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Abstract

In Caucasians with type 2 diabetes, circulating TNF receptors 1 (TNFR1) and 2 (TNFR2) predict 

end-stage renal disease (ESRD). Here we examined this relationship in a longitudinal cohort study 

of American Indians with type 2 diabetes with measured glomerular filtration rate (mGFR, 

iothalamate) and urinary albumin-to-creatinine ratio. ESRD was defined as dialysis, kidney 

transplant, or death attributed to diabetic kidney disease. Age-gender-adjusted incidence rates and 

incidence rate ratios of ESRD were computed by Mantel-Haenszel stratification. The hazard ratio 

of ESRD was assessed per interquartile range increase in the distribution of each TNFR after 

adjusting for baseline age, gender, mean blood pressure, HbA1c, albumin-to-creatinine ratio, and 

mGFR. Among the 193 participants, 62 developed ESRD and 25 died without ESRD during a 

median follow-up of 9.5 years. The age-gender-adjusted incidence rate ratio of ESRD was higher 

among participants in the highest vs. lowest quartile for TNFR1 (6.6, 95% CI 3.3–13.3) or TNFR2 

(8.8, 95% CI 4.3–18.0). In the fully adjusted model, the risk of ESRD per interquartile range 

increase was 1.6 times (95% CI 1.1–2.2) as high for TNFR1 and 1.7 times (95% CI 1.2–2.3) as 

high for TNFR2. Thus, elevated serum concentrations of TNFR1 or TNFR2 are associated with 

increased risk of ESRD in American Indians with type 2 diabetes after accounting for traditional 

risk factors including albumin-to-creatinine ratio and mGFR
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Inflammatory processes play an important role in the pathophysiology of diabetic kidney 

disease. Inflammatory cells have been observed in kidney tissue biopsies from streptozocin-

treated diabetic rats1 and patients with various degrees of diabetic glomerulosclerosis.2 

Moreover, inflammatory markers, including tumor necrosis factor (TNFα) and its receptors 

TNFR1 and TNFR2, are associated with progression of diabetic kidney disease. TNFα is the 

main ligand for both TNFR1 and TNFR2. Depending on a number of local factors and the 

activation of the two receptors, TNFα induces different and sometimes contrasting effects.3 

These effects have been observed mostly in vitro and may not be specific to a particular 

cause of renal disease. Activated TNFR1 is the primary receptor mediating tissue injury 

through proinflammatory signals and/or cell death, whereas TNFR2 may promote cell 

migration, regeneration and proliferation and regulates TNFR1 induced apoptosis.4 In 

addition, TNFR2 may have a synergistic effect with TNFR1 by ligand passing, a process in 

which TNFR2-bound TNFα increases the local TNFα concentration in the vicinity of 

TNFR1.5 TNFR1 and TNF-related apoptosis-inducing ligand (TRAIL) have been implicated 

in pancreatic β-cell destruction associated with type 1 diabetes;6,7 TRAIL correlates 

positively with body fat and serum LDL cholesterol in elderly subjects,8 and was shown to 

induce insulin resistance.9,10 TRAIL gene deletion in ApoE−/− mice fed a high-fat diet 

resulted in increased systemic inflammation, diabetes, accelerated atherosclerosis,11 

suggesting that TRAIL may play a role in the development of diabetes and its macro- and 

micro-vascular complications.

Circulating levels of TNFRs have recently emerged as very robust and independent 

predictors of the progression of diabetic kidney disease in the Joslin Kidney Study. 12–14 In 

that study, elevated concentrations of circulating TNFR1 and 2 were strongly associated 

with subsequent end-stage renal disease (ESRD) in predominantly Caucasian subjects with 

type 2 diabetes after accounting for several risk factors for kidney disease present at 

baseline, including HbA1c, albuminuria, glomerular filtration rate (GFR), free and bound 

TNFα, markers of endothelial dysfunction and markers of systemic inflammation.13

To evaluate the role of circulating TNFRs in a population at high risk of renal function 

decline, we examined the relationship between serum concentrations of TNFR1 and TNFR2 

and progression to ESRD in American Indians with type 2 diabetes.

RESULTS

The study included 193 subjects with type 2 diabetes, followed for a median of 9.5 years 

(interquartile range 7.1–11.6 years). During follow-up, 62 (32%) of the participants 

developed ESRD and 25 (13%) died from natural causes other than diabetic kidney disease 

without progressing to ESRD. Baseline characteristics of the cohort are summarized in 

Table 1. At baseline, 127 subjects (65.8%) were receiving glucose lowering medicines and 

12 (6.2%) were receiving antihypertensive medicines. 61 participants (32%) had normal 

ACR, 72 (37%) had moderate albuminuria, and 60 (31%) had severe albuminuria; mGFR 

was ≥60 ml/min in 171 participants (89%). The frequency distributions of serum 

concentrations of TNFR1 and TNFR2 at baseline are shown in Figure 1. Median serum 

concentrations of the receptors were 2833 pg/ml and 4835 pg/ml, respectively, and both 

distributions were skewed.
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Serum concentrations of TNFR1 and TNFR2 correlated strongly with each other (r=0.78) 

and moderately with mGFR, cystatin C, ACR, age, MAP, and duration of diabetes; they did 

not correlate significantly with HbA1c, BMI (Table 2). The correlations between the serum 

concentrations of the receptors and ACR are shown in Figure 2 (r=0.37, P<0.001 for 

TNFR1, r=0.42, P<0.001 for TNFR2).

Unadjusted and age-sex-adjusted incidence rates of ESRD are shown in Table 3 by quartiles 

of TNFR1 and TNFR2. Compared with the lowest quartile of TNFR1, the age-sex-adjusted 

incidence rate of ESRD was significantly higher among subjects in the third and fourth 

quartiles of TNFR1 (IRR for third quartile =2.4, 95% CI 1.01–5.7; IRR for fourth quartile 

=6.6, 95% CI 3.3–13.3). The age-sex-adjusted incidence of ESRD was significantly higher 

among subjects in the third and fourth quartiles of TNFR2 versus the lowest quartile (IRR 

for third quartile= 2.8, 95% CI 1.2–6.4; IRR for fourth quartile=8.8, 95% CI 4.3–18.0).

Figure 3 shows the cumulative incidence of ESRD at 10 years of follow-up, when 48 of the 

62 cases of ESRD had occurred, according to the level of albuminuria and TNFRs. The 

highest quartile of each TNFR is compared with the lowest three quartiles combined. 

Among participants with severe albuminuria, the cumulative incidence of ESRD at 10 years 

of follow-up was 96.2% in those in the highest TNFR1 quartile at baseline and 44.6% in 

those in lower TNFR1 quartiles (p<0.001). Similarly, for TNFR2 the cumulative incidence 

of ESRD was 88.7% and 47.3%, respectively (p<0.001). Among participants without severe 

albuminuria, the 10-year cumulative incidence of ESRD was 14.4% and 6.1% in the highest 

and lower TNFR1 quartiles, respectively (p=0.51), and 26.9% and 4.7% in the highest and 

lower TNFR2 quartiles, respectively (p=0.049).

In the Cox regression analysis, 26 participants were censored at the time of death (25 deaths 

due to natural causes and 1 death due to injury of external cause) and 105 were 

administratively censored at the end of follow-up (December 31, 2013). Unadjusted hazard 

ratio for ESRD per interquartile range increase of TNFR1 was 2.5 (95% CI 2.1–3.1) and for 

TNFR2 was 2.5 (95% CI 2.1–3.0). Adjusted for age, sex, HbA1c, MAP, ACR and mGFR, 

the incidence of ESRD was 1.6 times (95% CI 1.1–2.2) as high per interquartile range 

increase in the distribution of TNFR1 and 1.7 times (95% CI 1.2–2.3) as high per 

interquartile range increase in the distribution of TNFR2. The univariate and multivariate 

models are shown in Table 4.

For the Cox regression model that included baseline clinical covariates alone (i.e., age, sex, 

HbA1c, MAP, and ACR), the C-index for predicting ESRD was 0.858. The C-index for 

clinical covariates plus mGFR was 0.880; for clinical covariates plus TNFR1 0.873; and for 

clinical covariates plus TNFR2 0.879; each of these markers significantly increased the C-

index for predicting ESRD (P<0.001). After additional adjustment for mGFR, the C-index 

for predicting ESRD increased from 0.880 to 0.887 for TNFR1 (P=0.006) and to 0.888 for 

TNFR2 (P=0.002, Table 5).
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DISCUSSION

Circulating TNFR1 and TNFR2 were strongly associated with risk of progression to ESRD 

in American Indians with type 2 diabetes and mostly preserved kidney function. These 

associations were present after accounting for the effects of clinically recognized risk 

factors, including HbA1c, blood pressure, ACR, and mGFR. In Cox regression models 

adjusting for the traditional clinical covariates, the hazard ratio for ESRD increased nearly 2 

times per interquartile range increase in the distribution of TNFR1 or TNFR2. Both 

receptors enhanced the discrimination of the survival models for ESRD beyond that 

achievable by the clinically recognized risk factors when examined using the C-index. These 

findings suggest that either receptor may be used as an early predictor of ESRD.

Our findings confirm the important role of circulating levels of TNFRs as predictors of risk 

of ESRD as previously reported in 410 predominantly Caucasian subjects with type 2 

diabetes participating in the Joslin Kidney Study.13 There were some differences, however, 

between the results obtained in these two studies. First, the 10-year cumulative risk of ESRD 

among participants in the 4th (highest) quartiles of TNFR1 and TNFR2 was higher in Pima 

Indians than in Caucasians with type 2 diabetes and severe albuminuria (96% and 89% in 

Pima Indians and 75% and 73% in Caucasians, respectively). This risk was also different in 

subjects in quartiles 1–3 combined (45% and 47% in Pima Indians and 16% and 20% in 

Caucasians, respectively). Second, in subjects without severe albuminuria, although the 10-

year cumulative risk of ESRD according to quartiles of serum TNFRs was very similar in 

both populations and was higher in the 4th quartile than in quartiles 1–3 combined, at 12-

years follow-up the cumulative risk in the Pima Indians converged for the highest and lower 

quartiles of TNFR1.

The absolute concentrations of circulating TNFRs in the Pima Indians were almost twice as 

high as those in the Joslin Kidney Study participants. Previous studies show that obesity is 

associated with macrophage accumulation and increased TNF mRNA expression in adipose 

tissue15,16 and severely obese individuals (BMI~40kg/m2) have much higher TNFR 

concentrations than those who are lean.17 These observations suggest that a higher degree of 

obesity among the Pima Indians may be responsible for their higher TNFR concentrations, 

although other factors might also be involved. Serum concentrations of TNFRs were not 

correlated with BMI or HbA1c, because these variables were narrowly distributed, with 

most participants having high BMI and high HbA1c. The differences in the distribution of 

circulating TNFRs in Pima Indians and Caucasians indicate that the risk of ESRD is not 

associated with a specific threshold of circulating TNFRs that is consistent across 

populations. Factors unrelated to risk of kidney disease may also influence the 

concentrations of circulating TNFRs, suggesting that population-specific risk assessment 

may be needed to identify subjects at high or low risk of ESRD in type 2 diabetes. Such a 

requirement could diminish the clinical value of these measures as biomarkers of diabetic 

kidney disease.

Circulating TNFR1 and TNFR2 were highly correlated with each other in the present study, 

as in the Joslin Study. Moreover, the associations of both receptors with diabetic kidney 

disease progression were equivalent. Similarities in the generation of the soluble forms of 
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these receptors may explain the tight correlation. It remains to be elucidated whether 

alterations of the soluble form generation may be responsible for increase in TNFRs in 

circulation and whether this increase contributes to kidney injury. The 55-kDa TNFR1 and 

75-kDa TNFR2 are cell membrane bound receptors involved in key aspects of the immune 

response. TNFR1 and TNFR2 are released into the extracellular space via inducible 

cleavage of TNFR ectodomain by ADAM17.18 An additional mechanism of the soluble 

form generation, the constitutive release of TNFR1 within exosome-like vesicles, was 

described by Levine et al. 19 The presence of circulating TNFR1 in the exosomal fraction 

was confirmed in the Joslin Kidney Study subjects with diabetic kidney disease, and the 

presence of TNFR2 in the exosomes and correlation of exosomal TNFRs with their 

respective protein expression in leukocytes was also demonstrated.14,20 Exposure of kidney 

organ culture to TNFRs increases tubular apoptosis,21 and development of fibrosis is 

delayed in TNFR-deficient murine models of tubulointerstitial injury.22 Nevertheless, a 

particular role of TNFRs in diabetic kidney disease has not yet been established, but the 

strong association between circulating TNFRs and risk of ESRD argue for development of a 

diagnostic test to identify subjects at risk of ESRD in diabetes.

Since Hasegawa et al. first demonstrated the role of TNFα pathway in the experimental 

model of diabetic nephropathy,1 a number of reports have pointed to potential involvement 

of the TNFα pathway in diabetic kidney disease.23,24 Experimental studies demonstrated 

that TNFα-mediated mechanisms may result in vasoconstriction leading to GFR decline, in 

the disruption of the glomerular barrier resulting in increased permeability to albumin, and 

in the recruitment of inflammatory cells into the kidney.25 TNFα is assumed to mediate 

these actions via its two TNF receptors; nevertheless most of those experimental studies did 

not investigate in greater detail whether TNFRs mediated actually those biological effects of 

TNFα. In humans, TNFα level is associated with diabetic nephropathy,25,26 but these 

associations are weaker than for TNFRs.12–14

We are uncertain whether TNFRs are associated with progression to ESRD in a non-diabetic 

population. Circulating TNFRs were previously shown to associate with renal function and 

albuminuria in subjects without diabetes, but those studies were mainly cross-sectional or 

focused on more advanced stages of chronic kidney disease.27–30 In addition, TNFR1 and 

TNFR2 were also implicated in the development of specific non-diabetic kidney diseases 

such as kidney allograft rejection, immune-complex mediated glomerulonephritis, lupus 

nephritis, hepatitis C virus-associated glomerulonephritis, obstructive renal injury, and 

ANCA-associated vasculitis.31–36 Whether TNFRs are also implicated in the progression of 

these kidney diseases to ESRD, however, is not known.

Strengths of the study include measurement of GFR to account for differences in baseline 

kidney function. In addition, the study has excellent follow-up and was conducted in a 

population with a high baseline GFR. Indeed, 67 (34.7 %) subjects had hyperfiltration, 

defined by an mGFR ≥154 ml/min, a value two standard deviations above the mean mGFR 

for Pima Indians with normal glucose tolerance. Limitations include the small study size, 

and the arbitrary distribution of circulating TNFRs into quartiles, with the most significant 

differences in risk of ESRD observed between the 4th quartile and quartiles 1–3 combined. 

This dose-response relationship needs to be investigated further to identify the best 
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diagnostic criteria to predict risk of ESRD. The potential impact of TNFα on ESRD was not 

explored in this study due to insufficient serum sample volume for measuring free and total 

TNFα, and the effect of TNFRs on cardiovascular mortality was not evaluated due to the 

small number of cardiovascular deaths in this study population. Moderate associations of 

circulating TNFRs with cardiovascular mortality (but weaker than for progression to ESRD) 

were suggested elsewhere.13,37

In conclusion, elevated serum concentrations of TNFR1 or TNFR2 are associated with an 

increased risk of ESRD in American Indians with type 2 diabetes after accounting for 

traditional risk factors including ACR and GFR. Absolute concentrations of these receptors 

in the serum are substantially higher than in a Caucasian type 2 diabetes population, 

suggesting that population-specific risk assessment may be needed to identify subjects with 

type 2 diabetes who are at high or low risk of ESRD.

MATERIALS AND METHODS

Study participants

Between 1965 and 2007, American Indians from the Gila River Indian Community 

participated in a longitudinal study of diabetes and its complications. Each member of this 

community who was at least 5 years old was invited to have a research examination 

approximately every 2 years. Diabetes was diagnosed by a 2-hour post-load plasma glucose 

concentration ≥200 mg/dl (11.1 mmol/l) at these biennial examinations, or when the 

diagnosis was documented in the medical record. For the present study, we selected 

participants from this longitudinal population-based study who had type 2 diabetes and also 

participated in longitudinal studies of kidney function that included measurements of 

glomerular filtration rate (mGFR) by the urinary clearance of iothalamate.38,39

Laboratory measurements

All urine and serum samples were stored at −80°C until assay. Urinary albumin was 

measured by nephelometric immunoassay, and concentrations below the threshold detected 

by the assay (6.8 mg/l) were set to this value in the analyses. Urinary albumin excretion was 

estimated by computing the urinary albumin-to-creatinine ratio (ACR) in units of mg/g. 

ACR was considered normal if <30 mg/g, moderate if ≥30 mg/g but <300 mg/g, and severe 

if ≥300 mg/g.40

Urinary clearance of non-radioactive iothalamate was estimated by the average of four timed 

urine collections, bracketed by the collection of blood samples, made at 20-min intervals 

after a water load and a 60-minute equilibration period. A high performance liquid 

chromatography system with a sensitive ultraviolet light detector was used to assay 

iothalamate at 236 nm (Instrumentation Shimadzu #6A, www.shimadzu.com).41 Serum 

levels of TNFRs were measured in samples collected from the eligible participants between 

July 1989 and December 2001. Measurements were performed by ELISA in Dr. A. 

Krolewski’s laboratory, Joslin Diabetes Center, Boston, MA, according to the same protocol 

used in the Joslin Kidney Study.13 Intra-assay coefficient of variation (CV) for mGFR was 

1.1%, and for TNFR1 and TNFR2 were <5%; the inter-assay CVs were 2.9%, 16%, and 5%, 
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respectively. Reproducibility of the TNFR assays was assessed by intra-class correlation of 

measurements from 21 duplicate samples blinded to the performance laboratory. The intra-

class correlation for TNFR1 was 0.80 and for TNFR2 was 0.97, reflecting good agreement.

Body mass index (BMI) was defined as weight divided by the square of height (kg/m2). 

Mean arterial pressure was calculated as MAP = 2/3 diastolic arterial pressure + 1/3 systolic 

arterial pressure.

The study was approved by the Institutional Review Board of the National Institute of 

Diabetes and Digestive and Kidney Diseases. Each subject gave informed consent at each 

renal clearance study.

Statistical analyses

Baseline clinical and demographic features are presented as medians (interquartile range). 

Participants were followed from their first examination with TNFR measurement until 

December 31, 2013, onset of ESRD, or death, whichever came first. ESRD was defined as 

initiation of dialysis, kidney transplant, or death from diabetic kidney disease if dialysis or 

transplantation was refused. Cause of kidney disease was determined by review of medical 

records and review of available biopsy findings. The concentrations of TNFR1 and TNFR2 

were divided into quartiles for the incidence-density and Kaplan-Meier analyses, with the 

divisions occurring at the 25th, 50th, and 75th percentiles. The incidence rate of diabetic 

ESRD was computed as the number of new cases of ESRD per 1,000 person-years (pyrs) at 

risk according to these quartiles.42 Age- and sex-adjusted incidence rate ratios (IRR) relative 

to the lowest quartile of each TNFR were computed by an incidence-density adaptation of 

Mantel-Haenszel stratification which stratifies events and person-years in a time-dependent 

fashion according to decades of age. This method is robust to sparse data within strata. 

When the values for age changed during follow-up, person-years for each subject were 

apportioned to the appropriate new strata. Tests for general association were computed by 

the Mantel-Haenszel test43 adapted for person-year denominators44 and for linear 

association by the Mantel extension test.45 The trend test for unadjusted incidence rates 

across quartiles of TNFRs is based on a weighted regression analysis that changes estimates 

across the strata.46 Relationships between baseline characteristics and measures of TNFRs 

were examined by Spearman’s correlations.

Unadjusted cumulative incidence of ESRD as a function of follow-up time, stratified by 

quartiles of TNFR1 and TNFR2 and by the level of ACR, was estimated by the Kaplan-

Meier product-limit method. Differences in cumulative incidence were assessed by the log-

rank test. Cox regression analysis was used to estimate the hazard ratio for development of 

ESRD associated with an interquartile range increase in the distribution of each TNFR after 

adjusting for known risk factors for ESRD, including baseline age, sex, MAP, HbA1c, ACR, 

and mGFR. Additional adjustment of the Cox models for diabetes duration, BMI, anti-

hypertensive treatment, and glucose-lowering treatment did not change the conclusions of 

the study, and these variables were therefore not included in the final model. The models 

assessed the risk of outcome for the difference between the upper 75th and lower 25th 

percentile as unit of change in the continuous distribution of each TNFR. Adequacy of the 

fit of each model to individual observations was assessed by inspection of deviance 
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residuals. Product terms of predictor variables did not significantly improve the regression 

models and were not included.

C-indexes and the differences in C-indexes were calculated for each predictive model and 

the 95% CI for the difference in C-indexes was computed based on 1,000 bootstrap samples. 

Hypothesis testing for the difference between C-indexes was performed by likelihood ratio 

tests.47–48 Calculations were performed using SAS software version 9.3 (SAS Institute, 

Cary, NC). All analyses used only baseline measurements because our primary interest was 

the clinically-relevant predictive value of TNFRs at a single time point for subsequent 

development of ESRD.
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Figure 1. 
Frequency distributions of the baseline serum levels of TNFR1 and TNFR2 in Pima Indians 

with type 2 diabetes.
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Figure 2. 
Relationships of serum concentrations of TNFR1 and TNFR2 with ACR at baseline on 

logarithmic scales. Spearman’s correlations and their corresponding P-values are shown on 

the figure.
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Figure 3. 
Cumulative incidence of diabetic end-stage renal disease during 10 years of follow-up, when 

48 of the 62 events occurred, according to quartiles of TNFR1 and TNFR2 at baseline and 

albuminuria status. Cut-points for the 25th, 50th, and 75th percentiles of TNFRs distributions 

are presented in Table 3. Numbers of participants at risk at the end of each 2-year interval 

are indicated along the x-axes. ACR=albumin/creatinine ratio, Qt=quartile, TNFR=tumor 

necrosis factor receptor.
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Table 1

Baseline characteristics of Pima Indians with type 2 diabetes.

Baseline characteristic Median (interquartile range)

n (% male) 193 (29)

Age (years) 46 (39–53)

Diabetes duration (years) 14 (11–19)

BMI (kg/m2) 33 (29–39)

HbA1c (%)* 9.6 (7.7–11.1)

MAP (mmHg) 93 (87–99)

mGFR (ml/min) 133 (100–171)

mGFR (ml/min/1.73 m2) 120 (88–149)

Cystatin C (mg/l) 0.97 (0.87–1.10)

Serum creatinine (μmol/l) 57 (48–74)

ACR (mg/g) 72 (19–493)

TNFR1 (pg/ml) 2833 (2081–4092)

TNFR2 (pg/ml) 4835 (3875–6997)

Glucose-lowering treatment (%) 66

Hypertension treatment (%) 6

*
HbA1c in IFCC units (mmol/mol)=81.4 (60.7–97.8).

TNFR=tumor necrosis factor receptor, mGFR=iothalamate glomerular filtration rate, ACR=urinary albumin-to-creatinine ratio, BMI=body mass 
index, MAP=mean arterial pressure. Cystatin C values are IFCC standardized. Serum creatinine values are IDMS standardized.
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Table 4

Univariate and multivariate adjusted Cox proportional hazard models (HR and 95% CI) for the risk of ESRD 

associated with TNFR1 and TNFR2 in Pima Indians with type 2 diabetes. The unit of change is the difference 

between the 75th and 25th percentiles in the distribution of each TNFR as continuous variable.

Baseline variables Univariate Multivariate

TNFR1 TNFR2

Age (per 5 years) 1.1 (1.0, 1.2) 0.8 (0.7, 0.98) 0.9 (0.7, 0.99)

Sex (females=0, males=1) 1.7 (1.03, 2.9) 1.6 (0.9, 3.0) 1.7 (0.9, 3.1)

MAP (per 5 mmHg) 1.3 (1.2, 1.5) 1.03 (0.9, 1.2) 1.0 (0.9, 1.2)

HbA1c (per 1%) 1.1 (1.004, 1.3) 1.2 (1.03, 1.4) 1.2 (1.04, 1.4)

Log2 (ACR) 1.8 (1.6, 2.0) 1.5 (1.3, 1.7) 1.5 (1.3, 1.7)

Log2 (mGFR) 4.0 (3.0, 5.3) 2.3 (1.5, 3.6) 2.1 (1.4, 3.3)

TNFR1 (per IQR) 2.5 (2.1, 3.1) 1.6 (1.1, 2.2) -

TNFR2 (per IQR) 2.5 (2.1, 3.0) - 1.7 (1.2, 2.3)

HR = hazard ratio, CI= confidence intervals, IQR = interquartile range.

*
ACR and mGFR are expressed as the logarithm base 2 (log2) to reflect the association with ESRD corresponding to a two-fold increase in ACR 

and decrease in mGFR, respectively. Effect measures are expressed as the HRs for an increase per specified unit in the distribution of each 
covariate except for mGFR.
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Table 5

C-indices, differences in C-indices, and P-values for the likelihood ratio tests for the differences in the Cox 

proportional hazards models with and without the biomarker information.

Biomarker

C-index

Difference in C-index (95% CI) Likelihood Ratio P-valueCovariates only* Biomarker + covariates

mGFR 0.858 0.880 0.021 (0.002, 0.055) <0.001

TNFR1 0.858 0.873 0.015 (0.0001, 0.042) <0.001

TNFR2 0.858 0.879 0.021 (0.002, 0.052) <0.001

Covariates+mGFR

TNFR1 0.880 0.887 0.007 (-0.002, 0.022) 0.006

TNFR2 0.880 0.888 0.009 (-0.002, 0.029) 0.002

*
Including age, sex, HbA1c, MAP, and ACR
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