, (2) POPC mem-
brane having Wi-A, and (3) POPC membrane with Wi-N, were carried out. The model membrane was com-
posed of POPC and cholesterol molecules, where, the starting structures were taken from a 2 μs long equilibra-
tion simulation data46. The bilayer membrane model consisted of 70 POPC and 35 randomly placed cholesterol 
molecules per layer or leaflet. All simulations were run using TIP3P water models47 and amber Lipid14 force field 
parameter48. It has been earlier shown that Lipid14 is a good choice for molecule permeability calculations49, all 
the structures were converted to the Lipid14 naming convention by using charmmlipid2amber.py script, avail-
able with Amber Tools v18. The prepared models were then completely solvated using 7499 TIP3P water mol-
ecules. To attain the charge neutrality, adequate numbers of Na+ and Cl– ions were added in each simulation box.

Equilibration and production procedure.  The solvated membrane in the simulation box was then equil-
ibrated using a slightly modified version of the multi-step protocol50. Briefly the procedure consisted of altering 
cycles of steepest descent (1000 steps) and conjugate gradient energy minimization (1000 steps) followed by 
position restrained MD with strong harmonic restraints on all non-hydrogen atoms of the bilayer membrane 
and solvent. In successive steps, the positional restraints were gradually relaxed. The detailed description of the 
minimization and equilibration protocol can be found in the supplementary material S1. All the energy mini-
mization and MD simulations were run using the SANDER modules of the AMBER18 program suite51. All the 
three systems (Control, POPC-Wi-A, and, POPC-Wi-N) were equilibrated using a slightly modified version of 
the multi-step protocol The production simulations for all the systems were run for 600 ns in NPT ensemble 
using GPU accelerated version of the PMEMD program of AMBER simulation suite52,53. The temperature and 
pressure of the systems were kept restrained to 310 K above the crystalline fluid/liquid phase transition tempera-
ture and 1 atm respectively using the Langevin thermostate, while the aniosotrophic Berendsen barostat50 was 
used for pressure control. All bonds involving hydrogen atoms were constrained using the SHAKE algorithm. 
Short range electrostatics were calculated up to 10 Å and the Particle Mesh Ewald51 algorithm was used to cal-
culate the long-range electrostatics. An integration time step of 2 fs was used, and structures were saved every 
picosecond resulting in around 6,00,000 structures. Since the transition of withanolides from bulk phase to lipid 
starts at ~ 33 ns, the analysis was performed on the last 570 ns of the datausing the CPPTRAJ module of Amber 
suite.
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Potential of mean force (PMF) simulations.  The potential of mean force (PMF) free energy profiles 
for the partitioning of drug compounds were calculated using umbrella-sampling simulations. The withanolides 
were placed on the water phase on top of the membrane. Using a pulling rate of 1 Å/ns, the drugs were then 
pulled out from the aqueous phase towards the center of bilayer membrane system for a total of 38 Å (force 
constant of 1.5 kcal/mol/Å2) in the NPT ensemble with semi-isotropic pressure coupling scheme. During the 
simulations, snapshots were saved every 1 Å from the top (z = 38) of membrane to center (z = 0) generating 38 
windows. The results were calculated for one bilayer, and due the symmetry of membrane it was assumed that 
the other half behaves similarly. This was achieved by reflecting the data along z axis and adding 37 or 38 win-
dows depending on whether or not the window at z = 0 Å was reflected as well. Each umbrella sampling window 
was run for 30 ns of production run with the force constant of 3.0 kcal/mol/Å2, totaling ~ 1 μs of sampling per 
permeant. Configurations were saved every 1 ps. Further, to calculate the PMF, the biased distributions were 
reweighted using Weighted Histogram Model (WHAM)54,55.

Diffusion and resistance calculations.  Theoretically, the permeability coefficient of a molecule can be 
computed from an atomistic simulation-based PMF approach via the inhomogeneous solubility diffusion per-
meability model56. Here, the permeation is divided into a three-step process: (a) involving the partitioning of a 
permeant from the aqueous phase on the side of leaflet, (b) diffusion across the bilayer and (c) partitioning from 
the other side of bilayer into aqueous phase.

where, R(z) is the resistivity of every “slice” of the membrane at position “z”. w(z) is the PMF, D(z) is the local 
position specific diffusion coefficient, which can be calculated by the Hummer’s positional autocorrelation exten-
sion of Wolf-Roux estimator57. A detailed discussion on the computation of local diffusion coefficient D(z) has 
been reviewed elsewhere58–60.

Area per lipid (APL).  Molecular packing of a lipid bilayer is described by APL. In molecular dynamics simula-
tion, a pure lipid bilayer has the normal along z direction. The APL can be calculated by following equation:

where,Lx , Ly is the box length in x, y direction. Nlipid indicates the total number of lipid molecules in one leaflet.

Order parameter.  The ordering of lipid acyl chains was determined by the calculation of order parameter SCD. 
This quantity can be directly compared to experimental SCD values obtained by 2H NMR or 1H-13C NMR. Since 
SCD is also a measure of relative orientation of the C-D bonds with respect to the bilayer normal, it can be calcu-
lated according to the following equation:

where θ is the angle between the bilayer normal and vector joining C-D (actually C-H in the current simulation), 
and <  > represents an ensemble average.

Statistical geometry.  To investigate the effect of drug permeation on the structure of membrane, the statistical 
geometry approach was used. The analysis was initiated by partitioning the space contained in the simulation 
box by means of Delaunay Tessellation61. The detailed description of the method can be found elsewhere50,60,61. 
In this study, the Delaunay tetrahedron was formed between the heavy atoms of POPC (Phosphate), cholesterol 
(Oxygen) and water (Oxygen). The local structure of a system can be quantified by the distortion of Delaunay 
tetrahedra, which has been defined in terms of a parameter called tetrahedrality (T) defined as follows62:

where li , lj,l2 are the edge length and the mean length of a tetrahedra, respectively. For a perfectly regular tetra-
hedron, the tetrahedrality is 0; an increasing deviation from regularity causes a corresponding increase in the 
parameter.

The free energy, diffusion and resistivity were calculated using umbrella sampling, while the other properties 
were derived by classical all-atom MDS data.

Generation of anti‑Withaferin‑A and anti‑Withanone antibodies.  Wi-A and Wi-N were extracted 
from dried Ashwagandha leaves as described in a previous study15. Mixture of Wi-A/Wi-N (1:1) along with 
Freund’s adjuvant was used as antigen to immunize the mice for monoclonal antibody generation. The resulting 
clones (~ 30) were screened with affinity ELISA and one clone L7C3-6 (WiNA Ab) was isolated that reacted to 
Wi-A and Wi-N in fixed cells. The clone was established as hybridoma. Affinity purified antibody was used for 
this study.
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Cell culture and treatments.  Human normal (TIG-3, MRC5 and WI38) and cancer (breast carcinoma-
MCF-7, melanoma-G361 and osteosarcoma-U2OS) cells were obtained from Japanese Collection of Research 
Bioresources (JCRB, Japan). The cells were authenticated by the source. Cells were frozen in -80 °C and LN2 in 
multiple vials and were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco BRL, Grand Island, 
NY, USA) and treated either with Wi-A or Wi-N at about 60% confluency. Internalization of Wi-A and Wi-N 
was detected by immunostaining with the anti-WiNA Ab raised in our laboratory. The treated cells were also 
immuno-stained with a variety of other antibodies that included anti-γH2AX (Millipore #07-627), anti-ATR1 
(Abcam, #ab4471), anti-CHK1 (Cell Signaling #2345S), anti-p53 (Santa Cruz. #sc-126) and anti-CARF antibody 
was raised in our laboratory63.

Results and discussion
Membrane architecture.  In order to validate our simulation protocol, few parameters like Area Per Lipid 
(APL), electron density, Lipid order and Tetrahedrality were calculated in control as well as in presence of Wi-A 
and Wi-N molecules, which were compared to the experimentally observed values.

Area per lipid (APL).  The compactness of a biomembrane is measured by area per lipid. Addition of a 
permeant alters the density of a membrane. For the liquid-crystalline phase of POPC membrane, a number 
of APL values have been reported, depending upon the temperature: 68 Å2 at 303K64, 62 Å2 at 323 K, 66 Å2 at 
310K65, 63 Å2 at 310K66, 62 Å2 at 310K67. In our MD simulations, the APL for the control POPC membrane 
was ~ 60.22 ± 0.06 Å, which increased slightly to 60.27 ± 0.055 Å2 and 60.28 ± 0.06 Å2 in the presence of Wi-A 
and Wi-N respectively. This was in line with a previous report that used POPC membrane with similar simula-
tion conditions68. This suggested that the passage of drug molecule has no overall major effect on the membrane 
architecture. The experimental APL values, as reported earlier, generally vary from 63.0 to 68.3 Å264–67. The 
discrepancies between the calculated and the experimental values of APL could be attributed to the presence of 
cholesterol molecules in the biomembrane. Using 13C-NMR spectroscopy on POPC membrane, it has been ear-
lier reported that addition of 50% cholesterol caused ordering of the POPC membranes by losing the entropy69.

Electron density profile.  Generally, thickness of the bilayer is determined by the electron density profile 
measured by the X-ray scattering of liquid-crystalline membranes64,66,67. The electron density profiles (EDP) were 
calculated by assuming an electron charge equal to the atomic number minus the atomic partial charge located at 
the center of each atom. The electron density profile decomposed into various groups as water, drug molecules, 
choline (CHOL), phosphate (PO4), glycerol, carbonyl (COO), methylene (CH2), unsaturated CH=CH and ter-
minal methyl’s (CH3) is plotted in Fig. 2. The density profile for POPC bilayer in control is shown in Fig. 2A. 
Almost similar trends were obtained in case of Wi-A and Wi-N (Supplementary Fig. 1). From Fig. 2A, it is clear 
that in case of all atom density, three distinct domains are visible. While the flat region >|25| Å represents an 
aqueous phase, the unimodal distribution peak at ~ 15 Å corresponds to the interface region, containing lipid 
head-groups and water. Similar peaks were also observed for the phosphate atom, choline and carbonyl groups. 
The drop in the density represents the inner part of the bilayer, where the alkyl chains of the phospholipid reside. 
The decrease in water density, from bulk to middle of bilayer, indicates that no water molecule has traversed the 
lipid tail. In each case (Fig. 2A, Supplementary Fig. 1), the electron density profiles were symmetrical, almost 
overlapping, with water penetrating up to the carbonyl groups, leaving the terminal methyl groups dehydrated in 
agreement to the experimental results. The simulated electron density profile indicated that the parameters cho-
sen for the MD simulations reproduces the membrane geometry at a good level. On the contrary, the electron 

Figure 2.   (A) Electron density profile of different components in Control POPC membrane. (B) Density profile 
of Withaferin-A (Wi-A) and Withanone (Wi-N) with respect to normal membrane.
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density profile of Wi-A and Wi-N clearly showed that the preferable locations for withanolides (in due course of 
MD simulation) was close to lipid head group region (Fig. 2B).

Order parameter (SCD).  The order parameters of POPC membrane acyl chain in presence of Wi-A and 
Wi-N are shown in Fig. 3. The calculated order values follow a similar trend as previously reported in simula-
tions and experiments70,71. The carbon-2 atoms of the sn-1 and sn-2 chains displayed different order parameters 
owing to different alignment of the acyl chains in the region. Experimentally, it has been observed that the SCD 
of C-D bonds near the head group in the sn-1 chains are greater than the sn-2 chains71. Similar behavior was 
observed for the calculated lipid systems. The unsaturated chain of POPC showed a drop at the carbon 9 and 10 
due to double bond. Further, the high SCD value of sn-1 chain indicated a high order of acyl chain as compared 
to oleyl chain of POPC. The plot revealed that for the sn-1 chain (1) a maximum SCD of 0.2 near the aqueous 
phase, (2) the SCD is slightly high for the first five segments as a plateau and (3) from the sixth carbon, the value 
gradually decreases up to ~ 0.07. In case of sn-2 oleyl chain, (1) a maximum SCD of ~ 0.19 near the aqueous phase, 
(2) a distinguishing drop at C2′ to 0.15 and (3) a characteristic minima ~ 0.02 indicates the double bond of the 
oleyl chain70. The calculated order parameter showed the acceptable agreement between the experimental and 
calculated values. However, the small differences could be attributed to the inherent error of theoretical methods 
applied for the derivation of SCD values from NMR spectroscopy and simulations.

Voronoi/delaunay tessellation and interspatial arrangement.  Traversing the membrane by a drug 
molecule is likely to result in the distortion of the spatial arrangement of the bilayer. Statistical geometry analy-
sis provides an elegant approach to investigate the local geometrical arrangement of the molecules. Delaunay 
tessellation portions the 3D space into series of non-overlapping tetrahedra. In this study, the tetrahedrality 
distribution for control, Wi-N and Wi-A was uni-modal that peaked at ~ 0.5 depicting a regular arrangement 
of atoms, which was not perturbed by the traversing of bilayer by the drug molecules (Fig. 4). However, the 
long tail of tetrahedrality distribution, associated with low probability, indicated the formation of few irregular 
tetrahedral arrangements. Taken together, the variation of APL, electron density, Lipid order and Tetrahedrality 
variation suggested that the traversing of drug molecules had no effect on the over all architecture of the bilayer. 
Fraction of Native Contacts (Q) between drug and POPC lipid (Supplementary Fig. 4) showed that both the 
drug molecules had interaction preferences for the lipid tail region as compared to the polar head region. This 
behavior could be attributed to the hydrophobic nature of the drugs as well as lipid molecules. Further, Wi-A was 
observed to interact more with lipid tail region in comparison to Wi-N.

Orientation and insertion depth of withanolides in the membrane.  Withanolides are overall 
hydrophobic molecules (Fig. 1, Table 1). However, they carry different functional groups at various positions 
that influence their orientation and position of steroids in the membrane. The probability distribution for angle 
of Wi-A was calculated. It is defined by the atoms C18 “head” and C25 “tail” respectively that connected the two 
opposite positions with respect to bilayer normal. Similarly, for Wi-N, the vector was drawn between the C19 
and C25 atoms. The Fig. 5 shows the tilt angle between membrane normal and steroidal axis, where both the 
drug molecules adapt different orientations. The multimodality of Wi-A tilt angle distribution suggested that 
it does not assume a single well-defined orientation, but instead has a wide distribution of orientation. The tilt 

Figure 3.   Order parameter (Scd) as function of the position of the carbon atoms. The panels (A–C) correspond 
to the Scd of control, Withaferin-A (Wi-A) and Withanone (Wi-N), in sn-1(-  -) and sn-2 (-  -) hydrocarbon 
chains.
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Figure 4.   Distribution of tetrahedrality (T) values for control (A) Withanone (B) and Withaferin-A (C).

Table 1.   The comparison of chemical and physical properties of the Withanolides. SASA solvent accessible 
surface area, QlogKp predicted skin permeability, QlogS predicted aqueous solubility.

Propeties Withaferin-A Withanone

Molecular weight 470.61 g/mol 470.61

SASA 726.72 706.52

Polar surface area 96.4 96.4

Hydrogen bond donor 2 2

Hydrogen bond acceptor 6 6

QlogKp − 4.0 − 3.03

QlogS − 5.14 − 5.4

logP 3.8 3.1

logD 3.58 2.2

Figure 5.   Tilting of withaferin-A (Wi-A) and withanone (Wi-N) molecules with respect to the membrane 
normal.
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angle distribution of Wi-N was unit-modal (that peaked at ~ 100°) that indicated a well-defined orientation. For 
instance, the conformation of Wi-A is imposed by the polar hydroxyl groups at the C13, C24, C27 atoms and 
methyl groups at C14, C16, C21, C27 position (Fig. 1). This particular configuration imposed a specific vertical 
orientation (i.e. parallel to bilayer normal) position, such that the hydrophobic groups were solvated by the lipid 
tails and the polar groups (O5 and O4) can form hydrogen bonds with other polar parts of the membrane72. In 
addition to orientation, another major degree of freedom was given by the positions of the withanolides relative 
to the membrane center of mass, which is the insertion depth in the membrane (Table 2). As expected, because 
of their overall lipophilic nature, these molecules tend to localize below or near the ester groups of POPC at the 
interface between polar or apolar regions of the membrane. Similar locations for other steroids are reported in 
literature72. The different orientations acquired by Wi-A and Wi-N while passing through the lipid membrane is 
shown in Supplemetary Figs. 2 and 3, respectively.

Potential of mean force (PMF).  In the solubility-diffusion model, the calculation of PMF is a critical 
component for the estimation of membrane permeability. It corresponds to the relative solubility of a permeant 
in solution versus the membrane interior. The respective permeability of Wi-A and Wi-N from water phase to 
the interior of membrane is shown in Fig. 6. Considering the first part of the curves, from bulk water region to 
the polar head group, the high free energy values for Wi-N as compared to Wi-A is clearly evident. This indi-
cated that the bilayer is a more preferable location for Wi-N than Wi-A. However, the portioning in bilayer was 
critical. While proceeding deeper in the bilayer that corresponds to the glycerol region, both the drug molecules 
displayed a free energy decrease, with a deep free energy minima at ~ 20 Å (Wi-A) and ~ 8 Å (Wi-N). Therefore, 
this region could be considered as the preferably partitioned region for both the withanolides. The rightmost 
part of Fig. 6 shows the change in free energy characterizing the permeants in hydrocarbon tail region (bilayer 
core). Here, both drugs showed an increase in free energy, highlighting the barrier effect inserted by the lipid 
hydrocarbon tail. However, the differences in free energy values were small for both the drug molecules. From 
the PMF, it is clear that the bulk region is unfavorable for Wi-N. The ΔG value between the bilayer midplane and 
for free energy minimum for Wi-N is also smaller than that for Wi-A. This implied a smaller barrier for passing 
from one leaflet to the other for Wi-N when compared to Wi-A.

The variation in free energy value for both permeants moving from bulk water phase into the membrane 
could be attributed to the increase in density (Fig. 2B). Density profile clearly showed that the preferable locations 
for withanolides were symmetric and close to lipid head groups (the densest region of bilayer). This location, as 
well as the tilt angle distribution (Fig. 5, Table 2) was in good agreement with the minima of the PMF implying 
that they were energetically favorable. For hydrophilic molecules, the lipid tail represented the main barrier to 
permeation, while for hydrophobic molecules, partition is more favored in the middle of a bilayer than at lipid/
water interface. The difference in the PMF values can be attributed to the hydrophobicity of the drug molecules. 
logP is the measure of lipophilicity of a molecule in un-ionized water, while logD is the measure of the same in 

Table 2.   Distance of the drug molecules from the phosphate atom of membrane (mean and standard 
deviation in 500 ns).

Withanolides Membrane location

Wi-A 29.60 ± 8.12

Wi-N 31.16 ± 8.01

Figure 6.   Change in the free energy (kcal/mol) of withaferin-A (Wi-A) and withanone (Wi-N) across the 
POPC-Cholesterol bilayer.
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ionized environment (Table 1). As majority of known drugs are likely to be charged at physiological pH, using 
logP to describe their lipophilicity could be misleading. logP alone describes the partition coefficient of a neutral 
(uncharged) molecule, hence logP offers an advantage in such (neutral stage) cases. The difference in the value 
of logP and logD can also be used as a measurement for understanding the effect of charge distribution on the 
surface of molecule. Because POPC membrane is highly chemically diverse, its hydrophilic layers provided 
charged environment to the incoming molecules. The logP value of Wi-A (logP = 3.8) was slightly higher than 
that of Wi-N (logP = 3.1), but logD value of Wi-A (logD = 3.58) was much higher than that of Wi-N (logD = 2.2). 
Besides, the interior of lipid membrane favored the transport of lipophilic molecules. This suggested that in 
charged environment, Wi-A is more lipophilic than Wi-N and hence this charge distribution over the surface of 
Wi-A and Wi-N could explain the selective permeability of the Wi-N. Therefore, the free energy for passage of 
Wi-A molecules in the lipid head region is lower, while Wi-N experiences a high-energy barrier while crossing 
the membrane-water region. A video showing the permeation of Wi-A across the normal bilayer is included in 
the supplementary material (Supplementary Video 1: Wi-A_permeability.mov).

Diffusion and resistivity.  The second key component of the solubility-diffusion model is the diffusivity/
Resistivity. The above results indicated that transfer of Wi-A across the bilayer tail region is less energy-driven 
and hence favorable as compared to Wi-N. Further, to check the resistivity exhibited by the bilayer on the drug 
molecules, the resistance exerted by the bilayer on both the natural drug molecules were calculated and shown in 
Fig. 7. The variation in resistivity showed a high resistance for Wi-N molecule in the lipid head region, while the 
resistance experienced in the bilayer tail region is almost similar for both Wi-A and Wi-N drug molecules. From 
the electron density (Fig. 2B), PMF (Fig. 6) and resistivity variation (Fig. 7), it is evident that the head part of the 
membrane was primarily resisting the passage of natural drug molecule across the bilayer, while the hydrophilic 
region was offering almost similar barrier/resistance for both the withanolides. Between Wi-A and Wi-N, the 
lipid head group region seemed to play a key role in determining the easier passage of Wi-A drug molecule as 
compared to Wi-N drug molecule.

Solvation and hydrogen bond.  Though both the withanolides possess similar structure, the results indi-
cated a favorable passage for Wi-A across the bilayer polar region. To understand the differences associated 
with this phenomenon, the average numbers of water molecules in the first hydration shell (number of water 
molecules in the 3.5 Å radius of oxygen atom) were calculated for the drug molecules. The boxplot representa-
tion showed a higher solvation of Wi-A as compared to Wi-N, where the average solvation of epoxy oxygen is 
similar for both the permeants (Fig. 8). Though subtle differences could be observed for other oxygen atoms, in 
Wi-N, the average water solvation was ~ 6 water molecules for rest of five oxygen atoms. However, for Wi-A, all 
the oxygen atoms were more solvated with ~ 7 water molecules. Further to get a clear picture of water dynamics 
around the drug molecules, the hydrogen bond lifetime between water molecule and drug oxygen atoms was 
investigated. Oxygen of water has a natural tendency to form hydrogen bond with other electronegative atom 
and hydrogen atom of water has the similar tendency to form hydrogen bond. Both the drug molecules have 
several –OH group that can form hydrogen bonds with water molecules; both water and drug molecules could 
act as hydrogen bond donor and acceptor in the formation of hydrogen bond. Depending upon the accessibility 
as well as the ambient environment, the interaction between the water and drug molecules may differ. Therefore, 
the calculation of hydrogen bond lifetime was expected to provide a measure for the elucidation of water dynam-
ics around drug molecules leading to the favorable passage of Wi-A when compared to Wi-N. The maximum 
lifetime (in picoseconds) of hydrogen bond formed between water and the terminal O4 (~ 4.98) and O5 (~ 5.10) 

Figure 7.   Diffusion and Resistivity profiles of withaferin-A (Wi-A) and withanone (Wi-N) molecules across the 
bilayer.
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oxygen atom of the Wi-A as compared to other oxygen atoms of Wi-A is shown in Table 3. While, in case of 
Wi-N the average maximum lifetime was found to be ~ 3.27 ps and ~ 3.69 ps respectively for O4 and O5 atoms.

Radial distribution function (RDF).  This analysis was carried out to track the passage of Wi-A molecule, 
which forms hydrogen bond with water, phosphate and oxygen atoms of the POPC atoms. The RDF between 
the oxygen atoms of Wi-A and lipid phosphate (Fig. 9A) and lipid nitrogen (Fig. 9B) was plotted. The nearest 
neighbor peak was clearly visible at ~ 3.5 Å and 4 Å for the phosphorus and nitrogen groups respectively. In case 
of phosphorus, the second nearest-neighbor peak was also pronounced at ~ 5 Å. Among all the oxygen atoms 
of Wi-A, a strong interaction with lipid phosphate was observed with O5 followed by O1 and O4 atom. Simi-
larly, the O5 and O4 atoms again showed a high interaction with the lipid nitrogen atom. In case of Wi-N, the 
epoxy oxygen seemed to interaction with the lipid phosphorus and nitrogen atoms; however, the strength of this 
interaction was small as compared to Wi-A (Fig. 9C,D). Though both the molecules possess similar structure, 
Wi-A could still cross the bilayer proficiently but not Wi-N. The difference between two molecules actually lies 
in the distribution of single hydroxyl group. In Wi-A, the hydroxyl group is attached to the terminal lactone 
ring, whereas in Wi-N, hydroxyl group is attached to the middle of steroidal ring. Though the number of total 
polar atoms in Wi-A and Wi-N remains the same, the position of polar atoms makes a big difference in the 
charge distribution over their surface (Fig. 1, log D values). The terminal arrangement of polar atoms in Wi-A 
provided it an advantage over the distributed polar atoms in Wi-N. Grouping of the polar atoms at just the termi-
nals made the middle surface of Wi-A continuously non-polar favoring interactions with both hydrophilic and 
hydrophobic environment. Grouped polar atoms are more capable to face the hydrophobic environment as their 
own interactions can reduce the total exposed surface area. From the high solvation (Fig. 8) of terminal polar 
groups (O4 and O5) in Wi-A as well as the strong hydrogen bond lifetime (Table 3) of same atoms along with the 
RDF analysis (Fig. 9), it can be interpreted that the interaction of terminal O5 and O4 atoms of Wi-A with polar 
atoms (water, lipid nitrogen, and lipid phosphate) of system enables the smooth transverse of Wi-A. While for 
Wi-N, no such favorable interactions were found; hence the passage of Wi-N across the normal membrane was 
associated with high-energy cost.

Figure 8.   The average number of water molecules in the first hydration shell of oxygen atoms of Withaferin-A 
(A) and Withanone (B) molecules. The indexes of oxygen atoms are as mentioned in Fig. 1.

Table 3.   Maximum hydrogen bond lifetime (in picosecond) between the oxygen atoms of Withaferin-A and 
Withanone drug molecules. Residue indexes for the oxygen atoms are as mentioned in Fig. 1

Oxygen index Withaferin-A Withanone

O 2.93 2.29

O1 3.58 2.62

O2 2.89 2.06

O3 1.32 1.11

O4 4.98 3.28

O5 5.10 3.70



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2352  | https://doi.org/10.1038/s41598-021-81729-z

www.nature.com/scientificreports/

Experimental evidence to the differential absorption of Wi‑A and Wi‑N by normal cells.  In 
order to provide the experimental evidence to the above membrane permeability analysis, we generated, for the 
first time, antibodies to Wi-A and Wi-N. As shown in Supplementary Fig. 5, 3/96 clones that initially showed 
reactivity to Wi-A and Wi-N were developed into hybridoma and were examined for their reactivity to Wi-A 
and/or Wi-N. We found that the one clone (L7C3-6) was able to detect Wi-A and Wi-N in cells treated with 
either purified compounds or i-Extract containing Wi-A and Wi-N as major components. The clone was desig-
nated as WiNA antibody. We next used anti-WiNA antibody to detect Wi-A/Wi-N in human cancer cells treated 
with purified Wi-A or Wi-N; isotype matched secondary antibodies were used as negative control. As shown in 
Fig. 10A, higher level of both Wi-A and Wi-N were detected in cells treated for 48 h as compared to 24 h. We 
extended the analysis to human normal cells. Wi-A, but not Wi-N, was detected in the normal cells incubated 
with the purified compounds for 48 h (Fig. 10B). Furthermore, we found that Wi-A and Wi-N staining in the 
nucleus, which was confirmed by confocal microscopy (Fig. 10C). Wi-A was detected clearly in the nucleus of 
cancer as well as in normal cells. In contrast, Wi-N was detected in the nucleus of cancer cells only; normal cells 
showed weak pancytoplasmic staining (Fig. 10C). In order to further support these findings, we examined the 
expression of several proteins that have been shown to be involved in anticancer activity of Wi-A and Wi-N. As 
expected, Wi-A caused stronger up-regulation of γH2AX and p53, markers of DNA damage response in cancer 
cells (shown in Fig. 10D,E). Furthermore, only the cells treated with Wi-A showed decrease in CARF protein 
signifying apoptosis (Fig. 10E). The same was not observed in Wi-N treated cells. In light of these findings that 
endorsed reliable detection of Wi-A/Wi-N in cells with our antibodies and in order to further validate the com-
putational predictions on their differential permeability, we expanded the analysis in human normal cells. We 
found that Wi-A showed strong nuclear staining both in TIG-1 and MRC5 cells and associated with activated 
DNA damage response as determined by increase in γH2AX foci, nuclear pATR and pCHK1 (Fig. 10F,G). In 
contrast, Wi-N showed faint pancytoplasmic staining. Of note, increase in the DNA-damage marker proteins 
were not detected in normal cells. These data confirmed the MD predictions for the differential permeability of 
Wi-A and Wi-N through cell membrane and suggested a mechanism for their differential activity, at least, in 
part.

In this study, a detailed computational analysis characterizing the permeation of Wi-A and Wi-N, two natural 
drug molecules across the lipid bilayer was conducted. We report that the permeation of Wi-A and Wi-N does 
not affect the membrane integrity. The values obtained by area per lipid, electron density and order parameter, 
and tetrahedrailty were almost similar for bilayer in control and as well as in presence of drug molecules, sug-
gesting no change in the overall architecture of the bilayer. Next, the PMF profile showed that the permeation of 
Wi-A across the bilayer was associated with low energy barrier and therefore, could be considered as a favorable 
transverse for Wi-A as compared to Wi-N. While the lipid head group region appeared as a determining region 

Figure 9.   Radial distribution function (RDF) between oxygen atoms of Withaferin-A (Wi-A) and Withanone 
(Wi-N) with the lipid phosphate (A,C) and nitrogen (B,D) atoms. The index and color code for each oxygen is 
as mentioned in the top right of (A).
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for the movement of drugs across the bilayer, the variation of resistivity profile confirmed the same. The polar 
head group region appeared to exert a high resistance on the passage of Wi-N as compared to Wi-A. Further, 
to elucidate the mechanics for this behavior, the solvation, RDF and hydrogen bond dynamics were calculated, 
which clearly indicated that the high solvation of terminal hydroxyl group (O5) along with tight interaction with 
polar head group atoms (phosphate/nitrogen) of the membrane, facilitate a smooth passage for Wi-A. The logP 
and logD values associated with the Wi-A and Wi-N supported these results. In spite of the fact that Wi-N also 
has similar structure like Wi-A, the lipophilicity of the molecule was less as compared to Wi-A that may account 
for its weak permeation through the membrane. This study revealed that the subtle difference associated with the 
positioning of functional groups can play a major role in transportation of drug molecules across the bilayer. The 
experimental data using unique Wi-A and Wi-N antibodies demonstrated that Wi-A indeed proficiently entered 
the cells and was detected in the nucleus by immunostaining. All together the calculated free energy profile for 
the permeation of Wi-A and Wi-N were qualitatively matching with the experimental observation. Further 
studies enrolling varying drug concentrations and more membrane models including (varying composition 
and density, representing different normal and cancer cell types and intracellular structures) are warranted. The 
study is an important step towards understanding the molecular basis of permeability of natural drug molecules.

Figure 10.   Experimental validation of differential permeation of Withaferin-A (Wi-A) and Withanone (Wi-N) 
through cell membrane. (A) Human cancer cells (U2OS) treated with Wi-A/Wi-N were immunostained with 
anti-WiNA antibody showed their presence in cells and predominantly in the nucleus. Cells treated for 24 h 
showed Wi-A, but not Wi-N. Cells treated for 48 h showed both Wi-A and Wi-N. (B) Normal cells treated 
with Wi-A for 48 h showed high intensity of Wi-A staining in the nucleus; Wi-N treated cells showed faint 
cytoplasmic staining. (C) High resolution images showing the presence of Wi-A predominantly in the nucleus of 
U2OS and TIG-3 cells. Wi-N showed weak nuclear staining U2OS cells, and pan-cytoplasmic staining in normal 
cells. (D) Wi-A/Wi-N treated cells were examined for DNA damage marker protein γH2AX showed its higher 
upregulation and activation in Wi-A, as compared to Wi-N treated U2OS cells. (E) Upregulation of γH2AX, p53 
and downregulation of CARF in Wi-A, but not Wi-N, treated cells. (F,G) Wi-A, but not Wi-N, treated normal 
(TIG-3 and MRC5) cells showed increase in γH2AX, pATR and pCHK1.
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