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KEYWORDS Abstract Background/purpose: Electrolyzed water has been identified as an effective disin-
Dentin; fectant that could represent as an alternative to sodium hypochlorite. Unfortunately, it re-
pH; mains unclear whether the texture or physical properties of dentin are affected by the
Microhardness; application of electrolyzed water of different acidities. This study was aimed to assess the in-
Electrolyzed water; fluence of electrolyzed waters with differing pHs on the demineralizing of inner dentin.
Tooth Materials and methods: The coronal superficial dentin of 20 human molars was exposed and
demineralization; further bisected into two pieces perpendicular to the dentin surface. The samples were
Mouthwashes immersed in strongly acidic electrolyzed water (AW group), neutral electrolyzed water (NW

group), 5% sodium hypochlorite (positive control, NL group), or deionized water (negative con-
trol, DW group). Microhardness of the inner layer dentin was measured at a depth of 25 and
50 um beneath the superficial surface layer every 5 up to 60 min.

Results: At a depth of 25 um, microhardness decreased with increasing immersion time in all
but the DW group. The AW group exhibited a decreasing trend from the first 5 min that became
significant after 35 min of immersion and was the most rapid decrease in the four groups. The
rate of decline in the NW group was low and similar to that of the NL group. Both NW and NL
groups exhibited significantly less demineralization than the AW group after 15 min of immer-
sion. No significant microhardness change was found at a depth of 50 um in any of the samples.
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Conclusion: AW produces a more pronounced softening of dentin than NW at a depth of 25 um.
© 2019 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

Introduction pattern similar to that of phosphoric acid-etched enamel,

Disinfection and sterilization are essential in dental and
medical field. Sodium hypochlorite (NaOCl) is one of the
dental disinfectants and a commonly used root canal irri-
gant (within 0.5%—6% concentration) in endodontic treat-
ment due to its superior bactericidal effect.’? 0.25% NaOCl
in the way of oral rinse application is reported to be
effective on reducing plaque formation and gingival
bleeding and capable of the application in periodontal
treatment.> However, 2.5% and 5.25% NaOCl used as root
canal irrigant has been verified to cause a reduction of
microhardness of dentin despite of its excellent bacteri-
cidal effect.”* The use of 1% sodium hypochlorite was also
verified to possess a softening ability on dentin,”*® however,
Pascon et al. reported that dentin immersed in 1% NaOCl
showed no significant change in both microhardness and
roughness.” Aydin et al. mentioned that 0.1% NaOCl could
cause a significant decrease of microhardness on enamel or
dentin when stored for twelve months.® Studies also
revealed a bond strength reduction of dentin being treated
with 5% NaOCL.*"'° Besides, NaOCl as a root canal irrigant
may not effectively remove the smear layer or cause
moderate to severe cytotoxicity when extruded the root
apex.'""'2 Therefore, either for the purpose of root canal
irrigation or mouth rinse, the extensive application of
NaOCl may induce a unfavorable potentiality to dentin
regardless of the concentration.

Recently, electrolyzed water (EW), a novel disinfection
system, has been identified as an effective disinfectant
that could represent an alternative to sodium hypo-
chlorite.”*~"> EW is a product of electrolysis of a dilute
sodium chloride solution in an electrolysis cell into acidic
electrolyzed water and basic electrolyzed water.'® EW is
gaining popularity as a sanitizer in the food industry with
the merits of low irritation of tissues, robust bactericidal
and virucidal effects, low cost and non-polluting.’”~"? Re-
ports have mentioned that EW is effective as a sterilizer for
medical instruments in hospitals?® and also useful for the
sterilization of dental chairs pipelines,?’ impression mate-
rial,?>?*> denture bases,’* mouth rinse?®> and root canal
irrigants'* "> in dental field.

EW can be classified according to the acidity into
strongly acidic EW, weakly acidic EW and neutral EW.?
Strongly acidic EW (AW) used as drinking water has been
reported to cause no harm to enamel or morphological
changes in mice after eight weeks of administration and
also showed significant antibacterial effects both in vitro
and in vivo, which suggest that it could be applied as an
effective mouthwash.?>?” On the contrary, other studies
found that AW caused a noticeable decalcification of
enamel exposed for more than 60 min. After seven days of
immersion in AW, exposed enamel revealed an SEM image

while seven days of immersion in NW caused no surface
texture change.?® Qing et al. have reported that AW as a
root canal irrigant caused no decrease of microhardness in
dentin.?’ Ghisi et al. demonstrated that electrochemically
activated water (similar to AW) reduced the microhardness
of dentin as other root canal irrigants within 500—1000 um
from the root canal lumen.3® According to our pilot study,
AW has a softening effect on dentin even immersed
for 5min.

As the population ages, more tooth preservation is
noted, although root exposure becomes an issue. It is also
well-known that cervical abrasion is more frequently seen
in the elderly than in younger age groups.’’*? The
increasing exposure of root surfaces makes them vulnerable
to plaque and caries. Any mouthwash used will entail a
higher frequency of contact with the dentin. Even though
AW has the potential of decreasing the microhardness on
the outmost layer of dentin, there is still no research re-
ported the influence of EW of different pH values on the
inner dentin in order to realize the possible application of
EW in mouth rinse or root canal irrigation condition.

This study was designed to measure the Vickers micro-
hardness of inner layer dentin at depths of 25 um and 50 pm
after immersion in EW at different pH values for a total
immersion time up to 60 min for realizing the penetration
ability of different pH values of EW. We hypothesized that
different acidity values of EW would have no penetration
effect on the microhardness of the inner dentin with
increasing immersion periods.

Materials and methods
Preparation of dentin specimen

Twenty intact molars extracted within one month without
caries, fillings, prosthetics, or cracks were preserved in 2%
chloramine-T solution for study. Each tooth was cut at the
cemento-enamel junction and the occlusal enamel surface
of the crown removed to expose the superficial dentin using
a low-speed diamond disc (Isomet®, Buehler, Lake Bluff,
IL, USA). The sectioned tooth piece was embedded in resin
(Resin 27-751®; Refine Tech Co., Ltd., Yokohama, Japan)
with the occlusal dentin exposed. The dentin-resin block
was further bisected perpendicular to the superficial dentin
surface using the diamond disc to expose the inner dentin
surface (Fig. 1a—c). In order to mimic the tooth surface and
also provide a better measuring surface, both of the su-
perficial and longitudinal surfaces of each half dentin-resin
block were sequentially grounded by sandpaper grits #600,
#800, #1000, #1200, #1500, and #2000 under running water
and served as dentin specimens for this study. Written
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Figure 1

informed consent was obtained from all subjects prior to
samples collection. Ethical approval was obtained from the
Institutional Review Board at Chung-Ho Memorial Hospital,
Kaohsiung Medical University (KMUHIRB—E(1)-20150083).

Preparation of immersion solutions

Four kinds of immersion media were used in this study: (1)
AW (pH = 2.4+0.04) (Mini Super Water ED-007®, Hirata
Co., Osaka, Japan) and (2) NW (pH = 6.9 +0.04) (Asahi
Pretec Aqua 21®, Asahi Pretec Co., Kobe, Japan) as the
experimental ones; (3) 5% sodium hypochlorite (NL,
pH =13.24+0.02) (Neo Cleaner®, Neo Dental Chemical
Products Co., Tokyo, Japan) as a positive control; and (4)
deionized water (DW, pH =7.44+0.01) as a negative
control.

Microhardness measurement of the longitudinal
aspect of dentin

Five dentin specimens were randomly placed into each of
the four solutions. The Vickers microhardness of the inner
layer dentin surface in each specimen prior to immersion
was tested at depths of 25 um and 50 um beneath the su-
perficial dentin surface at five points, separately, to define
the baseline microhardness at each measuring depth in
each group, using a microhardness tester (HMV-2T®; Shi-
madzu Corporation, Kyoto, Japan). Each indentation was
executed at a distance of 100 um apart from the others to
avoid superimposing.

A layer of nail varnish was applied to the longitudinal
surface (perpendicular to the superficial dentin surface) of
each specimen to protect it from the influence of the im-
mersion liquid before each immersion (Fig. 1-d). The
specimens were immersed in a beaker filled with 500 mL
immersion liquid for 5-min intervals. During the immersion
periods, a magnetic stirrer was employed to create uniform
specimen-solution contact in the beaker. Over the immer-
sion intervals, the varnished inner dentin surface was
removed by polishing with #2000 waterproof sandpaper
under running water to expose the protected dentin.
Vickers microhardness of the longitudinal dentin surface
was measured the same way as performed in the baseline
measurements at 25 um and 50 pm depths. The inner dentin
surface of each specimen was coated again with nail var-
nish for further 5-min immersion before measurement. This
procedure was repeated until the total immersion time
reached 60min. The whole procedure from specimen

Nail varnish

(d) (e) ()

Diagram of the immersion processes of a dentin block from a specimen and of preparation for hardness measurements.

preparation to microharness measurement of inner dentin
was shown in Fig. 1.

The Vickers hardness numbers (Hv) of four groups were
measured by the microhardness tester under an indentation
strength of 490.3mN (equivalent to 50g) for 15s. In-
dentations caused by the diamond indenter on each spec-
imen were observed through a microscope eyepiece, and
the lengths of two diagonal lines of the indentation were
measured to calculate each microhardness value using
built-in software.

Statistical analysis

The microhardness and amounts of change in each group at
each time point were compared and analyzed using SPSS
19.0 version statistical software. ANOVA method and
Tukey’s HSD test were conducted and significance p-value
(p <0.0038) was adjusted by Bonferroni’s correction. The
repeat measurements method of the general linear model
and Least-Significant Difference multiple comparison test
were employed to assess the effects of various solutions on
the dentin microhardness change over time and to analyze
the trends in overall microhardness change.

Results

Microhardness of the longitudinal aspect of dentin
at 25 um

The dentin microhardness over time of each group
measured at 25 pm is shown in Table 1. No significant dif-
ference was found among the four groups (p = 0.8142) at
the baseline. The AW group presented a statistical signifi-
cant difference with the NW, NL and DW groups after 15 min
immersion, while no significant difference could be seen
among the NW, NL and DW groups. The AW group showed a
decreasing tendency from the first 5 min of immersion and
presented a significant difference after 35 min immersion
(p < 0.05), however, the NW group and NL group showed no
statistical significance within the 60 min immersion period
even though a decreasing tendency was detected. After
60 min of immersion, the microhardness decreased to 25%
of baseline in the AW group, 66% of baseline in the NW
group and 71% of baseline in the NL group. There was
almost no change in the DW group. Fig. 2 reveals the time
dependent microhardness values at 25-um depth in each
group.



422

K.-K. Chen et al

Table 1  Microhardness (Average + SD) of inner dentin at 25 um and at each interval after immersion in different solutions.

NL

DW

58.71 4 4.90 A2
56.99 & 5.15 A2
53.84 4 7.48 A2
52.86 &+ 6.02 A2
50.10 + 6.40 42
49.01 £6.75 42
48.41 £ 6.45 A2
46.49 + 4.24 A2
43.87 £4.99 A2
41.90 +£2.66 A2
42.74+2.81 42
40.43 £7.43 4

Time (min) AW NW
0 59.35+1.91 42
5 48.54 + 8.40 A2
10 42.90 +8.25 *2
15 32.61+7.37 82
20 31.07+11.12 B2
25 26.61 +12.70 B2
30 23.04+7.61 B2
35 21.54 +4.32 B
40 16.74 & 3.55 B°
45 16.80+5.37 B°
50 16.80 +2.97 B°
55 14.48 +3.87 B°
60 14.93 +3.55 B°

38.814+5.74 42

57.87 4+ 3.58 42
55.06 + 7.08 “2
53.56 4 9.05 42
51.30+11.27 A2
51.26 + 8.65 A2
50.24 +9.02 42
47.66 +£7.32 %2
48.42 + 6.49 A2
44.23 +5.38 A2
42.13 £4.06 *2
43.90 +5.98 A2
42.27 +£6.81 %
40.81 +£6.85 42

57.46 +2.24 42
58.33 4 0.54 A2
56.28 4 3.76 42
56.94 + 3.48 A2
58.03 4 3.24 42
57.36 4+ 1.75 42
57.18 +2.83 42
57.55 +1.96 A2
57.2542.81 42
26.24+2.78 A2
55.86 + 3.90 A2
56.88 & 3.05 42
56.78 4 2.40 42

Different upper letters indicate statistically significant difference (P < 0.05) between solutions. Different lower letters indicate sta-

tistically significant difference (P < 0.05) between time intervals of each solution.
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Figure 2  Average microhardness measurements at the longitudinal surface 25 um beneath the superficial surface in each group
plotted against time. AW: strongly acidic electrolyzed water, NW: neutral electrolyzed water, NL: 5% sodium hypochlorite, DW:

deionized water.

Microhardness of the longitudinal aspect of dentin
at 50 um

The time-dependent microhardness of each group
measured at 50 um is shown in Table 2. The microhardness
values for the longitudinal 50-um depth showed no signifi-
cant difference among the four groups (p = 0.6307) and
were used as the baseline for the 50-um depth microhard-
ness. No significant difference was noted between the
microhardness at 0 min and 60 min immersion in any group
(p > 0.05). Fig. 3 reveals the microhardness changes over
time in the 50-um depth dentin in each group.

Discussion

The bactericidal effect of EW is known to be related with
the residual chlorine, which converts to hypochlorous acid

or hypochlorite ion.?® The concentration of residual chlo-
rine in AW (49 +1.7ppm) is greater than that in NW
(38 0.0 ppm).** It is reported that if the residual chlorine
is reduced to half of the original concentration, the
bactericidal capacity is unchanged and remains effective
within the pH range of 2.6—7.0."* However, EW possess
different degrees of acidity, pH is one of the factors needed
to take into consideration when EW is applied in the oral
environment. The bactericidal effect of AW (pH = 2.4) has
been verified to deteriorate rapidly but the pH still kept its
acidity in three month storage period, while the acidity
(pH = 6.9) and bactericidal activity of NW remains stable
over the same period.*> AW has been reported to exert a
demineralization effect on enamel, raising concern over its
effects on teeth when used as a mouthwash.?® This study
was focused on evaluating the influence of different pH
values of EW on the microhardness of dentin at various
depths.
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Table 2  Microhardness (Average + SD) of dentin at 50 pm and at each interval after immersion in different solutions.

Time (min) AW NW NL DW

0 60.13 £2.53 60.46 +4.84 61.96 +5.39 58.67 £1.75
5 60.68 +3.74 58.96 + 3.69 60.24 £ 6.74 59.11 +4.15
10 61.92 +4.18 59.30 + 3.64 59.94 +4.98 59.28 +2.52
15 60.72 +2.56 59.19 +3.85 59.94 +5.86 57.66 +2.84
20 58.89 +2.58 59.24 +3.24 59.43 £5.91 58.65 +2.56
25 61.50 +£2.24 59.59 +4.85 58.66 +5.34 58.96 +1.10
30 60.38 +£1.71 57.17 £5.04 57.63 +£4.79 58.31 £3.56
35 61.07 £1.36 59.79 £ 4.27 58.74 + 4.78 57.58 £2.30
40 58.90 + 4.68 58.99 +4.05 52.66 + 10.31 57.12 +2.86
45 59.14 +3.40 58.04 + 3.07 55.36 +5.60 57.10 £ 1.94
50 59.10 £2.03 59.02 + 3.67 54.67 +4.83 57.45 +1.48
55 59.83 £3.75 58.31 +£3.29 56.55 + 4.69 57.63 +£2.08
60 59.33 £3.17 58.92 +3.60 55.38 £4.92 57.47 £3.19

No statistically significant difference (P> 0.05) appeared in either solutions or time intervals of each solution.
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Figure 3

Average microhardness measured at the longitudinal surface 50 um beneath the superficial surface in each group

plotted against time. AW: strongly acidic electrolyzed water, NW: neutral electrolyzed water, NL: 5% sodium hypochlorite, DW:

deionized water.

In order to realize the effect of each EW solution on
inner layer dentin, the longitudinal side dentin was covered
with protective varnish to prevent direct contact by the
solution while permitting solution to contact the superficial
layer of occlusal surface dentin to simulate real-life con-
ditions. This method was similar to that adopted by Oliveira
et al. who investigated the effects of root canal irrigants on
dentin microhardness.’

The AW group showed an insignificant but distinct
decrement apart from the NW, NL and DW groups after the
first five minutes, and tended to reveal a significant dif-
ference beyond 15 min of immersion compared with that of
the other three groups. AW, similar to NW, contains
chlorine-relative substances as its main bactericidal and
organic dissolution components but differs in its low pH
(pH = 2.4). It is well known that the pH of AW is below the
critical pH for demineralization of enamel (pH = 5.2) and
dentin (pH = 6.7).% It has been reported to etch enamel in
a manner similar to that of phosphoric acid.?® AW has been

reported to maintain its low pH even though the bacteri-
cidal effect decreased. > This indicates that AW, in contrast
with NW, appears to exert two effects upon dentin, with
the chlorine moieties dissolving the organic portion and the
low pH causing demineralization.

The changes in microhardness over time of the NW and
NL groups at the 25-um depth (Fig. 1) were similar with no
significant difference (p > 0.05). It is known that NaOCl can
soften the organic portion of dentin, ¢ and will shift to HOCL
by the pH.>” Neutral electrolyzed water was reported to
have more HOCI and less volatile Cl,, which are associated
with superior bactericidal effect.>® Report has mentioned
that instead of the neutral pH and comparatively low
oxidation-reduction potential, the sterilization effect of
NW was mainly due to HOCL, one of the derivatives from
NaOCl,>® which is known to act as a deproteinizer that can
also result in dentin degradation'* and organic components
within the smear layer.*® Besides, the dentin does not
demineralize unless the critical pH is below 6.7.%°
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Therefore, it is strongly indicated that the softening effect
of dentin over time in NW is mainly originated from the
influence of HOCl and OCl™ moieties rather than the neutral
pH. AW group showed a significant decrease of microhard-
ness than that of other three groups (Fig. 1). Marshall et al.
mentioned that decreased pH of phosphoric acid increased
the dentin recession depth.®° This may explain why AW
could induce a marked decrease of microhardness in dentin
than NW. According to the results of this study, the hy-
pothesis that acidity of EW had no effect on microhardness
of dentin was disproven by the fact that EW caused a
decrease of microhardness in dentin at 25-um depth.

None of the four groups showed prominent microhard-
ness change at the 50-um depth of inner dentin after 60-
min immersion. Camps et al. have proven that dentin pos-
sesses a buffering capacity to recover most of the applied
phosphoric acid from the surface,” and the capacity is
originated from the hydroxyapatite of the mineral portion
of dentin.“®*' Marshall et al. declared that the deminer-
alization of dentin by phosphoric acid solutions at pH 2.0
and 4.0 showed a plateau soon after etching, while no
plateau seen at pH 0.09 even lasting for 30 min.>° This may
indicate that even though AW as an acidic EW (pH = 2.4)
has no capacity to demineralize the dentin at the 50-um
depth level. Accordingly, the neutral pH may lead NW to be
less deteriorate the dentin even though softening effect on
dentin is detected at the superficial layer. In other words,
the neutrality of NW provides no synergistic deterioration
effect to dentin compare to AW.

Mouthwash or root canal irrigant is basically used to
contact directly with the tooth surfaces, or the root canal
space to provide antimicrobial effect. The immersion of
dentin in different EW caused a different softening result:
(1) AW (acidic EW) induces a dissolution of organic
component of dentin from the beginning of immersion and
prolongs even at 60-min duration; (2) NW (neutral EW) ex-
erts milder and unobvious slope of softening effect to
dentin within the same immersion period. The former
causing a significant decrease of microhardness than the
latter within 25-um depth. The structure of the deminer-
alized inner layer dentin has not yet been elucidated, and
whether the bonding ability of long-term EW-exposed
dentin would be altered is not clear. Further investigation
of the long-term study of acidic EW in penetration to the
inner dentin, and of its potential effects on bonding
strength with resin composite, are needed before decisions
can be made about using it as a mouthwash or root canal
irrigant application.

EW with different pH values induced different degrees of
softening effect to the inner dentin. The most significant
softening of dentin at 25 um was caused by AW followed in
decreasing order by NW, NL and DW. There were no sig-
nificant post-immersion changes with any of the four solu-
tions at 50-um depth. From the standpoint of
microhardness, the pH of EW plays an important role in the
softening of dentin and NW is preferable to the use of
mouthwash or root canal irrigation.
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