organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Methyl-3-[(4-methylphenyl)sulfonyloxy]-2-{[(4-methylphenyl)sulfonyloxy]methyl}propyl 4-methylbenzenesulfonate

Nassir N. Al-Mohammed, Raied M. Shakir, Yatimah Alias,‡ Zanariah Abdullah, Siti Nadiah Abd Halim and Edward R. T. Tiekink*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 21 June 2011; accepted 22 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.038; w*R* factor = 0.117; data-to-parameter ratio = 18.2.

The title molecule, $C_{26}H_{30}O_9S_3$, adopts an extended conformation whereby two approximately parallel benzene rings [dihedral angle = 8.32 (10)°] are orientated in opposite directions along the pseudo-threefold axis through the central quaternary C atom, while a third ring occupies a position midway and face-on to these rings [dihedral angles = 82.28 (10) and 78.81 (7)°]. The crystal packing is dominated by C– H···O contacts and π - π interactions [ring centroid distance = 3.6902 (12) Å].

Related literature

For the use of molecules related to the title compound as synthetic precursors, see: Laliberte *et al.* (2003); Fujihara *et al.* (2007); Li *et al.* (2008*a*,*b*).

Experimental

Crystal data $C_{26}H_{30}O_9S_3$ $M_r = 582.68$

Triclinic, $P\overline{1}$ a = 10.2055 (3) Å

‡ Additional correspondence author, e-mail: yatimah70@um.edu.my.

Data collection

Bruker SMART APEX	13040 measured reflections
diffractometer	6305 independent reflections
Absorption correction: multi-scan	5369 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.031$
$T_{\min} = 0.636, \ T_{\max} = 0.746$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.038 & 347 \text{ parameters} \\ wR(F^2) = 0.117 & H\text{-atom parameters constrained} \\ S = 0.99 & \Delta\rho_{\max} = 0.44 \text{ e } \text{\AA}^{-3} \\ 6303 \text{ reflections} & \Delta\rho_{\min} = -0.45 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2b\cdots O2^{i}$	0.99	2.49	3.297 (2)	138
C4-H4a···O2 ⁱ	0.99	2.42	3.290 (2)	147
C5−H5c···O8 ⁱⁱ	0.98	2.54	3.440 (2)	152
$C7 - H7 \cdot \cdot \cdot O6^{i}$	0.95	2.54	3.183 (2)	125
C10−H10···O3 ⁱⁱⁱ	0.95	2.54	3.358 (2)	144
$C15-H15\cdots O9^{iv}$	0.95	2.56	3.428 (3)	151

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) -x, -y + 2, -z + 2; (iii) -x + 1, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The University of Malaya is thanked for support of this research through a research grant (FRGS FP001/2010 A) and for the maintenance of the crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5057).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fujihara, T., Shioji, E. & Nagasawa, A. (2007). Acta Cryst. E63, o3628.

Laliberte, D., Maris, T., Sirois, A. & Wuest, J. D. (2003). Org. Lett. 5, 4787–4790. Li, S.-X., Li, H.-M., Lu, Z.-L., Fun, H.-K. & Chantrapromma, S. (2008a). Acta

Cryst. E64, o1472–o1473. Li, S.-X., Zhu, L., Fun, H.-K. & Chantrapromma, S. (2008*b*). *Acta Cryst.* E64, o1474–o1475.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, o1838 [doi:10.1107/S1600536811024664]

2-Methyl-3-[(4-methylphenyl)sulfonyloxy]-2-{[(4-methylphenyl)sulfonyloxy]methyl}propyl 4methylbenzenesulfonate

N. N. Al-Mohammed, R. M. Shakir, Y. Alias, Z. Abdullah, S. N. Abd Halim and E. R. T. Tiekink

Comment

Molecules related to the title compound, (I), are useful synthetic precursors for dendritic materials (Laliberte *et al.*, 2003), branched acyclic polyamines (Fujihara *et al.*, 2007) and radiopharmaceuticals (Li *et al.*, 2008*a*; Li *et al.*, 2008*b*).

With reference to the methyl group in the trisubstituted methane molecule, one benzene ring, connected to atom S1, is orientated in the same direction, and another, connected to S3, is approximately parallel but orientated in the opposite direction; dihedral angle = $8.32 (10)^\circ$. The third benzene ring lies approximately half-way between these rings and is face-on to each, forming dihedral angles of 82.28 (10) (S1) and 78.81 (7) °, respectively. This arrangement contrasts sharply the observed structure of the "parent" compound which adopts a somewhat flattened geometry with all benzene rings orientated in a circular manner around the central residue (Fujihara *et al.*, 2007).

The molecules are consolidated in the crystal structure by a combination of C—H···O, Table 1, and π - π interactions. The latter occur between centrosymmetrically related C13–C18 rings [3.6902 (12) Å for symmetry operation 2 - *x*, 1 - *y*, 2 - *z*]. Globally, layers of molecule interdigitate along the *c* axis, Fig. 2.

Experimental

p-Toluenesulfonyl chloride (5.23 g, 27.4 mmol) in dry dichloromethane (50 ml) was added drop wise to a stirring solution of 1,1,1-tris(hydroxymethyl)ethane (1 g, 8.32 mmol) and triethylamine (5.05 g, 0.50 mmol) in dichloromethane (50 ml) at 273 K. The mixture was stirred at room temperature overnight, extracted with water, and wasted with distilled water (3 x 10 ml). The organic layer was dried over MgSO₄ and evaporated. Colourless crystals were obtained from slow evaporation from its THF solution, *M*.pt 373–375 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(methyl-C)$. Two reflections, *i.e.* ($\overline{8}$ $\overline{6}$ 7) and (5 13 13), were omitted from the final refinement owing to poor agreement.

Figures

Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. A view in projection down the *a* axis of the unit-cell contents for (I). The C—H···O and π - π interactions are shown as orange and purple dashed lines, respectively.

 $\label{eq:linear} 2-Methyl-3-[(4-methylphenyl)sulfonyloxy]-2-\{[(4-methylphenyl)sulfonyloxy]methyl\} propyl \ 4-methylben zenesulfonate$

Crystal data

$C_{26}H_{30}O_9S_3$	Z=2
$M_r = 582.68$	F(000) = 612
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.403 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.2055 (3) Å	Cell parameters from 5679 reflections
b = 12.4029 (3) Å	$\theta = 2.4 - 30.6^{\circ}$
c = 12.7993 (4) Å	$\mu = 0.32 \text{ mm}^{-1}$
$\alpha = 66.868 \ (2)^{\circ}$	T = 100 K
$\beta = 78.370 \ (2)^{\circ}$	Block, yellow
$\gamma = 68.085 \ (2)^{\circ}$	$0.30 \times 0.28 \times 0.28 \text{ mm}$
V = 1379.32 (7) Å ³	

Data collection

Bruker SMART APEX diffractometer	6305 independent reflections
Radiation source: fine-focus sealed tube	5369 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 13$
$T_{\min} = 0.636, T_{\max} = 0.746$	$k = -16 \rightarrow 16$
13040 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.117$	H-atom parameters constrained
<i>S</i> = 0.99	$w = 1/[\sigma^2(F_0^2) + (0.0689P)^2 + 0.6349P]$ where $P = (F_0^2 + 2F_c^2)/3$
6303 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
347 parameters	$\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.58792 (4)	0.97996 (4)	0.76513 (3)	0.01532 (11)
S2	0.63629 (5)	0.55361 (4)	1.15173 (4)	0.01764 (12)
S3	0.03815 (4)	0.75579 (4)	1.20789 (4)	0.01627 (11)
01	0.52171 (13)	0.87644 (11)	0.84519 (10)	0.0162 (3)
O2	0.61934 (13)	1.03502 (12)	0.83218 (11)	0.0202 (3)
O3	0.69823 (13)	0.91966 (12)	0.69899 (11)	0.0214 (3)
O4	0.49589 (13)	0.66725 (11)	1.11596 (10)	0.0164 (3)
O5	0.61861 (14)	0.44646 (11)	1.14753 (11)	0.0221 (3)
O6	0.66462 (15)	0.55276 (12)	1.25683 (11)	0.0247 (3)
O7	0.16219 (13)	0.74483 (11)	1.11229 (11)	0.0173 (3)
O8	-0.07307 (13)	0.87019 (12)	1.16416 (11)	0.0217 (3)
09	0.01154 (14)	0.64130 (12)	1.24502 (11)	0.0221 (3)
C1	0.33373 (18)	0.81398 (15)	0.97005 (14)	0.0148 (3)
C2	0.41265 (18)	0.90728 (15)	0.93184 (14)	0.0156 (3)
H2A	0.3469	0.9927	0.8998	0.019*
H2B	0.4563	0.9016	0.9971	0.019*
C3	0.43504 (18)	0.68148 (15)	1.01508 (14)	0.0152 (3)
H3A	0.3835	0.6216	1.0353	0.018*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3B	0.5111	0.6653	0.9561	0.018*
C4	0.22335 (18)	0.84493 (15)	1.06289 (15)	0.0166 (3)
H4A	0.2681	0.8502	1.1218	0.020*
H4B	0.1492	0.9254	1.0302	0.020*
C5	0.26204 (19)	0.82440 (16)	0.87058 (15)	0.0190 (4)
H5A	0.2030	0.7707	0.8988	0.029*
H5B	0.3345	0.7986	0.8141	0.029*
H5C	0.2028	0.9106	0.8352	0.029*
C6	0.45022 (18)	1.08899 (16)	0.67862 (14)	0.0156 (3)
C7	0.39715 (19)	1.21074 (16)	0.67582 (15)	0.0190 (4)
H7	0.4322	1.2353	0.7232	0.023*
C8	0.2920 (2)	1.29600 (17)	0.60257 (16)	0.0214 (4)
H8	0.2547	1.3793	0.6004	0.026*
C9	0.2403 (2)	1.26130 (17)	0.53222 (15)	0.0210 (4)
C10	0.2951 (2)	1.13761 (17)	0.53788 (15)	0.0214 (4)
H10	0.2598	1.1125	0.4911	0.026*
C11	0.39924 (19)	1.05159 (17)	0.61026 (15)	0.0196 (4)
H11	0.4357	0.9679	0.6134	0.023*
C12	0.1290 (2)	1.3539 (2)	0.45091 (18)	0.0309 (5)
H12A	0.1033	1.4355	0.4576	0.046*
H12B	0.0451	1.3277	0.4692	0.046*
H12C	0.1660	1.3590	0.3729	0.046*
C13	0.75954 (18)	0.59940 (16)	1.04278 (15)	0.0182 (4)
C14	0.81123 (19)	0.54084 (16)	0.96273 (16)	0.0201 (4)
H14	0.7862	0.4714	0.9707	0.024*
C15	0.89955 (19)	0.58496 (18)	0.87131 (17)	0.0229 (4)
H15	0.9366	0 5443	0.8172	0.027*
C16	0 93463 (19)	0.68791 (18)	0.85776 (17)	0.027(4)
C17	0 8845 (2)	0 74337 (18)	0 94043 (18)	0 0246 (4)
H17	0.9105	0.8122	0.9330	0.030*
C18	0 79780 (19)	0 69997 (17)	1 03297 (17)	0.0214 (4)
H18	0 7647	0.7381	1 0891	0.026*
C19	1 0234 (2)	0 7391 (2)	0 75402 (19)	0.0309(5)
H19A	1 0906	0.6711	0.7302	0.046*
H19B	1.0755	0.7811	0.7722	0.046*
H19C	0.9620	0.7984	0.6921	0.046*
C20	0.11684 (19)	0.76273 (16)	1 31382 (15)	0.0178(3)
C21	0.2287(2)	0.66056 (18)	1 36842 (18)	0.0257(4)
H21	0.2603	0.5876	1 3496	0.0237 (1)
C22	0.2005	0.66671 (19)	1 44988 (18)	0.031 0.0292(4)
H22	0.2929 (2)	0.5967	1 4880	0.0252
C23	0.3078	0.3707	1.4000	0.035 0.0250(4)
C24	0.2470(2) 0.1370(2)	0.87365 (18)	1 42254 (16)	0.0250(4) 0.0251(4)
H24	0.1051	0.9467	1.42234 (10)	0.0201 (4)
C25	0.0706 (2)	0.86935 (17)	1 34066 (16)	0.030
H25	-0.0058	0.0387	1 303/	0.0227 (+)
C26	0.0000	0.7307 0.7802 (2)	1.5054	0.027
H26A	0.3272 (2)	0.7002 (2)	1.50575 (17)	0.0501(5)
H26R	0.3/15	0.7027	1.5272	0.050*
11200	0.5715	0.7027	1.0270	0.000

H26C	0.2655	0.8497	1.5890	0.0:	50*	
Atomic displa	acement parameter	$rs(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0169 (2)	0.0172 (2)	0.0134 (2)	-0.00673 (16)	-0.00021 (15)	-0.00623 (16)
S2	0.0226 (2)	0.0123 (2)	0.0173 (2)	-0.00169 (16)	-0.00767 (17)	-0.00503 (16)
S3	0.0153 (2)	0.0155 (2)	0.0178 (2)	-0.00525 (16)	-0.00088 (16)	-0.00542 (17)
01	0.0194 (6)	0.0150 (6)	0.0148 (6)	-0.0057 (5)	0.0015 (5)	-0.0069 (5)
O2	0.0243 (7)	0.0240 (6)	0.0186 (6)	-0.0125 (5)	-0.0027 (5)	-0.0090 (5)
O3	0.0184 (6)	0.0251 (7)	0.0196 (6)	-0.0054 (5)	0.0018 (5)	-0.0098 (5)
04	0.0190 (6)	0.0138 (6)	0.0157 (6)	-0.0016 (5)	-0.0058 (5)	-0.0058 (5)
05	0.0288 (7)	0.0132 (6)	0.0244 (7)	-0.0042 (5)	-0.0077 (5)	-0.0061 (5)
O6	0.0349 (8)	0.0193 (6)	0.0192 (7)	-0.0033 (6)	-0.0123 (6)	-0.0060 (5)
07	0.0179 (6)	0.0159 (6)	0.0202 (6)	-0.0077 (5)	0.0019 (5)	-0.0079 (5)
08	0.0169 (6)	0.0211 (6)	0.0242 (7)	-0.0027 (5)	-0.0027 (5)	-0.0075 (5)
09	0.0234 (7)	0.0213 (6)	0.0241 (7)	-0.0117 (5)	0.0004 (5)	-0.0074 (5)
C1	0.0162 (8)	0.0133 (7)	0.0151 (8)	-0.0041 (6)	-0.0025 (6)	-0.0051 (6)
C2	0.0184 (8)	0.0151 (8)	0.0130 (8)	-0.0051 (6)	0.0018 (6)	-0.0064 (6)
C3	0.0184 (8)	0.0138 (7)	0.0151 (8)	-0.0040 (6)	-0.0048 (6)	-0.0062 (6)
C4	0.0175 (8)	0.0131 (8)	0.0198 (8)	-0.0066 (6)	0.0008 (7)	-0.0059 (7)
C5	0.0207 (9)	0.0169 (8)	0.0203 (9)	-0.0030 (7)	-0.0063 (7)	-0.0079 (7)
C6	0.0178 (8)	0.0175 (8)	0.0115 (8)	-0.0066 (6)	0.0007 (6)	-0.0052 (6)
C7	0.0247 (9)	0.0187 (8)	0.0164 (8)	-0.0093 (7)	0.0011 (7)	-0.0080 (7)
C8	0.0257 (9)	0.0166 (8)	0.0199 (9)	-0.0063 (7)	0.0015 (7)	-0.0064 (7)
С9	0.0227 (9)	0.0218 (9)	0.0147 (8)	-0.0082 (7)	0.0000 (7)	-0.0024 (7)
C10	0.0244 (9)	0.0269 (9)	0.0162 (8)	-0.0097 (8)	-0.0025 (7)	-0.0091 (7)
C11	0.0233 (9)	0.0192 (8)	0.0177 (9)	-0.0071 (7)	-0.0003 (7)	-0.0085 (7)
C12	0.0318 (11)	0.0291 (10)	0.0245 (10)	-0.0062 (9)	-0.0080 (8)	-0.0027 (8)
C13	0.0177 (8)	0.0160 (8)	0.0208 (9)	-0.0013 (6)	-0.0073 (7)	-0.0075 (7)
C14	0.0192 (9)	0.0175 (8)	0.0238 (9)	-0.0007 (7)	-0.0091 (7)	-0.0086 (7)
C15	0.0184 (9)	0.0250 (9)	0.0245 (10)	0.0003 (7)	-0.0087 (7)	-0.0114 (8)
C16	0.0154 (8)	0.0261 (9)	0.0263 (10)	-0.0017 (7)	-0.0082 (7)	-0.0074 (8)
C17	0.0196 (9)	0.0226 (9)	0.0342 (11)	-0.0055 (7)	-0.0082 (8)	-0.0107 (8)
C18	0.0188 (9)	0.0200 (9)	0.0284 (10)	-0.0027 (7)	-0.0071 (7)	-0.0123 (8)
C19	0.0193 (10)	0.0401 (12)	0.0323 (11)	-0.0104 (9)	-0.0014 (8)	-0.0111 (10)
C20	0.0203 (8)	0.0187 (8)	0.0160 (8)	-0.0089 (7)	0.0004 (7)	-0.0061 (7)
C21	0.0262 (10)	0.0205 (9)	0.0292 (10)	-0.0035 (8)	-0.0086 (8)	-0.0083 (8)
C22	0.0301 (11)	0.0258 (10)	0.0287 (11)	-0.0073 (8)	-0.0119 (8)	-0.0035 (8)
C23	0.0305 (10)	0.0334 (10)	0.0164 (9)	-0.0207 (9)	0.0029 (8)	-0.0066 (8)
C24	0.0321 (10)	0.0264 (10)	0.0211 (9)	-0.0141 (8)	0.0050 (8)	-0.0118 (8)
C25	0.0253 (9)	0.0205 (9)	0.0214 (9)	-0.0074 (7)	0.0014 (7)	-0.0077 (7)
C26	0.0409 (12)	0.0497 (13)	0.0188 (10)	-0.0300 (11)	0.0008 (9)	-0.0092 (9)
	0					

Geometric parameters (Å, °)

S1—O3	1.4241 (13)	C9—C12	1.502 (3)
S1—O2	1.4284 (13)	C10—C11	1.379 (3)
S1—O1	1.5780 (12)	C10—H10	0.9500

S1—C6	1.7498 (18)	C11—H11	0.9500
S2—O5	1.4286 (13)	C12—H12A	0.9800
S2—O6	1.4270 (13)	C12—H12B	0.9800
S2—O4	1.5809 (12)	C12—H12C	0.9800
S2—C13	1.7473 (19)	C13—C14	1.392 (2)
S3—O9	1.4219 (13)	C13—C18	1.395 (2)
S3—O8	1.4299 (13)	C14—C15	1.386 (3)
S3—O7	1.5799 (12)	C14—H14	0.9500
S3—C20	1.7530 (18)	C15—C16	1.389 (3)
O1—C2	1.4605 (19)	C15—H15	0.9500
O4—C3	1.4650 (19)	C16—C17	1.395 (3)
O7—C4	1.4606 (19)	C16—C19	1.507 (3)
C1—C2	1.523 (2)	C17—C18	1.381 (3)
C1—C4	1.525 (2)	C17—H17	0.9500
C1—C3	1.526 (2)	C18—H18	0.9500
C1—C5	1.533 (2)	C19—H19A	0.9800
C2—H2A	0.9900	С19—Н19В	0.9800
C2—H2B	0.9900	С19—Н19С	0.9800
С3—НЗА	0.9900	C20—C25	1.384 (2)
С3—Н3В	0.9900	C20—C21	1.394 (3)
C4—H4A	0.9900	C21—C22	1.375 (3)
C4—H4B	0.9900	C21—H21	0.9500
C5—H5A	0.9800	C22—C23	1.399 (3)
С5—Н5В	0.9800	С22—Н22	0.9500
С5—Н5С	0.9800	C23—C24	1.387 (3)
C6—C11	1.391 (2)	C23—C26	1.505 (3)
C6—C7	1.389 (2)	C24—C25	1.385 (3)
С7—С8	1.389 (3)	C24—H24	0.9500
С7—Н7	0.9500	С25—Н25	0.9500
C8—C9	1.393 (3)	C26—H26A	0.9800
C8—H8	0.9500	С26—Н26В	0.9800
C9—C10	1.400 (3)	С26—Н26С	0.9800
03—\$1—02	120.03 (8)	C10—C9—C12	120.15 (18)
O3—S1—O1	104.03 (7)	C11—C10—C9	121.12 (17)
02-\$1-01	109.40 (7)	C11—C10—H10	119.4
O3—S1—C6	109.49 (8)	C9—C10—H10	119.4
02-S1-C6	109.38 (8)	C10-C11-C6	119.11 (16)
01 - S1 - C6	103.10 (7)	C10—C11—H11	120.4
05-82-06	119 61 (8)	C6-C11-H11	120.4
05-82-04	108 93 (7)	C9—C12—H12A	109.5
06-82-04	104 27 (7)	C9—C12—H12B	109.5
05 - 82 - C13	109.07 (8)	H12A— $C12$ — $H12B$	109.5
06 - 82 - C13	111 07 (9)	C9—C12—H12C	109.5
04 - 82 - C13	102 39 (7)	$H_{12}A - C_{12} - H_{12}C$	109.5
09-83-08	119.98 (8)	H12B-C12-H12C	109.5
09-83-07	104.01 (7)	C14—C13—C18	120.74 (18)
08-83-07	108.91 (7)	C14—C13—S2	119.90 (14)
09 - 83 - C20	110 37 (8)	C18 - C13 - S2	119 23 (14)
08-83-C20	109 18 (8)	C13 - C14 - C15	119.22 (17)
00 55 020	107.10 (0)		117.20 (17)

O7—S3—C20	102.94 (8)	C13—C14—H14	120.4
C2—O1—S1	117.04 (10)	C15—C14—H14	120.4
C3—O4—S2	115.37 (10)	C14—C15—C16	120.83 (18)
C4—O7—S3	117.67 (10)	С14—С15—Н15	119.6
C2—C1—C4	106.13 (13)	С16—С15—Н15	119.6
C2—C1—C3	110.89 (14)	C15—C16—C17	118.95 (19)
C4—C1—C3	111.03 (14)	C15—C16—C19	119.98 (18)
C2—C1—C5	110.90 (14)	C17—C16—C19	121.06 (19)
C4—C1—C5	110.44 (14)	C18—C17—C16	121.14 (18)
C3—C1—C5	107.49 (13)	С18—С17—Н17	119.4
O1—C2—C1	106.76 (13)	С16—С17—Н17	119.4
O1—C2—H2A	110.4	C17—C18—C13	118.99 (17)
C1—C2—H2A	110.4	С17—С18—Н18	120.5
O1—C2—H2B	110.4	C13—C18—H18	120.5
C1—C2—H2B	110.4	С16—С19—Н19А	109.5
H2A—C2—H2B	108.6	C16—C19—H19B	109.5
O4—C3—C1	108.11 (12)	H19A—C19—H19B	109.5
O4—C3—H3A	110.1	С16—С19—Н19С	109.5
С1—С3—НЗА	110.1	H19A—C19—H19C	109.5
O4—C3—H3B	110.1	H19B—C19—H19C	109.5
С1—С3—Н3В	110.1	C25—C20—C21	120.65 (18)
НЗА—СЗ—НЗВ	108.4	C25—C20—S3	120.30 (15)
O7—C4—C1	106.51 (13)	C21—C20—S3	119.03 (14)
O7—C4—H4A	110.4	C22—C21—C20	119.15 (18)
C1—C4—H4A	110.4	C22—C21—H21	120.4
O7—C4—H4B	110.4	C20—C21—H21	120.4
C1—C4—H4B	110.4	C21—C22—C23	121.48 (19)
H4A—C4—H4B	108.6	C21—C22—H22	119.3
C1—C5—H5A	109.5	С23—С22—Н22	119.3
C1—C5—H5B	109.5	C24—C23—C22	118.02 (18)
H5A—C5—H5B	109.5	C24—C23—C26	121.39 (19)
C1—C5—H5C	109.5	C22—C23—C26	120.57 (19)
H5A—C5—H5C	109.5	C25—C24—C23	121.51 (17)
H5B—C5—H5C	109.5	C25—C24—H24	119.2
C11—C6—C7	121.17 (17)	C23—C24—H24	119.2
C11—C6—S1	118.32 (13)	C24—C25—C20	119.18 (18)
C7—C6—S1	120.47 (14)	C24—C25—H25	120.4
C6—C7—C8	118.89 (17)	C20—C25—H25	120.4
С6—С7—Н7	120.6	С23—С26—Н26А	109.5
С8—С7—Н7	120.6	С23—С26—Н26В	109.5
C9—C8—C7	121.08 (16)	H26A—C26—H26B	109.5
С9—С8—Н8	119.5	С23—С26—Н26С	109.5
С7—С8—Н8	119.5	H26A—C26—H26C	109.5
C8—C9—C10	118.62 (17)	H26B—C26—H26C	109.5
C8—C9—C12	121.23 (17)		
O3—S1—O1—C2	174.43 (11)	C7—C6—C11—C10	0.6 (3)
O2—S1—O1—C2	45.02 (13)	S1—C6—C11—C10	-177.19 (13)
C6—S1—O1—C2	-71.29 (13)	O5—S2—C13—C14	6.56 (17)
O5—S2—O4—C3	-45.30 (13)	O6—S2—C13—C14	140.46 (14)

O6—S2—O4—C3	-174.07 (11)	O4—S2—C13—C14	-108.75 (15)
C13—S2—O4—C3	70.11 (12)	O5—S2—C13—C18	-177.62 (14)
O9—S3—O7—C4	-174.81 (12)	O6—S2—C13—C18	-43.72 (16)
O8—S3—O7—C4	56.15 (13)	O4—S2—C13—C18	67.08 (15)
C20—S3—O7—C4	-59.63 (13)	C18—C13—C14—C15	-1.2 (3)
S1—O1—C2—C1	161.94 (11)	S2-C13-C14-C15	174.54 (13)
C4—C1—C2—O1	178.34 (13)	C13-C14-C15-C16	-1.2 (3)
C3—C1—C2—O1	57.66 (17)	C14—C15—C16—C17	2.8 (3)
C5-C1-C2-O1	-61.69 (17)	C14—C15—C16—C19	-176.23 (17)
S2—O4—C3—C1	-161.46 (11)	C15—C16—C17—C18	-2.0 (3)
C2—C1—C3—O4	63.10 (17)	C19—C16—C17—C18	177.03 (17)
C4—C1—C3—O4	-54.63 (18)	C16-C17-C18-C13	-0.4 (3)
C5—C1—C3—O4	-175.53 (13)	C14—C13—C18—C17	2.0 (3)
S3—O7—C4—C1	-177.15 (11)	S2-C13-C18-C17	-173.78 (14)
C2—C1—C4—O7	-171.40 (13)	O9—S3—C20—C25	-135.36 (15)
C3—C1—C4—O7	-50.81 (18)	O8—S3—C20—C25	-1.46 (18)
C5—C1—C4—O7	68.33 (17)	O7—S3—C20—C25	114.13 (15)
O3—S1—C6—C11	49.51 (16)	O9—S3—C20—C21	46.18 (17)
O2—S1—C6—C11	-177.08 (13)	O8—S3—C20—C21	-179.91 (14)
O1—S1—C6—C11	-60.76 (15)	O7—S3—C20—C21	-64.32 (16)
O3—S1—C6—C7	-128.28 (14)	C25—C20—C21—C22	0.2 (3)
O2—S1—C6—C7	5.13 (17)	S3—C20—C21—C22	178.66 (16)
O1—S1—C6—C7	121.45 (14)	C20-C21-C22-C23	-0.9 (3)
C11—C6—C7—C8	-0.4 (3)	C21—C22—C23—C24	1.2 (3)
S1—C6—C7—C8	177.30 (13)	C21—C22—C23—C26	-177.53 (19)
C6—C7—C8—C9	-0.4 (3)	C22—C23—C24—C25	-0.9 (3)
C7—C8—C9—C10	1.0 (3)	C26—C23—C24—C25	177.89 (18)
C7—C8—C9—C12	-178.54 (17)	C23—C24—C25—C20	0.2 (3)
C8—C9—C10—C11	-0.8 (3)	C21—C20—C25—C24	0.1 (3)
C12—C9—C10—C11	178.70 (17)	S3—C20—C25—C24	-178.28 (14)
C9—C10—C11—C6	0.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2—H2b····O2 ⁱ	0.99	2.49	3.297 (2)	138
C4—H4a····O2 ⁱ	0.99	2.42	3.290 (2)	147
C5—H5c····O8 ⁱⁱ	0.98	2.54	3.440 (2)	152
C7—H7···O6 ⁱ	0.95	2.54	3.183 (2)	125
C10—H10…O3 ⁱⁱⁱ	0.95	2.54	3.358 (2)	144
C15—H15····O9 ^{iv}	0.95	2.56	3.428 (3)	151

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z+2.

Fig. 1

