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Emerin: One Charted “Island” in the Unexplored 
Archipelago of Nuclear Membrane Proteins

The nuclear envelope (NE) comprises two membranes (inner and 
outer) with embedded nuclear pore complexes (NPCs) and under-
lying networks of nuclear intermediate filaments formed by A-type 
and B-type lamins.1,2 The NE membrane proteome is large and 
diverse, and includes both ubiquitous and potentially cell type-spe-
cific (“unique”) proteins. Nearly 200 unique NE transmembrane 
(“NET”) proteins were identified in proteomic studies of three cell 
types: rat liver (67 proteins),3 rat skeletal muscle (29 proteins)4 and 
human leukocytes (87 proteins).5 Among leukocyte NETs, 27% 
were unique to either resting or activated leukocytes.5 Different 
subsets of NETs contribute to spatial control of the genome,6 cell 
cycle regulation,7 or cytoskeletal organization,4 through unknown 
mechanisms. The functions of most NE membrane proteins are 
unexplored. The exceptions include NE membrane proteins that 
possess either a KASH-domain or SUN-domain (which form 
LINC [links the nucleoskeleton and cytoskeleton] complexes),2 
and the LEM-domain family of proteins, named for founding 
members Lap2, emerin and Man1.8,9 This review will focus on 
emerin, an extensively studied LEM-domain protein.

Emerin is a Conserved LEM-Domain Protein

The LEM-domain is a ~40-residue helix-loop-helix fold con-
served both in eukaryotes and in prokaryotic DNA/RNA-binding 
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emerin, a conserved LeM-domain protein, is among the 
few nuclear membrane proteins for which extensive basic 
knowledge—biochemistry, partners, functions, localizations, 
posttranslational regulation, roles in development and links to 
human disease—is available. This review summarizes emerin 
and its emerging roles in nuclear “lamina” structure, chromatin 
tethering, gene regulation, mitosis, nuclear assembly, 
development, signaling and mechano-transduction. we also 
highlight many open questions, exploration of which will be 
critical to understand how this intriguing nuclear membrane 
protein and its “family” influence the genome.
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proteins.10 With one exception (Lap2 proteins have a second 
LEM-domain that binds DNA),10 eukaryotic LEM-domains 
have one known function: they directly bind a conserved chro-
matin protein named barrier-to-autointegration factor (BAF).11-14 
Atomic structures have been solved for the emerin LEM-domain 
(residues 1–47) either alone,15,16 or in complex with BAF.15

Human LEM-domain proteins are encoded by seven genes.9,17 
These proteins and genes have acquired many names; for clarity 
this review will employ the “generally used” protein names indi-
cated in Table 1. LEM-domain proteins are conserved in both 
multicellular and single-celled members of the Opisthokont lin-
eage of eukaryotes, which includes fungi and multicellular ani-
mals (“metazoans”).18 For example the nematode worm C. elegans 
genome encodes three proteins orthologous to human emerin, 
Lem2 and Ankle1.19 The evolution of the LEM-domain has been 
thoughtfully discussed.20,21 In metazoans, at least, the LEM-
domain appears to have a fundamental role in tethering chro-
matin to the NE. The fission yeast S. pombe, which lacks lamins 
and BAF, encodes two LEM-domain proteins orthologous to 
Lem2 and Man1.21,22 Man1 enriches with Swi6 (orthologous 
to human heterochromatin protein 1 [Hp1]) near telomeres.23 
Overexpression of the LEM- (“Heh”-) domain of either Man1 or 
Lem2 causes chromatin to compact near the spindle pole body,22 
consistent with the competitive release of telomeres (not centro-
meres) from sites of attachment at the NE.23 The conservation 
of LEM-domain proteins in yeast, apparently independently of 
both BAF and lamins, suggests LEM-domain proteins are intrin-
sically important for genome organization and nuclear structure.

Emerin Contributes to Nuclear “Lamina” Structure 
and Function in Multicellular Animals

Emerin and several other LEM-domain proteins (e.g., Lap2β, 
Lem2, Man1) are integral membrane proteins that localize predom-
inantly at the NE inner membrane. These LEM-domain proteins 
bind directly to lamins (nuclear intermediate filament proteins) 
and BAF,24 together forming a major component of NE-associated 
nucleoskeletal structure known as the nuclear “lamina”2,25 (Fig. 1).  
The structural inter-dependence of this “trio” of components was 
revealed by downregulating either lamin or BAF-1, or both Emr-1 
and Lem-2, in C. elegans embryos— if any one component was 
missing, the other two failed to co-assemble, with severe conse-
quences for mitotic chromosome segregation and postmitotic 
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chromatin-silencing enzyme HDAC3 (histone deacetylase 3). 
HDAC3 directly binds emerin38 and Lap2β.39 HDAC3 and the 
transcription factor cKrox co-mediate silent chromatin tethering 
to Lap2β at the NE; as noted above, these tethering complexes are 
established during mitosis,33 when the nucleoskeleton undergoes 
complex and dynamic reorganization and then reassembles nuclear 
structure.2 In all, four LEM-domain proteins—emerin,40 Lap2β,33 
Otefin (in Drosophila)41 and Lem-2 (in C. elegans)42—along with 
A- and B-type lamin filaments40,43 mediate chromatin organiza-
tion and tethering at the NE (Fig. 2). These discoveries are provid-
ing unique and unexpected insight into genome biology.44

Discovery of Emerin: Loss of Function Causes 
Emery-Dreifuss Muscular Dystrophy

The emerin gene (originally STA; renamed EMD) was identified 
in 1994 by genetic mapping45 of X-linked recessive Emery-Dreifuss 
muscular dystrophy (X-EDMD; Emery and Dreifuss, 1966).46 
EDMD is characterized by contractures of major tendons, slowly 
progressive skeletal muscle wasting and weakness, and dilated car-
diomyopathy with potentially lethal ventricular conduction system 
defects that can cause sudden cardiac arrest.47 In rare cases, EMD 
mutations cause limb-girdle muscular dystrophy or severe cardiac 
conduction defects.48,49 Two years after X-EDMD was genetically 
mapped came a surprise: emerin was revealed as a NE membrane 
protein.50,51 Emerin was the harbinger of a new category of human 
disease (“laminopathies”) caused by mutations in lamins or lamin-
binding proteins.52,53 Indeed the emerin and lamin “proteomes” 
have become a rich source of candidate disease genes. For example 
EDMD is also caused by mutations in at least five other genes: 
LMNA (A-type lamins; numerous mutations reported),54 SYNE-1 
(nesprin-1; three reported mutations),55 SYNE-2 (nesprin-2; one 
reported mutation),55 TMEM43 (LUMA; two reported muta-
tions)56 or FHL1 (four-and-a-half LIM domains 1; seven reported 
mutations).57 Four of these proteins (FHL-1 is untested) interact 

nuclear assembly.26-28 In mammalian cells certain LEM-domain 
proteins localize intriguingly, and dynamically, during mitosis. 
Lap2α (which is soluble, not membrane anchored) and BAF co-
localize on telomeres during anaphase, and during telophase form 
“core” structures on chromatin at specific regions of nuclear enve-
lope assembly near the spindle pole.29 These “core” structures tran-
siently recruit and concentrate BAF, emerin and A-type lamin(s), 
and are distinct from neighboring “non-core” regions enriched in 
Lap2β, LBR and B-type lamins.29-31 “Core” regions are NPC-free, 
whereas “non-core” regions are NPC-rich.32 The mitotic roles of 
emerin and other LEM-domain proteins in mammals are major 
open questions. Further exploration is needed both to define these 
mitotic roles, which may be shared by multiple LEM-domain pro-
teins (Table 1), and to determine their impact on genome activity, 
since mitosis appears to be crucial for LEM-domain proteins to 
establish functional (repressive) contact with silent chromatin.33

Emerin and Other LEM-domain Proteins Organize 
and Tether Chromatin at the NE

Functional overlap is a major theme for LEM-domain proteins. 
In C. elegans the two NE-localized LEM-domain proteins, Emr-1 
and Lem-2, have overlapping roles in nuclear structure, mitosis 
and development,34 and are co-essential for viability.26 The two 
fission yeast proteins, Lem2 and Man1, localize at the NE inner 
membrane and are co-essential for nuclear structure.22 In mice, 
emerin and Lem2 have overlapping roles, along with Man1, in 
the regulation of MAP kinase signaling during myoblast dif-
ferentiation.35 Emerin can also bind the N-terminal domain of 
Man1 directly,14 but whether or how this affects their functions 
is unknown. Among 16 proteins that bind emerin directly (dis-
cussed extensively below) are three “shared” partners (in addition 
to lamins and BAF) that also bind at least one other LEM-domain 
protein. These shared partners are Btf (BCL-associated tran-
scription factor 1 [BCLAF1]),36 germ cell-less (GCL)37 and the 

Table 1. Human LeM-domain gene and protein nomenclature

NCBI 
Gene 

Symbol

HGNC Gene Symbol (name) Gene 
AKA

Gene Aliases Generally used protein name(s)

LEMD1 LeMD1

(LeM domain containing 1)

LeM1 LeMP-1, CT-50 Lem1, Lem5

LEMD2 LeMD2

(LeM domain containing 2)

LeM2 NeT25, dJ482C21.1 Lem2

LEMD3 LeMD3

(LeM domain containing 3)

MAN1 MAN1 Man1

LEMD4 TMPO (Thymopoietin) LAP2 TP, LAP2, CMD1T, LeMD4, PrO0868, 
MGC61508

Lamina associated polypeptide 2

(Lap2α, β, γ, δ, ε or ζ)

LEMD5 eMD (emerin) LeMD5, STA, eDMD emerin

LEMD6 ANKLe1

(Ankyrin repeat and LeM domain containing 1)

LeM3 LeM3, LeMD6, ANKrD41, FLJ39369 Ankle1 or Lem3

LEMD7 ANKLe2

(Ankyrin repeat and LeM domain containing 2)

LeM4 LeMD7, FLJ22280, FLJ36132, KiAA0692 Ankle2

NCBi, National Center for Biotechnology information; HGNC, Human Gene Nomenclature Database.
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differentiation.35 “Backup” function might also be provided by 
unidentified isoform(s) of Lap2, since the Lap2 gene (TMPO ; 
Table 1) is upregulated in EDMD patient muscle,63 and a muta-
tion in LAP2α is genetically linked to cardiomyopathy.64

Emerin Biogenesis and Nuclear Envelope 
Localization

Emerin is a 254-residue type-II integral membrane protein with 
a proposed 23-residue hydrophobic (transmembrane) domain 
near the C-terminus, and a tiny (11-residue) lumenal domain. 
Consistent with this domain organization, newly synthesized 
(presumably soluble) emerin polypeptides in the cytoplasm are 
inserted into the endoplasmic reticulum (ER) membrane post-
translationally,65,66 possibly mediated by ATP-dependent TRC40/
Asna-1 complexes that mediate the “guided entry of tail-anchored” 
(GET) pathway.67,68 Once inserted, emerin diffuses throughout 
the contiguous membranes of the ER/NE, including the “pore 
membrane” surrounding each NPC, where the outer and inner 
NE membranes are connected. Extensive FLIP and FRAP studies 
showed membrane-anchored emerin easily “slides past” the NPC 
because its cytoplasmically-exposed domain is small (~25 kD).66,69 
Proteins with larger exposed domains (> 60 kD) fail to accumu-
late at the inner membrane.70 Alternative mechanisms to reach 
the inner membrane71,72 may not apply to emerin; emerin lacks 
“FG-repeats” and its predicted nuclear localization signal (resi-
dues 35–47)73,74 is not required for nuclear import,75 as discussed 
below (Fig. 3). Having reached the inner membrane, evidence 
suggests emerin is retained and accumulated by binding A-type 
lamins,76 for which human emerin has high (40 nM) affinity in 
vitro (Fig. 4).77 Note that emerin retention might alternatively or 
additionally require another partner disrupted by loss of A-type 
lamins. By FRAP analysis the diffusion constant of GFP-emerin 
at the NE is three times slower than the ER (0.10 ± 0.01 vs. 0.32 ± 
0.01 μm2/second respectively).66 In cells that lack A-type lamins, 
emerin is more mobile and distributes equally throughout the NE 
and ER,69,76 supporting diffusion–retention models for emerin 
localization at the NE inner membrane.66,69

On the other hand, subpopulation(s) of emerin appear to 
localize elsewhere, including the NE outer membrane and the 
plasma membrane (see below). Outer membrane localiza-
tion might be achieved by binding to high-affinity partners 
(e.g., nesprin-1 isoforms; Fig. 4B) at the NE outer membrane. 
Unconventional destinations (e.g., plasma membrane) might 
be achieved, we speculate, either by (1) direct posttranslational 
insertion of nascent emerin into alternative membrane(s), (2) dif-
fusion onto ER vesicle membranes and trafficking to the plasma 
membrane, or (3) a hypothetical mechanism that “hides” the 
hydrophobic domain and thereby allows nascent emerin to asso-
ciate as a soluble protein with partners outside the nucleus.

Unconventional Locations for Emerin Include  
the Intercalated Discs (ICDs) of Cardiomyocytes

Emerin localizes predominantly at the NE in skeletal and cardiac 
muscle.50,51 Similarly, immuno-gold EM labeling and digitonin 

with each other, and with emerin, suggesting EDMD disease is 
caused by the disruption of NE-anchored “links the nucleoskel-
eton and cytoskeleton” (LINC) complexes that include these pro-
teins2,55,58 (Fig. 2). In contrast to nesprins, SUN-proteins and lamin 
A, all of which directly transmit mechanical force,59,60 emerin is 
required to sense force and activate the downstream mechano-sen-
sitive genes IEX-1 and EGR-1.61 The mechanisms by which emerin 
senses and signals mechanical force are unknown.

Emerin is expressed in essentially all tissues.62 This suggests 
the relative mildness of EDMD disease, which mainly affects 
striated muscle, may be due to the presence of another LEM-
domain protein(s) that “backs up” or compensates for emerin 
loss, as seen for emerin and Lem2 during mouse myoblast 

Figure 1. Nuclear “lamina” structure has three fundamental compo-
nents: lamins, LeM-domain proteins and BAF (barrier-to-autointegration 
factor). These components bind each other with nanomolar affinity in 
vitro (see text). in C. elegans, loss of any one component (lamin or BAF, or 
two LeM-domain proteins [emr-1 and Lem-2]) disrupts co-assembly of 
the other two and hence blocks nuclear reassembly after mitosis.

Figure 2. Schematic depiction of the regulation, partners and 
selected functions of emerin at the nuclear envelope. Depiction of 
emerin and other LeM-domain proteins (Lem2, Man1 and Lap2β) at 
the inner membrane (iM) of the nuclear envelope. Double-headed 
arrows connect direct binding partners, including emerin (dark gray), 
SUN-domain proteins, BAF, HDAC3 and Man1. Direct binding to lamins 
is not indicated. emerin has roles in signaling, mechano-transduction, 
nuclear architecture, chromatin tethering and gene regulation. Also 
depicted are enzymes and pathways that directly target or regulate 
emerin. “L” indicates the LeM-domain. “L-prime” [L’] in Lap2β indicates 
the DNA-binding “LeM-like” domain. OGT, O-GlcNAc transferase. OM, 
outer membrane.
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NE-Targeting Regions Identified  
by Expressing Emerin Polypeptides in Cells

In two studies, cells that expressed truncated or internally-deleted 
emerin polypeptides were stained by indirect immunofluorescence 
to assess potential localization in the cytoplasm/ER (“C/ER”) or 
nucleoplasm (“NP”), or enrichment at the NE,66,75 as summa-
rized in Figure 3. Emerin residues 3–219 (comprising almost the 
entire nucleoplasmic domain) concentrate at the NE inner mem-
brane when fused to the transmembrane and lumenal domains of 
chicken hepatic lectin (CHL), a type II integral membrane pro-
tein normally found in the ER, endosomes and plasma membrane 
(Fig. 3, Emerin-CHL).66 Emerin residues 107–175 were required 
to block emerin aggregation in the cytosol (Fig. 3, Δ107–175).75 
NE enrichment was reportedly unaffected by loss of residues 
2–64, residues 1–106 or residues 175–222, and was slightly 
improved by deleting residues 67–108 (Fig. 3).75 This study also 
showed the full C-terminal half of emerin (residues 107–254) was 
sufficient to enrich at the NE (Fig. 3, GFP-Δ1–106).75

studies showed emerin is abundant at the 
NE inner membrane in HeLa cells (e.g., ref. 
78) and COS7 cells (e.g., refs 66 and 75). 
Emerin has also been detected in the cyto-
plasm (presumably ER) of various tissues 
and cell types,51,74,79,80 the NE outer mem-
brane81 and ER (consistent with its known 
biogenesis) and—most unexpectedly—the 
plasma membrane. The main caveat, in each 
case, is the specificity of emerin detection, 
since antibodies might recognize similar or 
identical epitopes on other proteins includ-
ing other LEM-domain proteins, some of 
which are located in the cytoplasm (e.g., 
Lap2α and Lap2ζ).9

Emerin was detected at the NE outer 
membrane and on ER-Golgi intermedi-
ate compartment (“ERGIC”) vesicles in 
human dermal fibroblasts, and can also 
bind β-tubulin directly in vitro.81 The 
microtubule organizing center (“centro-
some”), normally located ~1.5 μm from 
the NE, was more distant in emerin-null 
X-EDMD patient fibroblasts and in emerin-
downregulated human dermal fibroblasts 
(average distance > 3.0 μm).81 Whether 
emerin influences centrosome positioning 
via LINC complexes, emerin-dependent 
gene misregulation or other mechanisms, 
and its potential implications for mitosis are 
open questions.

Endogenous emerin was detected at the 
plasma membrane in rat cardiomyocytes and 
in heart tissue from human, rat and mouse.82-84  
One affinity-purified polyclonal antibody 
detected emerin at adhesive junctions of ICDs in human heart 
cryosections, both by indirect immunofluorescence and immuno-
gold EM.82 Another study screened 15 monoclonal emerin anti-
bodies (mAbs) by indirect immunofluorescence staining of 
ICDs: two were clearly positive, and five were faintly positive;83 
note that lack of staining is inconclusive since specific epitopes 
might be masked by ICD-specific partners or posttranslational 
modifications. Further evidence was obtained using an affinity-
purified antibody (APS20) raised in sheep against rat emerin resi-
dues 114–183, which detected the adherens junctions of rat heart 
tissue by immuno-gold EM labeling and indirect immunofluo-
rescence staining.84 These findings suggest at least two locations 
for emerin in cardiomyocytes: the NE inner membrane and the 
adherens junctions of ICDs. How emerin localizes or functions 
at adherens junctions, which mechanically interconnect neigh-
boring cardiomyocytes,85 and whether loss of this function con-
tributes to EDMD heart pathology, are critical open questions. 
Of note, two direct partners of emerin, namely β-catenin84 and 
Lmo7,86 also localize at cardiac adherens junctions.

Figure 3. Localizations of epitope-tagged emerin polypeptides in cells. Summary of the local-
ization of epitope-tagged emerin polypeptides (truncations, internal deletions or chimeras) 
expressed transiently in mammalian cells.66,75 WT, wildtype emerin; M, myc-tag; GFP, green 
fluorescent protein; F, flag tag. Plus or minus indicate polypeptide localization predominately 
at the nuclear envelope (Ne), nucleoplasm (NP) or cytoplasm/endoplasmic reticulum (C/er), 
compared with full-length emerin (residues 1–254 or 3–254).
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possible, since mutations in this region (residues 117–170) dis-
rupt binding to HDAC3, actin and lamin A (see below), all of 
which are imported into the nucleus as soluble proteins. In sum-
mary, the mechanisms of emerin enrichment at the NE are not 
yet understood, and are likely to involve a partner(s) other than 
lamins (e.g., nuclear protein 4.1R, discussed later).

Emerin residues 3–205 and 3–147 accumulated in the nucleo-
plasm, whereas residues 3–109 remained in the cytoplasm; this 
suggested residues 110–147 either possess a non-canonical NLS, 
or associate with an NLS-bearing partner (“piggyback” import; 
Fig. 3).66 Residues 117–170 are indeed sufficient for import  
(Fig. 3),66 but the mechanism and relevance to membrane-
anchored emerin are unknown. Piggyback mechanisms are 

Figure 4. Direct binding partners of emerin. (A) Proteins that bind emerin directly in vitro, grouped based on their known or proposed functions in 
mechanotransduction, nucleoskeleton, gene regulation, signaling or chromatin tethering. (B) Direct partners and equilibrium binding affinity for  
human emerin in vitro, if known.
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Lamin A

Lamins A and C (lamins A/C) are major alternatively-spliced 
products of the LMNA gene that polymerize to form A-type 
nuclear intermediate filaments that concentrate near the inner 
nuclear membrane and are a major component of the nucleo-
skeleton.2 A-type lamins have roles in chromatin tethering, epi-
genetic regulation, DNA damage repair, mechanotransduction, 
replication and development.1,95 Lamin A has 28 reported direct 
partners besides emerin including Lem2,96 Man114 and BAF.37,97 
A-type lamins are regulated by phosphorylation, SUMOylation, 
O-GlcNAcylation and other modifications (see ref. 97). Over 350 
missense mutations in the LMNA gene have been linked to over 

Direct Partners and a Mutagenesis-Based Map  
of Functional Regions in Emerin

In addition to binding lamin A and BAF (nuclear “lamina” com-
ponents), human emerin directly binds at least 14 other proteins 
(Fig. 4). Emerin has no known secondary structure other than 
its LEM-domain (residues ~4–44)16 and transmembrane domain 
(residues 223–246). To identify functional regions, two sets of 
clustered Ala-substitution mutations were generated in recom-
binant emerin (“m-series” mutations): one set targeted residues 
homologous or identical between emerin and LAP2β, postulated 
to mediate conserved or shared functions (Table 2).13 The sec-
ond set of mutations targeted residues that differ between emerin 
and LAP2β; these were predicted to disrupt emerin-specific 
functions (Table 3).37 Also tested were four human mutations 
(S54F, Q133H, P183H, deletion of residues 95–99 [Δ95–99]) 
that were unusual: each is sufficient to cause emerin-null EDMD 
disease, even though the mutant protein localizes normally and 
is expressed at normal or near-normal (~60%) levels.87,88 Emerin 
polypeptides bearing these various mutations have been tested 
in vitro for binding to as many as eight different partners: BAF, 
lamin A, GCL, Btf, YT521-b, Lmo7, HDAC3, F-actin and Man1 
(Fig. 5A). This research yielded a functional map based on the 
locations of mutations that disrupt binding to each partner  
(Fig. 5B).

Emerin Biochemistry and the Functional 
Implications of Known Partners

Few NE membrane proteins other than emerin have been stud-
ied at the biochemical level. The equilibrium binding affinity of 
emerin has been measured for eight partners in vitro (Fig. 4B). 
Human emerin binds with relatively high (4–500 nM) affinity 
to each of seven partners (nesprin-1α, GCL, lamin A, Btf, Lmo7, 
BAF and F-actin) and with lower affinity to HDAC3 (7.3 μM; 
Fig. 4B). Competition studies showed BAF and GCL compete 
with each other for binding to emerin, whereas GCL and lamin 
A can co-bind emerin.37 Six distinct emerin-containing multi-
protein complexes were purified from HeLa cell nuclei, suggest-
ing emerin might scaffold a variety of multi-protein complexes 
at the NE.89 We are still far from understanding these complexes 
or their functions. However studies of proteins that bind emerin, 
particularly lamin A, BAF, HDAC3 and GCL, discussed below, 
are beginning to illuminate daily “life” (protein-protein interac-
tions) at the nuclear envelope.

Emerin binds structural components of both the NE (e.g., 
SUN1, SUN2, nesprins)90,91 and the nucleoskeleton (lamins, 
actin)77,92 (Fig. 4). Emerin also directly binds signaling tran-
scription factors including β-catenin and Lmo7 (Fig. 4).93,94 
These various partners suggest emerin might integrate a variety 
of mechanical and signaling “inputs,” and by unknown mecha-
nisms convert these inputs into situation- or tissue-appropriate 
changes in gene activity. Indeed genes that are normally activated 
in response to mechanical force, fail to activate in emerin-defi-
cient cells.61 Selected partners and their functional implications 
for emerin and “life at the NE” are summarized below.

Table 2. Summary of mutations in “conserved” emerin residues identical 
or homologus in Lap2β13

Name Wildtype Mutated

M11 11eL 11AA

M24 24GPvv 24AAA

M30 30Tr 30AA

M34 34YeKK 34AAA

S54F* 54S 54F

m70 70DADMY 70AAMA

m76 76LPKKeDAL 76PAKADAA

m112 112GPSrAvrQSvT 112AASrAvAAAvA

m141 114SSSeeeCKDr 141AASAeeCKAA

m164 164iTHYrPv 164AAHArPA

m179 179LS 179AA

m196 196SS 196AA

m207 207rP 207AA

m214 214GAGL 214AAGA

*Sufficient to cause emery-Dreifuss muscular dystrophy.

Table 3. Summary of mutations in emerin-specific residues not con-
served in Lap2β37

Name Wildtype Mutated

45A 45rrr 45AAA

45e 45rrr 45eee

Δ95–99* 95YeeSY Deleted

Q133H* 133Q 133H

m122 122TS 122AA

m145 145ee 145AA

m151 151er 151AA

m161 161YQS 161AAA

m175 175SSL 175AAA

P183H* 183P 183H or 183T

m192 192SSSSS 192ASAAA

m198 198SSwLTr 198AAAAA

m206 206irPe 206AAPA

*Sufficient to cause emery-Dreifuss muscular dystrophy.
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Figure 5. Functional map based on emerin missense mutations that disrupt binding to specific partners. (A) Summary of binding results for each 
named partner, tested for binding to each “m-series” (clustered Ala substitutions) or eDMD-causing mutations in emerin (mutations specified in 
Tables 2 and 3). Scoring: normal binding (+), weakened binding (± and gray), and undetectable binding (black box). nt, not tested. (B) results from (A) 
mapped schematically to the emerin polypeptide. APC-L, APC-like domain. TM, transmembrane domain. (C) Schematic diagram of known phosphory-
lation sites in emerin (see Fig. 6). Hexagons, O-GlcNAc sites; circles, phospho-Ser/Thr; squares, phospho-Tyr; white, asynchronous cultures; black, 
mitotic cultures and conditions. Black with outline, sites identified in both asynchronous and mitotic cells. Double-underlined region has at least two 
O-GlcNAc sites and potentially other modifications that are uncharacterized due to the large size of the corresponding trypic peptide and poor recov-
ery by mass spectrometry.
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BAF and LEM-domain proteins (including C. elegans emerin) 
have critical role(s) in the DNA damage response and genome 
integrity. There are hints that human emerin might also influ-
ence the DNA damage response, since emerin and BAF co-asso-
ciate with the DNA repair proteins CUL4A and DDB2 within 
minutes after cell exposure to UV (UV) light.111 HeLa cells that 
overexpress laminopathy-causing mutations in GFP-lamin A,112 
and HeLa cells downregulated for emerin, both show reduced 
phosphorylation of H2AX (“γ-H2AX” response) after treatment 
with inter-strand DNA crosslinking agents such as camptothecin 
(Berk and Wilson, unpublished results).

HDAC3

Emerin associates with all core components of the nuclear  
co-repressor (NCoR) complex,89 which represses genes by stably 
binding chromatin. One NCoR component is HDAC3, which 
deacetylates specific Lys residues in the histone H4 tail to pro-
mote NCoR interaction with chromatin. Emerin also binds 
HDAC3 directly.38 In the mutation-based functional map of 
emerin, HDAC3 is sensitive to diverse mutations (Fig. 5A and B),  
and is the only known partner that is disrupted by all four 
“special” EDMD-causing mutations.38 Furthermore emerin 
association increases the enzyme activity (V

max
) of HDAC3 by  

2.5-fold in vitro, suggesting emerin enhances HDAC3-dependent 
gene silencing.38 This finding is consistent with an epigenetic 
phenotype (globally increased H4K5 acetylation) seen in emerin-
downregulated cells and emerin-null mouse fibroblasts.38 Thus 
HDAC3-emerin association may be fundamentally important 
for tissue-specific gene repression. The LEM-domain protein 
Lap2β also binds HDAC3 directly,39 and influences the levels 
of histone H4 acetylation.113 Notably Lap2β interaction with 
HDAC3 is required for the NE tethering of Lamina Associated 
Domains (LADs) of DNA, specifically LADs enriched in cKrox 
binding sites (GAGA sequence).33 These findings support over-
lapping roles for emerin and Lap2β in tissue-specific gene silenc-
ing and tethering at the NE.

Btf and GCL

Less is known about two other “shared” partners, Btf and GCL. 
Btf (BCLAF1), which binds emerin36 and Man1,9,14 is a poorly 
understood, multifunctional protein with roles in DNA dam-
age response,114,115 apoptosis,36,116,117 transcriptional regulation,118 
and development.119 In response to DNA damage, Btf localizes 
to sites of damage114 and can interact with protein kinase C δ 
to form a complex that activates the p53 promoter.115 Most Btf 
is sequestered in the cytoplasm by anti-apoptotic proteins Bcl-2 
and Bcl-xL, but then accumulates at the NE after apoptosis is 
induced.36,116 Other work suggests Btf is an mRNA splicing fac-
tor36,120,121 that associates with ribonucleoprotein complexes.118,120 
The phenotypes of Btf-null mice include polydactyly, deficient 
ex vivo T cell activation, and postnatal death due to improper 
lung development.119 Emerin also has poorly understood roles in 
regulating mRNA splice site selection by another partner, named 
YT521B.122 Why Btf associates with emerin is unknown, but one 

13 human diseases including EDMD, lipodystrophy, atypical 
Werner syndrome and Hutchinson-Gilford progeria syndrome 
(HGPS).98 Emerin missense mutations that disrupt binding to 
lamin A (Fig. 5A and B) are located centrally in emerin (residues 
70–164), and affect residues that are identical or conserved in 
Lap2β (Table 2).13

Barrier-to-Autointegration Factor

The conserved LEM-domain of emerin (and other LEM-domain 
proteins) confers direct binding to an essential chromatin protein 
named Barrier-to-Autointegration Factor (BAF).24,99 BAF is an 
89-residue (10 kD) protein that is highly conserved in multicel-
lular eukaryotes.99 A homozygous missense mutation (A12T) in 
human BAF, which appears to destabilize the BAF protein (> 
90% reduced protein level), causes Nestor-Guillermo progeria 
syndrome (NGPS).100,101 This syndrome is proposed to arise from 
reduced BAF protein. Emerin does not localize efficiently at the 
NE in NGPS cells,100 suggesting the mislocalization of emerin 
(and perhaps other LEM-domain proteins) also contributes to 
this syndrome. NGPS patients and HGPS patients share some 
clinical features including accelerated skin aging, lipoatrophy, 
osteoporosis and osteolysis.100 By contrast NGPS patients have 
no apparent cardiovascular defects, diabetes, or elevated blood 
triglycerides, which might explain why they are living longer (the 
two published patients were 24 and 32 y); HGPS patients die in 
their early teens from stroke or heart failure.102 Further study of 
NGPS may provide much-needed insight into BAF, a core com-
ponent of nuclear lamina networks that “bridges” DNA, directly 
binds LEM-domain proteins, histones H3, H4 and selected 
linker histones103,104 and influences histone posttranslational 
modifications.105 BAF can also form higher-order complexes 
with DNA and Lap2β in vitro,106 and was detected in two dis-
tinct emerin-containing complexes isolated from HeLa cells.89 In  
C. elegans, BAF has a fundamental role in attaching chromatin to 
the NE inner membrane via LEM-domain proteins; this role is 
untested in mammalian cells.

BAF is essential for chromosome segregation, cell cycle pro-
gression and post-mitotic nuclear assembly.27,107,108 As noted 
above, BAF localizes to the so-called “core” regions of anaphase 
chromosomes at the earliest stages of nuclear assembly and 
is essential to recruit lamin A and emerin to this region of the 
reforming nuclear envelope.30,31 Genetic analysis of baf-1 null 
C. elegans showed BAF also has tissue-specific functions and is 
required for the maturation and survival of the germline, cell 
migration, vulva formation and muscle maintenance.109

BAF is required for the nuclease activity of a newly character-
ized human LEM-protein, Ankle1, expressed at highest levels in 
hematopoietic tissue (Table 1).11 BAF can bind chromatin and 
the LEM-domain of Ankle1 simultaneously.11 A loss of function 
mutation of the C. elegans ortholog, Lem3, which (like Ankle1) is 
a nuclease, causes phenotypes after irradiation that are similar to 
BAF-null worms,27 including defects in chromosome segregation 
and anaphase bridge progression.110 Interestingly C. elegans that 
lacked either emerin (emr-1 null) or Lem2 (lem-2 null) were also 
hypersensitive to DNA damage.110 Together these studies show 
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Emerin is required for the nuclear accumulation and activ-
ity of the mechanosensitive transcription factor, megakeryo-
blastic leukemia 1 (MKL1).134 MKL1 localizes predominantly 
in the cytoplasm, but moves into the nucleus in response to 
mechanically-induced increases in actin polymerization.135,136 
In the nucleus, MKL1 and serum response factor (SRF) co-
activate genes encoding cytoskeletal proteins.137 Lmna−/− and 
Emd−/y mouse embryonic fibroblasts (MEFs) have reduced MKL1 
nuclear localization after mechanical stimulation. Ectopic over-
expression of GFP-emerin in Lmna−/− or Emd−/y MEFs rescues 
MKL1 nuclear localization. Three emerin mutants incapable 
of binding actin (clustered Ala-substitutions m151 or m164, 
and “special” EDMD-causing mutation Q133H) failed to res-
cue MKL1 nuclear accumulation,134 suggesting emerin associa-
tion with actin is required. However other functions of emerin 
may also contribute to the nuclear accumulation of MKL1: the 
emerin m151 and Q133H mutations also disrupt binding to the 
LEM-domain protein Man114 (see Table 3; Fig. 5A) and have not 
yet been tested for binding to lamin A, and the m164 mutation 
also disrupts binding to lamin A13 (Table 2; Fig. 5A). Whether 
MKL1 binds emerin directly is unknown.

Emerin Binds β-catenin and Lmo7  
and Regulates Signaling from the Cell Surface

Emerin directly binds two signaling transcription factors that 
shuttle between the cell surface and nucleus: one is the well-
known protein β-catenin,93 which mediates Wnt signaling; the 
other is Lim-domain-only 7 (Lmo7).94 Emerin binds β-catenin 
directly, and emerin-null fibroblasts accumulate high levels of 
β-catenin in the nucleus, grow rapidly, and improperly continue 
proliferating in low serum.93 This suggests emerin normally 
attenuates Wnt signaling. Similarly, Lmo7 is widely distributed 
in the cytoplasm and cell surface (adherens junctions) and also 
shuttles into the nucleus where its accumulation appears to be 
inhibited by emerin.86,94 Lmo7 also co-localizes with p130Cas at 
focal adhesions, and is inhibited by p130Cas (Wozniak et al., 
forthcoming). Lmo7 is a transcription factor that activates many 
genes including the emerin gene; evidence suggests Lmo7 bind-
ing to emerin protein feedback-regulates emerin gene expres-
sion.94 Lmo7 is expressed at elevated levels in heart and muscle, 
and Lmo7-null mice have dystrophic muscle (JM Holaska, per-
sonal communication), suggesting Lmo7 association with emerin 
is highly relevant to EDMD disease.138,139 Lmo7 activates the pro-
moters of myogenic genes (encoding MyoD, Myf5, Pax3) whose 
expression is critical for early myogenic differentiation. These 
genes are turned off after myotubes form, concomitant with 
increased emerin expression; emerin is proposed to both recruit 
Lmo7 away from these promoters, and to drive Lmo7 exit from 
the nucleus.140

Studies of Emerin–Null EDMD Patient Cells and 
Mouse Models

Emerin-null mice display subtle defects in motor coordination 
and muscle regeneration and mild atrioventricular conduction 

can speculate that mRNA splicing or possibly apoptosis might be 
misregulated in emerin-deficient muscle.

GCL, which binds Lap2β, emerin and Man1,14,37,39 is a con-
served protein that directly binds the DP subunit of E2F and 
DP heterodimers, which activate genes required for entry into 
S-phase. Emerin or Lap2β, in conjunction with GCL, effec-
tively co-repress E2F and DP-dependent promoters in vivo.37,39,123 
These same genes are well known targets of repression by Rb, 
which directly binds the E2F subunit. This co-repression of 
E2F-DP dependent promoters by emerin and GCL implicates 
emerin (and other LEM-domain proteins) in proliferation con-
trol. One study reported increased proliferation in emerin-null 
human fibroblasts.93 Interestingly GCL also associates with, 
and can recruit to the NE, a family of primate-specific “cancer-
testis antigen” proteins named GAGE,124 which are normally 
expressed only in male germ cells, but are highly upregulated 
in many cancers.125 Whether GAGE influences the functions of 
GCL or LEM-domain proteins during cancer are open questions. 
Whether emerin and its LEM-domain brethren share other part-
ners is unknown, due to gaps in knowledge about most other 
LEM-domain proteins.

SUN-Domain Proteins and Nesprins

Emerin binds directly to SUN-domain proteins and nesprins,90,91 
the core integral membrane components of LINC complexes.126 
LINC complexes transmit mechanical force across the NE to the 
nuclear lamina nucleoskeleton,127 and help maintain a uniform 
distance between the inner and outer membranes of the NE 
(for a review, see ref. 2). Emerin binding to nesprins was stud-
ied using relatively short isoforms, nesprin-1α and nesprin-2β, 
which are partly or fully included within most related iso-
forms.90,128 However it is uncertain which if any nesprin isoforms 
localize at the NE inner membrane.129 By contrast SUN-domain 
proteins localize almost exclusively at the NE inner membrane. 
Emerin binds the nucleoplasmic domains of SUN1 (SUN1 resi-
dues 223–302) and SUN2 (specific residues unmapped).91 Much 
more work is needed to understand how LINC complexes contact 
lamins and emerin.

F-actin and Nuclear Myosin 1c

Emerin directly binds (and caps) the pointed end of actin fila-
ments, stabilizing F-actin in vitro.92 Emerin also binds the molec-
ular motor, nuclear myosin Ic, directly in vitro even when myosin 
is “burning” ATP.89 These results suggest emerin might anchor 
“cortical” actin-myosin networks near the NE. Emerin also asso-
ciates (at least indirectly; direct binding not tested) with the mul-
tifunctional structural protein 4.1R in vivo, which directly binds 
actin and spectrin to form a ternary complex,130 and is required for 
mitotic spindle function and nuclear assembly.131,132 The nuclear 
localizations of emerin and 4.1R are mutually dependent: loss of 
4.1R decreases emerin retention at the INM and vice-versa, and 
loss of either protein increases accumulation of β-catenin in the 
nucleus.93,133 The nucleoskeletal roles of actin, myosin, spectrin 
and 4.1 are major understudied areas of cell biology.2
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In cultured MEFs, the emerin-null condition increases the 
percentage of cells with nuclear morphology defects, but not as 
much as the lmna-null condition.61 Emerin-null MEFs also have 
higher rates of apoptosis after continuous mechanical strain, 
possibly because they fail to activate the mechanosensitive gene 
IEX-1, which protects against apoptosis.61 Reduced NE elastic-
ity in emerin-null MEFs may also contribute to nuclear fragility 
in EDMD patients.156 Collectively these findings suggest emerin 
contributes to nuclear architecture and is important to maintain 
the structural integrity and function of the NE.

Extensive Emerin Phosphorylation during Mitosis 
and Interphase

Human emerin has at least 39 published sites of phosphory-
lation in vivo (25 Ser, 4 Thr, 11 Tyr) as summarized in  
Figures 5C and 6.157-176 Although the responsible kinases/path-
ways and functional consequences of emerin phosphorylation 
remain poorly understood, one broad theme is emerging: emerin 
appears to be a major target of phosphorylation not only during 
mitosis but also during interphase.

Emerin, lamins and other key NE proteins are hyperphos-
phorylated during mitotic prophase to trigger and regulate 
their mutual detachment, nucleoskeletal reorganization and 
NE disassembly.65,173,177,178 Emerin is phosphorylated at 26 sites 
(including tyrosines) during mitosis,162,174-176 with up to 83–94% 
stoichiometry.162,175

Emerin is also phosphorylated during interphase at 30 reported 
sites (Figs. 5C and 6). Only a few kinases, and one phosphatase, 
that target emerin have been identified,84,163,167,179-181 as summa-
rized in Table 4. Emerin is phosphorylated on Ser49 and at least 
one other residue by PKA.163 Emerin is also targeted by the meta-
bolically important kinase GSK3β at unknown site(s) in vitro.84

A new pathway was reported in postsynaptic neurons, 
wherein nascent RNPs exit the nucleus directly through the NE; 
this pathway involves PKC-dependent hyperphosphorylation of 
lamin A.182 This pathway is proposed to be exploited in cells 
infected with Herpes simplex virus type 1, where emerin is tar-
geted by the virus-encoded kinase US3 and cellular PKCδ as a 
mechanism for the virus to directly bud and exit at the NE.179,183 
Emerin is also hyperphosphorylated by the Kaposi sarcoma 
associated herpesvirus.184 The MAPK pathway kinase ERK2 
phosphorylates emerin directly both in vitro, and during nuclear 
egress of vesicular stomatitis virus G-protein-pseudotyped 
human and feline immunodeficiency viruses.185 This virus-
induced hyper-phosphorylation causes emerin to mislocalize 
and might represent a viral strategy to hijack the host RNP-
egress pathway.179,182,183

Emerin is nearly 10-fold Tyr hyper-phosphorylated in 
NIH3T3 cells that overexpress Her2.167,181 At least two nonre-
ceptor Tyr kinases target emerin directly: Src specifically phos-
phorylates at least three residues (Y59, Y74, Y95) and Abl targets 
at least one (Y167).167 The Src-regulated sites are critical for BAF 
binding, since the triple Y to F substitution (at Y59, Y74 and 
Y95) decreases BAF binding by 70% in vivo.167 All three sites are 
phosphorylated during interphase (Fig. 6).158,166 Emerin is also 

defects with age.141,142 This unfortunately has limited their use as 
an EDMD model.

In EDMD patient muscle and emerin-null mice, loss of 
emerin misregulates certain muscle-specific and heart-relevant 
genes regulated by Rb and MyoD.63,142,143 MyoD-dependent 
genes are crucial for muscle development and repair. Some genes 
misregulated in EDMD (including CREBBP, NAP1L1 and 
RBL2), and the emerin gene itself, depend for their transcrip-
tional activation on Lmo7.94 In regenerating emerin-null mouse 
muscle, Rb remains inappropriately hyper-phosphorylated, and 
cells that should arrest during differentiation instead continue 
proliferating.142 The mechanisms by which Rb–MyoD-regulated 
pathways depend on emerin are unknown, but might involve 
loss of emerin-dependent gene tethering at the NE. Rb/MyoD-
regulated pathways are also required in muscle stem (“satellite”) 
cells, which express emerin and have long-term roles in muscle 
homeostasis, repair and regeneration.144 Loss of emerin in satellite 
cells is proposed to reduce their capacity to repair and regenerate 
muscle tissue,145 due in part to increased nuclear fragility54 and 
reduced mechano-transduction.61

Loss of emerin also affects genes regulated by the JNK, 
MAPK, NF-κB, integrin, Wnt and TGFβ signaling pathways.54 
The nuclear localization and activity of ERK1/2 (a MAPK) 
increases in emerin-null mouse hearts.143 Thus emerin is pro-
posed to block or attenuate the nuclear accumulation of at least 
three signaling proteins: ERK1/2, Lmo7 and β-catenin. The 
mechanism(s) by which emerin inhibits nuclear accumulation 
of these key regulators are important open questions. A differ-
ent LEM-domain protein, Man1, inhibits TGFβ/BMP signaling 
during vertebrate development by directly binding and inhibiting 
R-Smads.146-149 Man1 is proposed to inhibit TGFβ/BMP signal-
ing by stimulating dephosphorylation of Smads and hence favor-
ing nuclear export.150 Interestingly β-catenin export is mediated 
by two proteins: 14-3-3 (ε and other isoforms) and the Wnt path-
way inhibitor Chibby.151,152 We speculate emerin might promote 
β-catenin export by “scaffolding” its co-association with Chibby 
and 14-3-3, since 14-3-3 isoforms β, ε and θ were recovered as 
potential components of two emerin-containing complexes.89

Mechanical Properties of Emerin-Deficient Nuclei 
and Selective “Pruning” of “Bad” Nuclear Structures 

by Autophagy

Muscle sections from seven X-linked EDMD patients revealed 
severe nuclear shape disruptions in a subset of nuclei in fibroblasts, 
smooth muscle and skeletal muscle. The frequency of abnormal 
nuclei in muscle tissue increased with patient age, and on aver-
age 20–25% of nuclei were misshapen in a manner consistent 
with apoptosis.153,154 Remarkably, prior to apoptosis, muscle cells 
first deploy a strategy in which the structurally abnormal (e.g., 
blebbed or herniated) regions of emerin-null nuclei, including 
chromatin, are specifically recognized and selectively destroyed 
by autophagy.141,155 When autophagy was experimentally blocked, 
the entire nucleus underwent apoptosis.141,155 The pathway(s) that 
identify structurally defective regions of the NE and trigger “sur-
gical” removal via autophagy are unknown.
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sites.198 Two sites (Ser53 and Ser54) are each individually criti-
cal for overall emerin O-GlcNAcylation not only in cells but 
also in vitro, suggesting potential control of emerin conforma-
tion. A third site (Ser173) is proposed to function as a molecular 
“switch”: O-GlcNAcylation at Ser173 promotes emerin binding 
to BAF, whereas Ser173 phosphorylation promotes emerin hyper-
phosphorylation and reduces BAF association in cells.198 All five 
identified O-GlcNAc sites in emerin are phosphorylated during 
mitosis (Fig. 5C), suggesting OGT and mitotic kinases might 
compete for control of emerin.

Concluding Remarks

Basic biochemical, cellular and genetic studies of emerin have 
yielded unprecedented insight into the structure and function 
of the nuclear envelope and nuclear lamina networks, and the 
fundamental roles of the conserved LEM-domain protein fam-
ily. Perhaps most surprising, and frustrating in terms of EDMD 
disease therapy, is the sheer variety of functions to which emerin 
contributes—from mitosis and chromosome segregation, to 
silent chromatin tethering, mechano-transduction and signal-
ing. However emerin’s roles in signaling have encouragingly 
suggested the first potential pharmacological treatment for 
EDMD. Further biochemical studies and human gene map-
ping studies will continue to complement each other: proteins 
that bind emerin represent candidate EDMD genes, and each 
mapped EDMD gene is a vital clue to understanding both 
human laminopathy disease and NE-dependent mechanisms of 
signaling and genome control. Given the many open questions 
in this young field, we wish to emphasize the dual importance 
of continuing both directly EDMD-relevant, and basic curios-
ity-driven, research. Both strategies are crucial to understand 
emerin and its fellow LEM-domain proteins, and uncover their 
overlapping vs. unique roles in human physiology that might 
lead to new therapies.

ubiquitinylated at K88,186,187 but the specific context and conse-
quences of this modification, like phosphorylation, are unknown. 
These diverse modifications, especially Tyr-phosphorylation and 
O-GlcNAcylation (discussed below), suggest emerin is regu-
lated by tissue-specific signaling, potentially as a mechanism for 
“crosstalk” regulation of gene expression at the NE.

One potential therapy for EDMD, being developed by 
Worman and colleagues, is based on their discovery that MAP 
kinase signaling is overactive in lmna- or emerin-deficient mouse 
hearts; presymptomatic treatment with an ERK kinase inhibi-
tor prevented dilated cardiomyopathy in an autosomal-dominant 
Lmna EDMD mouse model.188 Additional pharmacological strat-
egies to treat EDMD may emerge from a better understanding of 
the kinases and other enzymes that regulate emerin itself or other 
(potentially “compensating”) LEM-domain proteins.

Emerin is Sweet: Regulation by O-linked  
β-N-acetylglucosamine Transferase

Emerin is directly regulated by O-GlcNAc transferase (“OGT”; 
UDP-N-acetylglucosamine-peptide β-N-acetylglucosaminyl-
transferase), an essential enzyme that attaches a single β-N-
acetylglucosamine sugar to Ser/Thr residues of target proteins.189 
The OGT-null condition in mice is lethal at embryonic stage 
E4.5, and in embryonic stem cells.189,190 Similarly, mice null for 
OGA (β-N-acetylglucosaminidase), the enzyme that removes 
O-GlcNAc, have delayed development and die at birth, with 
severe defects in mitosis.191 OGT is a pleiotropic enzyme with crit-
ical roles in the cellular stress response,192-194 mitosis,195 epigenetic 
regulation196 and transcriptional regulation.197 O-GlcNAcylation 
is highly dynamic, influences target proteins at many different 
levels and can compete or cooperate with phosphorylation to reg-
ulate specific sites.189 Emerin is highly O-GlcNAcylated in mam-
malian cells; in vitro studies identified five sites (Ser53, Ser54, 
Ser87, Ser171 and Ser173) and revealed at least three additional 

Table 4. enzymes that target emerin

Identified sites Assay

Ser/Thr kinases PKA roberts et al., 2006 S49 in vitro, MS

PKCδ Leach et al., 2007 (nd) in vivo, inhibitors

ERK2/MAPK Bukong et al., 2010 (nd) in vivo, inhibitors, in vitro

GSK3β wheeler et al., 2010 (nd) in vitro

Tyrosine kinases Src Tifft et al., 2009 Y59, Y74, Y95 in vitro, MS/in vivo

Abl Tifft et al., 2009 Y167 in vitro, MS

Her2

Tifft et al., 2009,

Bose et al. 2006 (nd) in vivo

Phosphatases PTP1B Yip et al., 2012 (nd) in vivo

Glyco-transferases OGT Berk et al., submitted S53, S54, S57/S58, S87, S171, S173 in vitro, MS

OGT Berk et al., submitted S53, S54, S173 in vivo

*MS, mass spectrometry. nd, not determined.

Figure 6 (See opposite page). Published human emerin phosphorylation sites. X indicates emerin phosphorylation sites identified in asynchronous 
or mitotic cells. Grey columns indicate emerin-specific studies; other columns are high-throughput studies. (S), Ser. (T), Thr. (Y), Tyr. These results are 
compiled from references 157–176.
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Figure 6. For figure legend, see page 308.
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