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Transplantation is often the last resort for end-stage organ failures, e.g., kidney,

liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting

factor for successful transplantation in humans. Except living donations, other

alternatives are needed, e.g., xenotransplantation of pig organs. However, immune

rejection remains the major challenge to overcome in xenotransplantation. There

are three different xenogeneic types of rejections, based on the responses and

mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft

rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral

xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be

strictly distinguished from each other in pathological process. In this review, we

comprehensively discussed themechanismof these immunological rejections and

summarized the strategies for preventing them, such as generation of gene knock

out donors by different genome editing tools and the use of immunosuppressive

regimens. We also addressed organ-specific barriers and challenges needed to

pave the way for clinical xenotransplantation. Taken together, this information will

benefit the current immunological research in the field of xenotransplantation.

KEYWORDS

Xenotransplantation, hyperacute rejection, delayed xenograft rejection, chronic
rejection, glucocorticoids, immunosuppressants
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1 Introduction

Organ failures, which are usually a consequence of diseases,

trauma, or alcohol/drug abuse, represent the top causesofmortality

in most population groups (1). A recent population-based cohort

study covering a 3-year period and involving 9,187 adult patients

admitted at the emergency department of the Odense University

Hospital, Denmark, indicated that the one-year all-causemortality

of organ failurewas 29.8% (2). Another study, involving a cohort of

1,023 patients sequentially admitted at ten Scottish intensive care

units, revealed a one-year overall mortality of 46.5% (3). Organ

transplantation is the ideal treatment for most end-stage organ

failure affecting the heart, lungs, kidneys, liver, and in certain cases,

the pancreas. However, the demand of human organs for

transplantation purpose exceeds by far the number of organ

donations, which limits this procedure in general clinical practice.

TheWorld Health Organization (Geneva) estimates that only 10%

of the worldwide need for organ transplantation is being met (4).

Several countries around the world have implemented different

strategies to overcome human organ shortage, including financial

incentives in the United States and China (5, 6), or campaigns to

increasepublic awareness (7). France andotherEuropean countries

recently declared all citizen as donors by default in case of death or

brain death unless they opted out during their lifetime. Other

approaches are also explored to enable the use of animals’ organs

and tissues, and are referred to as xenotransplantation. In addition

to addressing organ shortage issues, xenotransplants could allow

for tailored transplantation and meet specific patients’ needs, or

offermoreflexible schedules than that imposedbyorgandonations,

usually performed on short notice (8).

The prominent pathobiological barriers to successful clinical

use of xenotransplantation include the rapid activation of innate

cellular responses against the graft, and at later stage, further

rejection of the organ by the adaptive immune system (9, 10). As

important, coagulation dysregulation and inflammation intervene

in the rejection process. The long-term survival of the grafts

depends on how to reduce or even avoid the occurrence of

rejection, which in turn requires a deep understanding of these

different rejectionmechanisms. In this review, we illustrate in detail

from current literatures these different mechanisms in rejection

processes and the corresponding strategies to overcome them. We

hope this comprehensive overview will bring new insights into

current immunological research related toxenotransplantationand

future directions towards its application.
2 Mechanism of xenograft rejection

2.1 Hyperacute rejection

HAR generally defines as a graft destruction occurring

within 24 hours and that usually lasts for few minutes to
Frontiers in Immunology 02
hours. It is caused by the binding of human or non-human

primate (NHP) pre-existing antibodies against graft antigens

(Figure 1A) (11). Among these antibodies, most frequent IgMs

and IgGs recognize galactose-a 1,3-galactose (a-Gal) residues
added on glycoproteins and glycolipids by the a1,3
galactosyltransferase (a1,3GT) present in the genomes of non-

primates and New World monkeys (platyrrhine primates living

in South and Central America, including howlers, spider

monkeys, and woolly monkeys) (12, 13). Humans, Old World

monkeys (catarrhine primates living in African, Asian and

Europe, including baboons, colobuses and mandrills), and apes

lack a-Gal epitopes because their a1,3GT gene is affected by a

loss-of-function mutation (14). In addition, about 70–90% of the

antibodies produced by these species target a-Gal epitopes

specifically (15). Consequently, when a pig organ is

transplanted into a human or a NHP, the pre-existing anti-Gal

antibodies bind to a-Gal epitopes present on the graft’s vascular

endothelium, and induce complement component 3b (C3b)

production, complements activation (16), and formation of a

membrane attacking complex (MAC). These reactions cause

endothelial cells lysis, destruction of the vasculature, and

ultimately, graft rejection (17, 18). The loss of endothelial

vascular integrity further leads to interstitial haemorrhage,

tissue ischemia, and necrosis (19, 20). Moreover, capillaries

thrombotic occlusion, fibrinoid necrosis of arterial walls, and

neutrophils accumulation contribute to graft failure (21). Nitric

oxide species (NOS), reactive oxygen species (ROS), and other

free radicals are also key components of the rejection process.

The histopathological features of HAR characterize by

disruption of vascular integrity, oedema, fibrin-platelet rich

thrombi, and interstitial haemorrhage with widespread

deposition of immunoglobulins and terminal complement

products on vessel walls (21, 22).

Two ways are usually taken to prevent HAR. One consists in

knocking out the a1,3GT gene in pigs (GTKO pigs) (23, 24),

while the other relies on inhibiting complement activation by

inducing the expression of human complement-regulatory

proteins, i.e., hCD46, hCD55, and hCD59, on pig cells (25).

Kuwaki et al. reported that the elimination of the a-Gal epitopes
successfully averted HAR in baboons receiving hearts from

GTKO pigs (n = 8) and increased the pig heart survival by 2–

6 months (median, 78 d) (26). In a study using pig liver

transplant to NHPs, genetically engineered expression of

hCD55 or of hCD46 combined with GTKO was associated

with a survival time of seven to nine days while the wild-type

(WT) liver graft did not extend over three days (27, 28).

Combination with GTKO, hCD46 or hCD55 expression

reduced the early graft failure (signs of early transplantation

failure within three days of transplantation) to 7% compared to

43% with GTKO organs (29).

Although these measures allow the grafts to survive beyond

24 hours, graft failure can still result from antibody recovery,
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through a mechanism termed acute humoral xenograft rejection

(AHXR), acute vascular rejection, or delayed xenograft rejection

(DXR), as explained below (20).
2.2 Delayed xenograft rejection

Delayed xenograft rejection refers to post-HAR and is also

called acute humoral xenograft rejection from a mechanistic

prospect, or acute vascular xenograft rejection (AVXR) from a

pathophysiological prospect. AHXR or AVXR define xenograft

injuries occurring within the vasculature and involving

antibodies, while complements play a minor role during this

type of rejection (21). In other articles, DXR may refer to

antibody- and complement-independent cellular xenograft

rejection (CXR) (30). Although there are clear differences

between the mechanisms underlying these different terms,

these are often used interchangeably and there is no

international standard. Some efforts should be considered to

achieve internationally recognized definitions and descriptions
Frontiers in Immunology 03
of these different concepts. Below, we discuss the concepts of

AHXR and CXR in separate sections.
2.2.1 Acute humoral xenograft rejection
Provided that a xenograft doesnot fail due toHAR, a second step

consist in overcoming AHXR, which causes immunological

destruction within a few days to a few weeks (Figure 1B) (14). The

histological characteristics of AHXR are focal ischemia and diffuse

intravascular coagulation mediated by both humoral and cellar

immune responses provoking endothelial cell activation and

exaggerated inflammation (31, 32). Lin et al. reported that anti-Gal

antibodies removal from the blood of baboons prevents AHXR of

porcine organs transgenic for human decay-accelerating factor and

CD59, demonstrating thatGal-specific antibodieswere implicated in

AHXR, in addition to HAR (33). However, antibody-meditated

rejection still occurred during transplantation of GTKO pigs’

kidneys or hearts into NHPs, and eventually led to graft failure

over the course of several days (34, 35). These results suggest that

non-Gal antigens also contribute to AHXR (34, 35).The presence in
A

B

C

FIGURE 1

Mechanisms of rejections during xenotransplantation. (A) Hyperacute rejection occurs within minutes to hours and is caused by the binding of
the host’s pre-existing antibodies to a-Gal antigens on the graft, which results in complement activation and membrane attacking complex
(MAC) formation. This reaction causes endothelial cells lysis, fibrinoid occlusion, and vasculature destruction. Neutrophils, through the
production of ROS and NOS also contribute to this process. (B) Delayed xenograft rejection (DXR) occurs within days to weeks and include
acute humoral xenograft rejection (AHXR), cellular xenograft rejection, and coagulation dysregulation. AHXR is antibody-mediated and involve
non-Gal antibodies and a-Gal antibodies reactivity against non-Gal epitopes and a-Gal of the graft. Various innate and adaptive immune cells,
proinflammatory cytokines, and coagulation dysregulation contribute to rejection, resulting in massive deposition of immunoglobins, fibrin,
endothelial cell lysis, and interstitial bleeding. (C) Chronic rejection occurs within months to years. Xenoantigens are surveyed by host APCs and
presented to T cells, leading to their activation and triggering inflammatory cascades, characterized by thrombotic microangiopathy,
proliferation of the graft vascular endothelial cells, vessel narrowing, and interstitial fibrosis. APC, antigen presenting cell; MAC, membrane
attacking complex; MHC-II, major histocompatibility complex class II; NK cell, natural killer cell; NOS, nitric oxide species; PLT, platelet; RBC,
red blood cells; ROS, reactive oxygen species; TCR, T cell receptor.
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the recipient of pre-existing antibodies against non-Gal epitopes,

such as carbohydrate N-glycolyl neuraminic sialic acid (Neu5Gc),

glycan SDa, defining the blood group of the same name, was also

implicated in rejection (Figure 2) (36–38). Zhu et al. identified

Neu5Gc as a crucial non-Gal xenoantigen in 2002 (36), while the

SDa blood group was discovered in 1967 (39). Neu5Ac is

hydroxylated to produce Neu5Gc by the cytidine monophosphate-

N-acetylneuraminic acid hydroxylase (CMAH) present in pigs and

other animals, but not in humans (40). The gene encoding this

enzyme has been inactivated during primate evolution (41).

Double knockout (DKO) of the genes responsible for Gal and

NeuGc synthesis in mouse reduced significantly xenoreactive

antibody-mediated complement-dependent cytotoxicity of

human sera towards mouse tissues, compared to wild-type

mouse tissues. The gene encoding the Beta-1,4-N-acetyl-

galactosaminyltransferase 2 (b4GALNT2) is responsible for the
SDa positive blood group. Its inactivation can significantly

diminish porcine xenoantigenicity and reduce the effects of

human and NHP non-Gal antibodies (42). Therefore, Neu5Gc

and SDa represent key targets for clinical xenotransplantation.

Other non-Gal antigens such as Gabarapl1 (GABA type A

receptor-associated protein like1), and COX-2 can also induce

antibody-mediated rejection (43). In addition, shared common
Frontiers in Immunology 04
epitopes of human leucocyte antigen (HLA) and swine leucocyte

antigen class I (SLA-I) could lead to cross-reactivity between

human and porcine (44). Some studies showed that human CD8

+T cells were capable of recognizing SLA-I and elicited immune

responses and anti-HLA class II antibodies in patients could

cross-react with SLA-II (45–48). Immunoengineering of the

vascular endothelium to silence SLA expression might be

feasible to reduce the immunogenicity (49–52).

The binding IgM and IgG to non-Gal antigens triggers the

onset of AHXR by activating the complement cascade, which is a

key actor of antibody-mediated damages (53). Besides, humoral

responses against endothelial epitopes can also cause activation

and damage of the vascular endothelium through other

mechanisms, for example antibody-dependent cell-mediated

cytotoxicity (ADCC) and inflammation. Further, neutrophils

may activate porcine endothelial cells (pECs) (54). Natural killer

(NK) cells (55) and macrophages (56) are also agents of AHXR,

but the exact pathogenesis involving these cells remains unclear.

The histological characteristics of AHXR include extensive

interstitial bleeding, infarction, necrosis, thrombosis, neutrophil

infiltration, and massive deposition of immunoglobins,

complements, fibrin and platelets (34). These manifestations are

similar to those found in HAR (14).
FIGURE 2

Delayed xenograft rejection: AHXR, cellular xenograft rejection and coagulation dysregulation. The antibodies involved in AHXR aremainly directed
against 1,3a-Gal epitopes and non-Gal epitopes such as Neu-5GC and SDa blood group. During cellular responses, ligands on the graft cells activate
recipients’NK cells and macrophages via different activating receptors. Meanwhile, graft cells fail to deliver inhibitory signals to the activated cells and
enhance their proinflammatory and cytotoxic properties. Neutrophils can generate ROS, tissue-digesting enzyme, and NETs upon activation by graft
cells, which causes tissue damage. Three types of DCs are involved in graft rejection. IRI-related DCs activate both cytotoxic T cells and B cells, thus
triggering both cell- and antibody-mediated rejection. Rejection-related DCs promote acute and chronic rejection by activating T cells. Tolerogenic
DCs suppress immune rejection by inducing Tregs. The different surface markers characterizing the different immune cells are listed in the right-hand
side of the cells. T cells are involved in rejection through both direct and indirect pathways. In the direct pathway, porcine APCs present antigens and
activate host’s T cells. In the indirect pathway, the graft antigens are presented by the host’s APCs. B cells are activated by T helper cells and secreted
cytokines. Antibodies released by activated B cells that have differentiated into plasma cells contribute to graft rejection. AHXR and cellular xenograft
rejection are both accompanied with coagulation dysregulation, where porcine TFPI cannot fully inhibit factor Xa and fails to inactivate TF. Porcine
TBM also fails to regulate protein C. Porcine vWF can aggregate spontaneously and activate the host’s platelets through GP1b receptors. Altogether
these reactions lead to the formation of thrombus in the graft vessels. AHXR, acute humoral xenograft rejection; Ag, antigen; aPC, activate protein C;
DC, dendritic cell; IRI: ischemia-reperfusion injury; NET, nuclear extracellular traps; TBM, thrombomodulin; TF, tissue factor; Tregs, T regulatory cells;
vWF, vonWillebrand Factor.
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Genome editing tools, such as zinc-finger nucleases,

transcription activator-like effector nucleases (TALEN), and

CRISPR (clustered, regularly interspaced, short palindromic

repeats)/Cas9 (CRISPR-associated protein 9), have paved the

way for significant breakthroughs in dealing with AXHR by

creating DKO (GGTA1/CMAH or GGTA1/B4GALNT2) pigs, or

triple knockout (TKO, GGTA1/CMAH/B4GALNT2) pigs, which

had been first generated in the USA (57–60). Cells from GGTA1/

CMAH pigs were associated with reduced affinity of the human

antibodies compared with cells from GTKO pigs (59). Moreover,

the absence of Neu5Gc and Gal epitopes from murine

xenogeneic cells has been proven to dampen the immune

reaction provoked by the pre-formed antibodies contained in

human serum (61). These data suggest that the deletion of the

Neu5Gc epitopes could help increase the survival time of

xenografts. In vitro evidence showed that the reactivity of pre-

existing antibodies against the xenografts could be reduced by

inactivating the B4GalNT2 gene (60). This result indicates that

TKO pig organs can promote major development for

transplantation into human compared with GTKO and DKO

xenografts, but still TKO pig organs were not sufficient to

achieve prolonged graft survival, limiting by complement-

mediated coagulopathies (62). It should also be noted that a

fourth xenoantigen seems to be exposed when the Neu5Gc

epitopes are absent, and that baboons and other Old World

monkeys are more likely to reject this fourth xenoantigen than

humans are (63). Therefore, TKO pig heart or kidney

transplantation in baboons may appear more problematic than

they would be in a clinical trial involving humans. Due to the

cross-reactivity between HLA-specific antibodies and SLA,

modifying SLA genes may help further reduce the human

immunoglobulin binding against pig cells. Two inactivating

mutational approaches targeting either the light b-chain or a

conserved region in the heavy a-chain of SLA-I have been

successfully utilized in the pig genome to generate pigs with

no or limited expression of SLA (45). PBMC from these pigs

induced almost no proliferation of purified human CD8+ T cells

(45). However, complete removal of SLA in pig genomes may

not be an ideal solution due to logistical, immunological, and

infectious consequences of SLA deletion (64). Instead, for highly

HLA sensitive recipients, an ideal organ-source pig might be one

with site-specific mutations to eliminate cross-reacting

antibody binding.

2.2.2 Cellular xenograft rejection (acute
cellular rejection)

If bothHAR and AHXR are overcome, but immunosuppressive

therapy is insufficient, CXR may occur and lead to graft rejection

within days or weeks following transplantation (65, 66). CXR can be

mediated by the innate and/or the adaptive immune system, and

may involve NK cells, macrophages, neutrophils, dendritic cells

(DCs), T cells, and B cells (Figure 2).
Frontiers in Immunology 05
2.2.2.1 NK cells

NK cells mediate xenograft rejection by direct NK cell

cytotoxicity (NKCC) or ADCC. Upon direct contact with the

target cells, NK cells deploy cytotoxic functions by engaging a

series of activating and inhibitory receptors and ligands (53).

Recent research has revealed a mechanism whereby NK cells

adhere to and transmigrate through the porcine endothelium by

interacting with an as yet to define porcine ligand, via CD49,

integrins including CD11a/CD18 and CD11b/CD18, and CD99

(67). NKG2D and NKp44 are activating receptors that can bind

porcine pULBP-1 and an unidentified ligand, respectively (68).

Their engagement initiates the release of lytic granules

containing cytotoxic proteins such as perforin and serine

esterase, which lead to the lysis of the donor’s endothelial cells

(69). Inhibitory receptors such as killer-cell immunoglobulin

receptors (KIRs), immunoglobulin-like transcript 2 (ILT2), and

CD94/NKG2A heterodimers mainly recognize MHC-I

molecules (70, 71). Low expression or absence of MHC-I

molecules on porcine cells leads to reduced inhibitory signals

transduced to the NK cells, which triggers their activation and

subsequent lysis of the porcine cells (72, 73). Stable expression of

transgenic human leukocyte antigen (HLA)-Cw3 and/or G, and/

or E, on porcine cells could protect the xenograft from human

NK cytotoxicity (74).

Besides direct cytotoxicity, NK cells can also employ

complement-independent ADCC to destroy the graft (75).

Preformed natural antibodies against a-Gal carbohydrates or

Neu5Gc can bind to the pECs with their Fab portion. Fc

receptors (FcRs), including CD16 (FcgRIIIa) on NK cells,

recognize the Fc portion of the antibodies, triggering a

signalling cascade that causes degranulation (76). In addition,

CD16 recognizes induced antibodies against SLA-I, which can

mediate ADCC (77). Furthermore, NK cells can promote the

production of non-Gal antibodies against the graft in a T-

independent manner, by interacting with splenic marginal

zone B cells via CD40/CD154 interaction (78).

The role of NK cells in CXR needs further elucidation to

prolong xenotransplant survival. To date, most knowledge

comes from in vitro studies and animal models. Future in vivo

studies on pig-to-NHP transplants are needed to clarify the role

of NK cells in xenograft rejection.

2.2.2.2 Macrophages

Macrophages carry out diverse functions, ranging from

phagocytosis, cytokine production, antigen presentation, to tissue

repair. Like for other innate immune cells, Toll-like receptors on the

surface of the macrophages can recognize nonself molecules such as

danger-associated molecular patterns (DAMPs) arising from

injured xenogeneic cells (79–82), pathogen-associated molecular

patterns (PAMPs), polysaccharides, and polynucleotides (83).

Under the synergistic effect of Toll-like receptors activation and

interferon g (IFN-g), macrophages are licensed to process and
frontiersin.org
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present xenoantigens, promote the differentiation of pro-

inflammatory T helper 1 (Th1) and T helper 17 (Th17) by

producing interleukin-12 (IL-12), and exert direct cytotoxicity by

producing proinflammatory cytokines such as tumour necrosis

factor a (TNFa), IL-1, IL-6, and nitric oxide (84, 85). Interspecies

incompatibility of CD47 was also reported to contribute

significantly to macrophage-mediated rejection of xenogeneic

cells. That is, in a human macrophage-like cell line, porcine

CD47 does not stimulate the inhibitory receptor signal-regulatory

protein a (SIRPa), while soluble human CD47-Fc fusion protein

does, which inhibits porcine cell phagocytosis (86). Human

macrophages were found to phagocytose porcine red blood cells

independently of the presence of antibodies or complement

activation, even in setups where the a-Gal epitopes were absent

from the porcine cells (87).

In CXR, macrophages mainly act by promoting T-cells

mediated rejection (88–90). Feng et al. used IL-10/Fc to treat

mice before or after transplantation of a pancreatic islet

xenograft, and found that the T cell effector functions were

inhibited, with reduced IFN-g and IL-4 expression probably

due to the inhibition of IL-12 production by macrophages (91).

In whole organ xenografts, Lin et al. showed that the

macrophages might be the cause of rejections occurring

within 3–6 days. In their study, hamster hearts were

transplanted into genetically engineered T cell-deficient rats

depleted or not of NK cells, which demonstrated that in absent

of T and NK cells the graft was still rejected. The spleen of the

recipient and the rejected organs were predominantly

infiltrated by macrophages (92). Since abundant evidence

shows that macrophages play a role in xenograft rejection,

the regulation of their activity might enhance the survival of

future xenografts.

2.2.2.3 Neutrophils

There are at least three mechanisms whereby activated

neutrophils can induce tissue damage: (i) ROS generation; (ii)

release of tissue-digesting enzymes; and (iii) nuclear extracellular

traps (NETs) formation (93).

Human neutrophils can directly recognize pECs, and

subsequently upregulate adhesion molecules and render

porcine cells more vulnerable by exposing them to NK cell-

mediated cell lysis (94). Specific recognition pathways were

thought to be responsible for the adhesion of human

neutrophils to porcine endothelium, as under flow conditions,

adhesion occurred independently of the presence of a-Gal or
ICAM-1 (95). Mohanna et al. demonstrated that neutrophils can

be activated directly by porcine aortic endothelial cells, which

subsequently causes a transient rise of calcium flux triggering the

production of reactive oxygen metabolites and inflammatory

cytokines (54). Cardozo et al. further demonstrated that the

adhesion of human neutrophils to pECs can be facilitated by a

soluble chemotactic factor produced by pECs (96). Activated
Frontiers in Immunology 06
neutrophils also exert cellular damages by generating

superoxides via NADPH oxidase activity (97).

Apart from ROS generation, leukocyte proteases have been

implicated in neutrophil-mediated graft tissue damage, through

disruption of endothelial cell junctional complexes (98). For

instance, after acute ischemia/reperfusion insults in liver,

neutrophil elastase (NE) breaks down graft’s homeostatic

barriers by degrading the extracellular matrix (ECM)

components, including collagen, elastin, and fibronectin (99).

“NETosis”, a program for production of neutrophil

extracellular traps (NETs), is a unique process whereby

neutrophils induce inflammation and cell death in porcine

grafts. NETs are mainly composed of antibacterial peptides,

histones, and serine proteases that accumulate in the lung in

both experimental and clinical primary graft dysfunction (PGD).

Disruption of NETs with DNase I reduces lung injury (100).

2.2.2.4 Dendritic cells

The most efficient antigen presenting cells (APCs) in

activating T cells and initiating immune tolerance are the DCs.

Based on different surface markers, DCs are generally divided

into three subsets: (i) DCs involved in ischemia-reperfusion

injury (IRI) and expressing C1d, CD8a, CD11c, CD40, CD45,
CD54 (ICAM), CD80, CD86, MHC-II, and TNFa, but are

negative for CD4 and CD205 (101); when activated by

antigens released during ischemia-reperfusion, these DCs can

trigger both cellular and antibody-mediated rejection, resulting

in harmful antibodies secretion by activated B cells and killing of

donor cells by cytotoxic T cells (102); (ii) rejection-related DCs,

promoting acute and chronic rejection via different interactions

with T cells and are characterized by the expression of CD11c,

MHC-II, CD1c and FcϵRI (103); (iii) tolerogenic DCs,

suppressing the rejection process by dampening the T cell

effector functions and promoting T regulatory cells (Tregs)

activity; these DCs express significantly lower levels of MHC,

T cell co-stimulatory molecules, such as CD40, and CD80/86,

and inhibitory ligands, such as programmed death ligand-1 (PD-

L1) and death-inducing ligands, reflecting their non-phagocytic

profile (104, 105). In response to specific signals such as DAMPs,

host DCs can acquire a rejection-related phenotype, which can

further evolve towards a tolerogenic phenotype upon treatment

with rapamycin, IL-10, vitamin D, or low-dose granulocyte-

macrophage colony-stimulation factor (GM-CSF). Tolerogenic

DCs reduce CD4+ T cell activation and impair CD8+ T cell

functions, which helps suppressing graft rejection (102). Manna

et al. reported that DCs activation by the porcine aortic

endothelial cells could be blocked by a pre-treatment of the

DCs with antibodies specific for the human leukocyte function-

associated antigen-1 or CD54 (106). However, the exact

mechanisms underlying DCs participation to the rejection

process still need to be clarified in order to develop anti-

rejection drugs.
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2.2.2.5 T cells

The role of T cells in cellular rejection during pig-to-baboon

xenotransplantation has been demonstrated, although the relevant

studies were only few (107, 108). Upon xenotransplantation, T cells

are activated by both direct and indirect pathways (109). In the

direct pathway, porcine APCs expressing CD80/86 constitutively,

such as pECs and migratory passenger leukocytes, can directly

prime primate T cells (110). Simultaneously, primate TCRs interact

with SLA-I/II peptide complexes, resulting in T cell-mediated

cytotoxicity against the porcine vascular endothelium. In the

indirect pathway, T cell activation occurs through the

presentation of porcine peptides by the hosts’ APCs. T cell

activation requires antigen recognition through the TCR coupled

with costimulatory signals (111), involving CD40-CD154 and/or

CD80/CD86-CD28 interactions (112). Different drugs targeting

these costimulatory pathways could be administrated in

xenotransplantation, as for example anti-CD40 mAb and

CTLA4Ig, as discussed below. In addition, abrogation of SLA-I

expression has been proved to silence T-cell and NK cell-mediated

cell lysis (113, 114).

2.2.2.6 B cells

One percent of total circulating IgGs, and 1–4% of total IgM in

the human serum are directed against a-Gal epitopes (115).

Previous studies established that the cells producing anti-Gal

antibodies reside mainly in the spleen, and to a lesser degree in

lymph nodes and bone marrow (116). This location matches that of

a recently described splenic B cell subtype characterized by aMac1+

B1b-like phenotype (117). Antibody production results from the

interaction between B cells and other immune cells, including T

cells, NK cells, and follicular DCs. Immunization of a1,3GT KO

mice with pig cell membranes induces clonal expansion of anti-Gal

B cells that can present antigen to T helper lymphocytes viaMHC-

II and provide CD40 co-stimulation, causing cytokine production

by the activated CD4+ T cells. This process provides activated B

cells with the helper signals necessary to their proliferation and

maturation in germinal centres, resulting in production of high-

affinity anti-Gal antibodies (118). Another study suggested that

marginal zone B cells can produce xenoantibodies after receiving

help fromNK cells, independently of T cell help (78). Moreover, the

follicular DCs, expressing the complement receptors 1 and 2, can

activate a-Gal-reactive B cells by presenting a-Gal immune

complexes (119).

As B cells are the main sources of elicited anti-porcine

antibodies, they represent an important target to overcome

AHXR. Efficient depletion of circulating and secondary

lymphoid organ-resident B cells by anti-CD20 antibody at the

time of transplant prevents anti-pig humoral responses and

resulting graft injury, and significantly delays or prevents the

systemic dysregulation of the coagulation pathway and

thrombotic microangiopathy (120, 121). Zhao et al. reported

that anti-high mobility group box protein 1 (HMGB1)-
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neutralizing antibody prolonged xenograft survival, and

dampened tissue damage and immune cell infiltration by

suppressing xenoreactive B cell responses (122).

2.2.3 Coagulation dysregulation in DXR
Coagulation dysregulation was first described by Ierino in

the late 1990s. Both AHXR and cellular xenograft rejection are

accompanied with coagulation dysregulation, which results in

the development of thrombotic microangiopathy in the graft.

Antibody-mediated and cellular rejections cause endothelium

injury, exposing tissue factor (TF) and collagen. The binding of

TF to activated factor VII (FVIIa) initiates thrombin generation,

converting fibrinogen into fibrin. Simultaneously, sub-

endothelial collagen triggers the accumulation and activation

of platelets (123). Importantly, this process is enhanced by

molecular incompatibilities between the primate and porcine

coagulation homeostatic systems. The porcine tissue factor

pathway inhibitor (TFPI) cannot fully inhibit the factor Xa in

primates and fails to inactivate TF (124). In addition, the porcine

thrombomodulin (TBM) is unable to regulate the primate

thrombin, and thus, fails to activate the protein C (Figure 2)

(125). Another incompatibility lies between the primate platelet

lycoprotein 1b (GP1b) and the porcine von Willebrand Factor

(pvWF). pvWF can spontaneously aggregate without shear stress

and activate primate platelets through the GP1b receptor (126).

The subsequent graft vessel thrombosis caused by fibrin

deposition and platelet aggregation eventually leads to

ischemic injury (Figure 2) (26, 127). Approaches to tackle

coagulation dysregulation include the transgenic expression of

human complement proteins (hCRP) and coagulation proteins

such as human TBM by the donor porcine organs (128).
2.3 Chronic rejection

Chronic rejection usually occurs several months to years after

organ transplantation. It has similar histopathological

characteristics to those found in allotransplantation and are

mainly related to thrombotic microangiopathy, characterized by

the proliferation of graft vascular endothelial cells, vessel narrowing,

interstitial fibrosis, which ultimately, result in graft failure

(Figure 1C) (129). Since there are only few long-term survivors to

xenotransplantation, the mechanism of chronic rejection has not

been sufficiently documented, but it is almost certainly related to

long-term, low-amplitude immune responses.

Current research indicates that chronic rejection involves both

immune and non-immune factors. Molecular incompatibilities

between the porcine and the NHP coagulation factors may play a

vital role (130). Mohiuddi et al. reported that gene-editing of pig

heart (GTKOhTg.hCD46.hTBM), alongside with anti-CD40

monoclonal antibody treatment, allowed for successful survival of

a graft for 236 days in baboons. This result indicates a crucial role of
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human TBM expression combined with anti-CD40 treatment not

only for the long-term survival of the graft, but also to avoid

thrombotic microangiopathy and other coagulation-related

problems (131). Another study demonstrated that transgenic

expression of human CD39 (a major vascular nucleotidase that

converts ATP and ADP into AMP, further degraded into anti-

thrombotic and anti-inflammatory adenosine) in mouse

significantly prevents thrombotic events in the heart graft and

improves the duration of graft survival from three days in WT

mice, to six days in the transgenic mice (132).

Another study by Kim et al. achieved a long-term survival of

499 days with pig-to-rhesus macaque renal xenografts by depleting

CD4+ T cells (46), indicating that these cells are responsible for

chronic rejection. Similar to allotransplantation, the host’s MHC

class II molecules recognize porcine xenoantigens and present them

to the host’s CD4+ T cells, leading to their activation (109). Yet, the

mechanisms involving the CD4+ T cells in chronic rejection are

poorly understood. Besides, a sustained inflammatory response is

still a key challenge to achieve successful grafts. Future studies

should explore the roles of inflammatory cytokines such as IL-6,

TNF-a, IL-17, and their inhibitors to uncover therapeutic targets

(133, 134).
3 The prevention of
xenotransplantation rejection

Since 2009, porcine models with new genetic modifications

have been constantly implemented to improve molecular

compatibilities. As gene editing techniques such as zinc finger

nucleases, TALEN, and CRIPSR/Cas9 genome editing system

improve, the production of multiple-gene edited pigs has become

easier and faster (135). This section of the review will focus on the

mechanisms and usage of common immunosuppressants in

xenotransplantation area (Figure 3).

Immunosuppressive agents are used commonly in treatments

for transplantation rejection. Conventional immunosuppressive

therapy, for example, corticosteroids, tacrolimus, and

cyclophosphamide (136–138), when used at high dosages, may

delay graft failure. In non-human concordant models for kidney or

liver xenografts, long-term survival can be achieved with

conventional immunosuppressive agents (139). In 2000, a co-

stimulation blockade-based immunosuppressive therapy was

introduced to xenotransplantation by Buhler et al. (140), and has

proven more successful than common therapies.
3.1 Glucocorticoids

Glucocorticoids (GCs) belong to the steroid family and were

discovered in the 1940s (141). GCs have been used as first-line

medication during the induction and maintenance phases after

transplantation to prevent acute rejection. In pig-to-primate
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also been used in most trials (142–144). In an islet

xenotransplantation study, all monkeys experienced a

normalization of all diabetic and glycemic parameters within

four days of GCs administration, suggesting a reversal of

diabetes mellitus (145). In another pre-clinical study, the

longest survival time (78 days) for a porcine renal xenograft

was obtained by applying GCs combined with other

immunosuppressants (146).

The 17-hydroxy, 21-carbon steroid configuration

characterizing the GC molecules is required for their activity

and binding to the GC receptors (GCRs). Changes in this

configuration can alter the pharmacodynamic specificities of

the GCs (147). GCs’major anti-inflammatory effects result from

interferences between activated GCRs and proinflammatory

transcription factors such as nuclear factor-kB and activator

protein-1 (148). The immunosuppressive mechanisms triggered

by GCs include: (i) T cell depletion via inhibition of IL-2, which

prevents Th1 differentiation and subsequently results in T cell

apoptosis; (ii) prevention of B cell clonal expansion through

inhibition of the production of IL-2 and related peptides, which

reduces antibody production; (iii) induction of eosinophil

apoptosis either directly or through IL-5 inhibition (147, 149);

(iv) downregulation of the Fc receptors and MHC class II

molecules on macrophage surface via proinflammatory

cytokine inhibition, e.g., IL-1 and TNF-a, and prostaglandins

(150); (v) widespread decrease of inflammatory responses in the

host by induction of lipocortin-1 (annexin-1) synthesis; (vi)

acceleration of lymphocytes apoptosis and abrogation of

alloimmune responses to third-party antigens, such as

allergens and autoantigens. In conclusion, all immune cells

that express GCRs can be modulated by GCs, and as a result,

lose abilities such as migration or phagocytosis.

The exact dosage of GCs for induction and maintenance

phases varies between different institutions. Methylprednisolone

doses vary from 1 to 15 mg/kg, for a duration varying from four

days to continuous treatment (143, 146). A metanalysis showed

that long-term GCs usage may increase the risk of infections for

the hosts (151). Pulse dose steroids are now favoured for treating

acute allograft rejection but are less crucial in maintenance

immunosuppressive therapy. According to some guidelines for

clinical practice, GCs could be discontinued early at first week

post transplantation for patients with low immunological risk

who receive depleting antibodies as induction therapy (152).
3.2 Calcineurin inhibitors

Two common calcineurin inhibitors (CNIs), cyclosporin

and tacrolimus, inhibit the dephosphorylation of nuclear

factor of activated T cells (NFAT) by calcineurin, preventing

its nuclear translocation and subsequent calcineurin-dependent

gene transcription (153, 154). This inhibition results in
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decreased T cell maturation and lymphokine production,

including that of IL-2.

3.2.1 Cyclosporin
Cyclosporin is a cyclic polypeptide consisting of 11 amino acids,

most of which are hydrophobic. The discovery of cyclosporin in the

early 1980s had a huge impact on the transplantation field by

decreasing drastically the rate of acute rejection. This drug binds to

cyclophilin; the drug-immunophilin complex then binds to

calcineurin, which prevents T cell activation and IL-2 production,

thus inhibiting T cell clonal proliferation. Cardiac xenografts treated

with steroids and cyclosporin achieved a survival of 77 days, with no

signs of hyperacute rejection or cyclosporin-induced malignancies

(155). In baboon-to-monkey liver xenotransplantation, two

monkeys survived for 91 and 1076 days, respectively, with

cyclosporin administered after transplantation, for example, at

doses of 3 to 8 mg/kg/day (139), or 20 mg/kg intravenously two

hour before transplantation followed by oral administration on next

three days (143). In a cardiac xenograft transplantation, the highest

cyclosporin blood levels (around 1000 ng/ml) correlated with the

highest graft survival rate of the host animals (142).
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3.2.2 Tacrolimus
Tacrolimus, a 23-membered macrolide lactone, was isolated

for the first in 1987 from Streptomyces tsukubaensis (156). It

inhibits T cell proliferation by binding FK506 binding protein

(FKBP) (157), which inhibits calcineurin by binding it specifically

and competitively (158). Subsequently, NFAT nuclear

translocation is inhibited, which provokes the downregulation of

downstream genes encoding cytokines, including TNF-a, IL-2,
IL-3, IL-4, CD40L, IFNg, and GM-CSF (158, 159). This

tacrolimus-induced cascade finally leads to reduced T cell

proliferation. Tacrolimus was first approved for liver

transplantation in 1994, and since, its used has been extended

to become the backbone of immunosuppressive therapy after solid

organ transplantation. Later, it has been used for induction and

maintenance immunosuppressive therapy, usually in combination

with GCs that are then rapidly de-escalated (160). Tacrolimus

effectively prevents acute rejection and leads to lower rejection

rates and longer rejection-free periods (161, 162). In pig-to-rat

islet xenotransplantation model, tacrolimus also exerts a

noticeable immunosuppressive effect (163, 164). The oral

bioavailability of tacrolimus ranges from 5 to 67% (mean value
FIGURE 3

Mechanism of action of the immunosuppressants commonly used in xenotransplantation. GCs exert anti-inflammatory and immunosuppressive
effects by inhibiting macrophages, eosinophils, T cells, and to a lesser extent, B cells, by binding to GC receptors in cytoplasm. Cyclosporin
binds to cyclophilin, then this drug-immunophilin complex binds to calcineurin, which subsequently prevents Th cell activation and IL-2 production,
which eventually inhibits T cell clonal proliferation. Tacrolimus inhibits T cells proliferation by binding to FKBP, which inhibits several transcription
factors involved in the production of proinflammatory cytokines. Cyclophosphamide blocks DNA alkylation in various cell types, leading to
programmed cell death induction and preventing cell division. Leflunomide inhibits the synthesis of pyrimidines, thus arresting cell cycle in S phase.
Mycophenolate mofetil prevents T and B cell proliferation by specifically inhibiting a purine pathway required for lymphocyte division. Polyclonal
anti-thymocyte globulins are mainly directed against T cells. However, other immune cells sharing common surface antigens with T cells can also
be affected to a lesser extent. Monoclonal antibodies target specific cytokine pathways (e.g., IL-6Ra) or cell surface markers, such as CD3, for anti-
C3 IT, or CD20, for rituximab. The IL-6 receptor inhibitor tocilizumab reduces systemic inflammation and inhibits of CD8+ T cell and B cell
differentiation. Anti-CD3 IT can deplete CD3+ T cells transiently and reduces the number of T cells in circulation and in lymph nodes. Rituximab is a
B cell-depleting drug that targets CD20. Rapamycin exerts immunosuppressive and anti-proliferative effects of T cells by inhibiting the activation of
S6K1 and PI3 kinase signalling. CTLA-4Ig and anti-CD40mAb target the costimulatory pathways CD80/86:CD28 and CD154:CD40, respectively,
thereby dampening T cell activation. The compstatin analogue Cp40 and Tesidolumab inhibits complement C3 and C5 respectively, thereby
reducing complement activities. FKBP, FK506 binding protein; GCs, glucocorticoids; IT, immunotoxin; mAb, monoclonal antibody; MMF,
mycophenolate mofetil, pECs, porcine endothelial cells.
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of 27%), and its half-life ranges from 3.5 to 40.5 hours (165).

Protocols with tacrolimus constantly evolve (166). In a pre-clinical

study on pig-to-NHP islet xenotransplantation, tacrolimus was

orally administered daily from day −3 to up to day 56 to achieve

stable levels (3–6 ng/mL) (164). In another study, tacrolimus was

injected intramuscularly twice daily at a dose of 0.05 mg/kg from

day –2 and for up to 6 months after transplantation (167). The

preferred administration route remains oral rather than

sublingual or intramuscular (168). The adverse effects associated

with this drug are mainly nephrotoxicity and neurotoxicity, which

can be mild to severe. To avoid adverse effects, it is important to

maintain tacrolimus at a stable dose. Because the CYP3A5

genotype is associated with a remarkable impact on tacrolimus

pharmacokinetics, it should be considered in the dosing algorithm

of this drug (169). Moreover, some research attempted to develop

machine-learning models to predict tacrolimus dose stability,

which might provide more accurate approaches to achieve

personalized medicine in clinics (170).
3.3 Antiproliferative agents

3.3.1 Cyclophosphamide
Cyclophosphamide (CYC) is widely used to prevent

transplant rejection and graft-vs-host complications (171). It is

a nitrogen mustard drug that affects DNA alkylation in a non-

cell cycle phase-specific manner, and is toxic for all human cells

to various degrees (172). The active form of CYC inhibits protein

synthesis via DNA and RNA crosslinking, leading to

programmed cell death and prevention of cell division (173).

The immunosuppressive effect of CYC mainly relies on direct

deletion of the host’s mature T cells that are highly proliferating

and reactive to the donor’s antigens (174). It also has the capacity

to deplete Tregs to counteract immunosuppression in cancer,

decrease the production of T cell growth factors, e.g., type I

interferons, and precondition host T cells for donor cells, hence

attenuating rejection (175). Regimens with CYC in

xenotransplantation have proven effective in some cases (146,

176). In pig-to-rhesus corneal transplantation, intravenous

injection of CYC followed by pig bone marrow cell

transplantation reduced inflammatory cell infiltration (177).

CYC is applied typically as a continuous treatment administered

orally or intravenously in pulses, with doses ranging from 10 to 40

mg/kg (146, 178). Intermittent intravenous rather than daily oral

CYC has been used to minimise bladder and gonadal toxicity.

Another side effect of CYC is myelosuppression, which causes

leukopenia and neutropenia and can lead to severe and sometimes

fatal infections, including viral infections (179).

3.3.2 Mammalian target of rapamycin inhibitors
The mammalian target of rapamycin (mTOR) signalling

pathway has important functions in cell growth and metabolism

regulation (180). Rapamycin can bind a 12-kDa FK506-binding
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protein (FKBP12) to form a gain-of-function complex that acts

as an allosteric inhibitor of mammalian TOR complex 1

(mTORC1) (181). Rapamycin exerts its immunosuppressive

and anti-proliferative properties via the inhibition of S6K1, a

serine/threonine kinase activated by a variety of agonists (182,

183). In rat-to-mouse islet transplantation, rapamycin could

induce Treg-mediated tolerance (184). Moreover, Singh et al.

verified that in baboons, treatment with rapamycin increases

CD4+ Tregs induction from naïve CD4+ T cells, thereby

suppressing anti-porcine xenogeneic response in vitro (185).

Furthermore, in both allo- and xenotransplantation, graft

recipients treated with IL-17-neutralizing antibodies showed

the highest percentage of Tregs (186, 187). An example of

reported schedule for treatment with rapamycin consists of 0.2

mg/kg during the first three days post-transplantation, followed

by treatment every other day until day 14 (184).

3.3.3 Leflunomide
Leflunomide inhibits the dihydro-orotate dehydrogenase, a

critical rate-limiting enzyme for pyrimidine synthesis. Therefore,

it arrests cell cycle progression from S to G2 phase (188). The

literature regarding the role of leflunomide in xenotransplantation

is limited but indicates that this drug inhibits rat-to-mouse cardiac

xenograft rejection by supressing NF-kB signalling pathway and

adaptive immune responses (189).

3.3.4 Mycophenolate mofetil
Mycophenolate mofetil is the semisynthetic morpholinoethyl

ester of mycophenolate acid, which prevents T and B cell

proliferation by specifically inhibiting a purine pathway required

for lymphocyte division (190). MMF, usually administered

intravenously at a dose of 20mg/kg twice per day, has been

mainly applied together with other immunosuppressants as

maintenance regimen and achieved considerable long-term

survival of xenograft (the longest reported to be 945 days) in

cardiac xenotransplantation (191–194).
3.4 Monoclonal or polyclonal antibodies

Monoclonal antibodies (mAbs) are widely used in clinics

and experiments. Most have cell-specific immune-modulatory

properties directed for example at CD3+ T cells, which are

particularly pathogenic in the context of solid organ transplant

rejection (195). Recent studies suggested that in the absence of

irradiation or chronic immunosuppressive drugs, renal tolerance

can be stably established in primates (18–20) by using an anti-

CD3 immunotoxins (ITs) that ablate T cells transiently (145,

196, 197). T cell numbers in blood and lymph nodes could be

reduced to 1% of their initial values following anti-CD3 IT

depletion, which established long-term tolerance towards

mismatched renal allografts (145). Anti-CD3 ITs administered

two hours pre-transplantation at a dose of 100 mg/kg and again
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on the day following transplantation has demonstrated efficacy

(143). However, this schedule should be further verified in

the future.

Subsequently, monoclonal antibodies were generated against

specific cytokines that play a role in immune cell-mediated

toxicity and tissue damage. IL-6 is induced by inflammation

and contributes to CD8+ T cell and B cell differentiation (198).

In addition, it is a crucial factor in systemic inflammation and

endothelial cell survival after xenotransplantation. More

recently, Zhao et al. proposed that IL-6 may promote

coagulation and inflammation during xenotransplantation

(198). Furthermore, Ezzelarab et al. uncovered that biologics

inhibiting the IL-6 pathway (e.g., Tocilizumab) could mitigate

systemic inflammation in xenograft recipients (SIXR) and may

be required to prevent coagulation dysregulation after

xenotransplantation (199). Tocilizumab is a biological that

blocks human IL-6Ra, and has been considered to reduce

inflammation by inactivating the STAT3 pathway acting

downstream of IL-6Ra. Tocilizumab was also found to delay

the revascularisation of xeno-islets in a pig-to-NHPmodel (200).

Another case report brought exciting results on the use of

tocilizumab in combination with other immunosuppressants,

which allowed to achieve a 136 day-pig kidney survival (201).

However, another recent research by Zhang et al. reported that

serum IL-6 increased in baboons receiving tocilizumab before

xenotransplantation. This increase could be detrimental to the

survival of the pig xenograft by promoting IL-6 binding to pig

IL-6R and subsequent pig cell activation (202). Thus, more

clinical trials are needed to determine whether tocilizumab is

beneficial or detrimental to xenotransplantation. The dose of

tocilizumab was consistently 10 mg/kg in all reported cases, with

a treatment schedule usually starting on days -1, 7 and 14,

followed by administration every two weeks (198).

Another monoclonal antibody used in transplantation is the

chimeric anti-CD20mAb rituximab that leads to B cell depletion

(203). In addition of being an effective treatment for post-

transplant lymphoproliferative disorders, Rituximab can serve

as treatment for acute rejection, as some evidence suggested that

it could stop the progression towards chronic antibody-

mediated rejection (204). Its mechanism of action may be

explained by its impact on B cell modulation of the T cell

responses, and its long-term effects on plasma cell development

(205). In combination with other immunosuppressants, anti-

CD20mAb was reported to achieve a 136 day-pig kidney survival

(201). An example of reported schedule for treatment with

rituximab in transplantation is 19 mg/kg at days -14, -7, 0 and

7 (206).

Polyclonal anti-thymocyte globulins (ATGs) are antibodies

obtained by injecting animals, usually rabbits, with human

lymphoid cells such as B lymphoblasts, peripheral T cells, or

thymocytes, and then harvesting and processing the sera to

purified the immunoglobulins (207). ATGs are predominantly

directed against T cells, but other immune cells sharing surface
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example B cells, monocytes, and neutrophils. ATG primary

mechanism of action consist in promoting lymphocyte depletion

through T cell activation-induced apoptosis and complement-

dependent lysis (208). In a preclinical study, ATGs were shown

to improve engraftment and survival of neonatal porcine xenoislets

(209). They can also extend pig kidney survival when combined

with other immunosuppressants (201). ATGs are usually prescribed

before transplantation at a dose of 10 mg/kg on day –3 (201), or at a

dose of 5 mg/kg on days –2 and –1 (206).
3.5 Blockade of costimulatory signals

3.5.1 Blockade of CD80/86:CD28
costimulatory pathway by CTLA4Ig

T cell activation requires co-stimulation via engagement of

CD28 on the T cell with CD80/86 on the APC. Cytotoxic T

lymphocyte–associated protein 4 (CTLA4) is a competitive

inhibitor of CD80/86 that downregulates T cell responses

(210). This T cell suppressive activity served to engineer a

human IgG heavy chains coupled with CTLA4 to create a

fusion antibody able to prevent graft rejection (211). The new

generation CTLA4Ig, belatacept, displayed a significantly higher

affinity for CD80/86 in a pre-clinical renal transplantation model

in primate (212), and showed greater efficacy in modulating

adaptive immune responses (213, 214). Belatacept proved able to

decrease the antigraft humoral immune response in

intracerebral transplantation of mesencephalic pig xenografts

into primates (215). In vivo, CTLA4Ig is able to dampen T cell-

dependent immune responses and prolong long-term xeno- and

allograft survival (216–218). Levisetti et al. reported that two out

of five CTLA4Ig-treated monkeys showed prolonged graft

survival, while the humoral responses were suppressed in all

treated animals (219). Buerck et al. and his group generated a

novel transgenic (tg) pig line expressing the CTLA-4Ig analogue

LEA29Y and demonstrated that transplanted INSLEA29Y-tg

porcine neonatal porcine islet-like clusters (NPICCs) displayed

normal beta cell function and survived from rapid T

lymphocyte-mediated rejection during 30-day observation

period. However, the long-term effect regarding xenograft

rejection still remained unknown (220). In another pig to

baboon clinical trial, the blockade of CD28-B7 costimulation

pathway using human CTLA4Ig has been shown unsuccessful to

prevent xenograft rejection, making the role of CTLA4Ig

controversial (221).

3.5.2 Targeting of CD154:CD40 costimulatory
signal with anti-CD40mAb

The interaction between CD154 on activated T cells and CD40

on APCs results in CD80/86 upregulation on APCs, enhancing

another component of T cell co-stimulation (222). CD154 is also

found on platelets, and not surprisingly drugs targeting CD154 are
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associated with an increased risk of thrombosis in primate (223).

Thus, the focus of drug development has been changed to target

CD40 and several anti-CD40mAbs are under development.

Blockade of CD40/CD154 signaling by anti-CD40mAb was

shown to prolong graft survival and suppress xenograft rejection

(192, 224). Among these, a fully humanized anti-CD40mAb,

iscalimab, appears to be a promising candidate in transplantation

(225). Pre-clinical application using immunosuppressive anti-

CD40mAb 2C10R4 combined with tacrolimus in pig-to-NHP

islet xenotransplantation was effective in prolonging islet graft

survival (164). In pig-to-mouse islet xenotransplantation, short-

term administration of the anti-CD40mAb MR-1 and the anti-

LFA-1mAb increased the survival of neonatal porcine islets (226).

Interestingly, the short-term use of MR-1 alone prolonged porcine

islet graft survival and promoted CD4+ Tregs recruitment into the

graft and secondary lymphoid tissues (227). Consistently, lower

numbers of CD4+ Tregs increased the risk of rejection in cardiac

xenotransplantation in a pig-to-NHP model (228). For treatment,

anti-CD40mAb was reported to be infused intravenously at a dose

of 20–50 mg/kg on days –4, 0, 4, 7, 10 and 14 of transplantation,

followed by weekly infusion for three months, and biweekly fusion

thereafter (164). Alternatively, anti-CD40mAb could be used at a

dose of 50 mg/kg on days –1, 0, 5, 9, and 14 (206).
3.6 Complement inhibition

As discussed above, complement activation is involved at every

stage of xenograft rejection. Thus, a complementary approach is to

administer agents that either deplete or inhibit complement

activation. Many interventions have been introduced to prevent

complement-mediated injuries during xenotransplantation (229,

230). Among these, cobra venom factor extends graft survival

significantly in allotransplantation, albeit it only has a temporary

effect (231). C1-esterase inhibitor has been reported to be active in

NHPs and was recommended to replace cobra venom factor as

complement inhibitor (232, 233). The compstatin analogue Cp40, a

newly developed potent inhibitor of complement C3, inhibits

leukocytes adhesion and neutrophils attachment to porcine

endothelium (230). Moreover, Cp40 inhibits pECs and leukocytes

activation. It reduces the levels of adhesion molecules such as E-

selectin, ICAM-1, ICAM-2, and VCAM-1 on pECs, and of the

integrin CD11b on neutrophils, paving the way for future

therapeutic interventions targeting complement activities (230).

Schmitz et al. reported that Cp40 could significantly prolong

median allograft survival time in an NHP model. Normal kidney

function was maintained at 50% in Cp40-treated primates after the

last day of treatment (234). In another case report, Tibetan

macaques receiving liver xenografts with immunosuppressors,

including Cp40, did not exhibit severe coagulation disorders or

immune rejection (235). Another complement inhibitor, the anti-

C5 antibody Tesidolumab, has been recently reported to reduce
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early antibody-mediated rejection and prolong survival in renal

xenotransplantation (236). Cp40 was used at a dose of 2 mg/kg

three times daily, on day 2 prior to kidney transplantation and day

14 after kidney transplantation (234). Yet, the most appropriate

dosages need to be determined more precisely. Tesidolumab was

given at a dose of 30 mg/kg on the day of transplant, followed by

weekly intravenous injection at 10 mg/kg for seven weeks, at which

point anti-C5 was discontinued.
3.7 Genetic engineering strategies

Currently we are able to create new genetic modifications of

the porcine genome (over 40 genetic variants to date), hoping to

achieve better survival of the xenografts. The multiplex creation

of a GGTA1/CMAH/B4GalNT2 KO pig has shown the ability to

reduce antibody mediated rejection in humans. There are also

other extensive genome engineered pigs which have greater

compatibility with the human immune system. For example,

the generation of porcine endogenous retroviruses (PERVs)

KO·3KO·9TG (hCD46, hCD55, hCD59, hTHBD, hTFPI,

hCD39, hB2M, HLA-E and hCD47) pig enhances the pigs’

immunological compatibility and blood-coagulation

compatibility with humans (64, 237–240). Recombinant

expression of human complement regulatory molecules

hCD59 and hDAF on porcine articular chondrocytes could

also prevent humoral rejection in cartilage repair (241). By

using CRISPR/Cas9 system, Sake et al. tried to abrogate MHC-

I expression on xenografts to silence T-cell and NK cell-

mediated cell lysis (64). Four genetic pigs died within the first

days due to weakness, and the remaining two piglets developed

acute fevers at an age of 3-4 weeks leading to sudden death (64).

Xie et al. succeeded in alleviating antibody-mediated rejection

using Gabarapl1 knockdowns in primary porcine aortic

endothelial cells (PAECs) (238). While in another pre-clinical

trial, the inhibition of COX-2 expression decreased PAECs death

from 20% to 7% after 2 hours, making COX-2 inhibitors a

candidate for therapeutic targeting to protect vascular

endothelial cells in xenotransplantation (43). More is not

always better, extensive genetic engineering can lead to

congenital malformations/decrease animal viability (242, 243).

What exact genetic modifications do we need in the organ-

source pig should be fully considered in the future.

It is noteworthy that researchers are investigating alternative

options. One of them is to grow complex tissues or organs using the

body’s own regenerative capacity. Masano et al. tried to use a

xenogeneic animal as an in vivo bioreactor to promote regeneration

of a liver graft and successfully acquired fully regenerated small liver

grafts under appropriate immunosuppressive therapy (244). This

alternative option has fewer ethical concerns, but before it can be

considered further, more research are needed to reduce

complications and tested in larger animal models.
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4 Organ-specific barriers and
challenges

In recent years, a number of pig-to-NHP preclinical

xenotransplantation studies have been performed with various

organs. While HAR has been alleviated owing to gene-editing

technologies, DXR and chronic rejection remain urgent issues to

be solved. Another concern focuses on PERVs transmission, which

is a major hurdle to the clinical use of pig cells, tissues, and organs

for treatment of organ failure in humans. However, it is still

uncertain whether PERVs is pathogenic to humans, or if it could

recombine with hERVs to form new viruses. Genetic engineering

techniques such as CRIPSR/Cas9 genome editing system could

prevent their activation or delete them from the pig cells (245, 246).

Further, the ethical issues around xenotransplantation have not

been sufficientlydiscussed. Strictmedical and ethical guidelines and

regulations are needed before clinical applications can be tried on

selected patients. Beyond the common ethical and technical issues

shared by the different areas of xenotransplantation, there are also

organ-specific barriers that are briefly addressed below.
4.1 Islet xenotransplantation

Islet xenotransplantation is a promising alternative approach to

Type 1 Diabetes (T1D) treatment and has achieved long-term

normoglycemia in porcine-to-primate studies (247–249). Based on

preliminary studies in NHPs, the first case of clinical islet

xenotransplantation to human can be traced back to 1994 (250).

Currently, clinical trials using islet xenotransplantation are

developing more rapidly than those in other xenotransplantation

areas. In 2014, a clinical trial using islet xenotransplantation under

regulatory framework was registered at ClinicalTrial.gov (251). This

was followed by Phase I/IIa and IIb clinical trials using encapsulated

neonatal porcine islets in xenotransplantation performed in

Argentina (252), which resulted in a mean transplant estimated

function of approximately 0.5, with transplants maintained for

more than two years, and a significant reduction in the number

of unaware hypoglycemia episodes. Surely, there are still many

problems to be solved for islet xenotransplantation before reaching

their clinical use, including physiological function consistency,

immune rejection, islet loss, and prevention of PERVs infection

(253). Immune rejections includedHAR,mediated by Gal and non-

Gal antigens (254), instant blood-mediated inflammatory reaction

(IBMIR) that may have provoked 60–80% of islet loss (255), and

CD4+ T cell-mediated cellular rejection that plays a major role in

islet destruction (256). Strategies to alleviate rejection mainly

include islet encapsulation and gene editing technology. Recent

clinical trials mainly focused on encapsulating the neonatal porcine

islets in different high molecular compounds (257). While cell

encapsulation technology can potentially shield the islets from the

host’s immune rejection at initial stage, long-term therapeutic
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efficacy is still a challenge (258). Another hot spot of research is

to attempt different transplantation sites, including the portal vein,

subrenal capsule, subcutaneously, the muscle, spleen, gastric

submucosal space and peritoneum, depending on the islet volume

and its naked or encapsulated status, in order to reduce islet loss

(259, 260). There is still no optimal site for transplantation, but the

peritoneal cavity is favoured in clinical trials.
4.2 Liver xenotransplantation

Liver xenotransplantation from chimpanzee to human was first

held in the 1960s (261). More trials were carried out in the 1990s

(262), which remained ultimately unsuccessful. The transplanted

patients either died from sepsis due excessive immunosuppression,

or fromhepatic failurewith clear rejection. These failures terminated

the attemptsof liver xenotransplantation in clinical application.Until

today, the research has mainly focused on pig liver

xenotransplantation to NHPs. Shah et al. (263) have recorded, so

far, the longest survival time after xenotransplantation of a pig livers

to NHPs, which was of 25 days, using with an a1,3-
galactosyltransferase knockout miniature swine as a donor. Two

major problems must be overcome in liver xenotransplantation:

lethal thrombocytopenia and antibody-mediated rejection (AMR)

targeting antigens such as a1,3GT, N- glycolylneuraminic acid and

b4GALNT2 (235).Moreover, hepatic cold-induced injuries are also a

serious concern (264). AMR has now been reduced by using gene

editing technology including CRISPR/Cas9, TALEN, and other

genome editing and transgenic methods (254). To solve hepatic

cold‐induced injuries, Li et al. succeeded to increase porcine

hepatocyte viability by optimizing spheroid cold storage conditions

under fourdifferent cold storage solutions (265).Despite these efforts,

the graft survival is limitedby either thedevelopment of a thrombotic

microangiopathy and/or consumptive coagulopathy (266, 267).

Cross-species thromboregulation becomesmore complicated in

case of liver xenotransplantation because the liver produces

most coagulation factors. Current preclinical studies are

dedicated to elucidating the immunobiology behind platelet

activation, aggregation, and phagocytosis, especially during

interactions between platelets and liver sinusoidal endothelial

cells, hepatocytes, and Kupffer cells (28, 268). We believe that if

the severe and immediate thrombocytopenia could be

prevented, pig liver xenotransplantation could be used as a

bridge towards allotransplantation.
4.3 Cardiac xenotransplantation

The first attempt of pig-to-NHP cardiac xenotransplantation

(CXTx) started in the mid-1980s (269). Currently, it is the standard

model to conduct preclinical xenotransplantations. A major

breakthrough came with the introduction of the genetic deletion

of the a1,3GT gene in 2003, which reduces HAR to a large extent.
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The longest survival of heterotopic heart xenograft, reaching up to

945 days, has been achieve in baboons, using cardiac xenografts

fromGTKO.hCD46.hTBM pigs, with ATG and anti-CD20 antibody

treatments, followed by maintenance with MMF and high-dose

anti-CD40 immunosuppressive regimen (193). The first clinical

trial of pig to human CXTx was carried out with genetically

modified pig heart transplanted into a 57-year-old man in the

USA in 2022, and the patient survived for twomonths without signs

of rejection, while the cause of death is unknown (270). Despite

many breakthroughs on different aspects of xenotransplantation in

recent years, there are still barriers to be overcome before large scale

clinical CXTx can be conducted, including immunological barriers,

perioperative cardiac xenograft dysfunction (PCXD), detrimental

xenograft growth, and PERV infection. PCXD is unique to

orthotopic CXTx and has not been observed in heterotopic

CXTx. It can cause xenograft failure within the first 48 hours

(194). The exact mechanism of PCXD is unclear but may stem in

incompatibilities between porcine and primate plasma, the latter

carrying non-Gal antibodies (271). Cold non-ischemic continuous

perfusion of the donor’s heart with STEEN solution (a buffered

extracellular solution) appears to be an effective way to alleviate

PCXD (233, 272). The detrimental xenograft overgrowth occurring

after CXTx leads to diastolic dysfunction and congestive liver

damage. The overgrowth could be inhibited by lowering baboons’

blood pressure to match that in pigs’ heart, by reducing the use of

cortisone early, or by using temsirolimus, as in a particular study

(233). This latter strategy has not tested by other researchers. The

relevant ethical issues around CXTx have not been completely

defined yet. Strict medical and ethical guidelines and regulations are

still needed before proceeding towards clinical application to

selected patients.
4.4 Kidney xenotransplantation

Kidneyxenotransplantationhas a longand largelyunsuccessful

history. Thefirst clinical trial was carried out in 1905,when slices of

rabbit kidneyswere inserted into a child, who died 16 days later due

to pulmonary congestion. Reemtsma et al. transplanted pairs of

chimpanzee kidneys into six patients in 1964, with the longest

survival reachingninemonths (273). Later attemptsusingmonkeys

and baboons as source of kidneys were even less successful. In

majority, the deaths occurring in these clinical studies were related

to either rejections or infections. These disappointing results

terminated the clinical application of kidney xenotransplantation.

However, researchers have re-explored this possibility later, due to

shortageof available kidneys, andpig-to-NHPxenotransplantation

has now become a standard experimental model. Similar to CXTx,

rapid progress has been made since 2005, with the availability of

genetically engineered pigs (274). In 2015, two groups reported the

survival of life-supportinggenetically engineeredpig kidneys for>4

months, maintained by a treatment involving new

immunosuppressive agents blocking T cell co-stimulation (201).
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Based on this progress, a new clinical trial with two GTKO porcine

kidneys transplanted to a brain-dead patient on a ventilator has

been carried out in 2021.The kidneyswere connectedoutside of the

body to blood vessels on the patient’s legs and monitored over a

period of 72 hours (275). No HAR and no transmission of porcine

retroviruses were detected, and the kidneys produced variable

amounts of urine, but creatinine clearance was not recovered.

Although this attempt surely brought substantial information

and improvement for kidney xenotransplantation, there is still a

long way to make kidney xenotransplantation possible in humans.

In this case, the hostwas braindead and artificiallymaintained, and

therefore cannot been considered a living body. This trial is close to

a clinical trial, but it still cannot be considered as such. We would

consider this attempt as abridgebetweenxenotransplantation trials

in animals and clinical trials in humans. Organ-specific problems

linked to kidney xenotransplantation include hypovolemia

syndrome, erythropoietin function-associated anaemia, and rapid

growth of the pig kidneys after transplantation (199). The primate

organisms are not aware of the fluid loss occurring during

hypovolemia syndrome, which may result from a dysfunction of

the renin-angiotensinogen system. This could be avoided by

conserving the native kidneys in situ (276). It is difficult to assess

whether the pig erythropoietin functions adequately in primates,

but pigs genetically engineered to produce human erythropoietin

may solve this issue (277).Kidneys transplanted froma strain of pig

grow early and rapidly in primates. This phenomenon may result

from an innate factor, and could also be solved by knocking out the

gene encoding the growth hormone receptors of the pigs (278).

Finally, the inclusioncriteria for the selectionof patient candidate to

kidney xenotransplantation is more difficult than in other areas, as

dialysis represents a therapeutic option for these patients.

Therefore, until proven safer and more efficient, kidney

xenotransplantation cannot be considered.
5 Conclusion and perspectives

The field of xenotransplantation has been progressing rapidly

with many breakthrough achievements in recent years. However,

there are still several problems ahead of its use in clinical practice:

(i) although porcine-to-human xenotransplantation of kidneys

and hearts have been carried out, it is not known when

xenotransplantation of liver, small intestine, and even pancreas

will become possible. (ii) NHPs are phylogenetically close to

humans and share many physiological , anatomical ,

immunological, and neurological similarities, making them

excellent experimental models for research (279). However, there

are still differences between species, and it is not clear to which

extent studies in NHPs can fully predict xenorejection and the

clinical outcome in humans. (iii) Until now, the survival of

transplanted organs on the long term largely depends on high

doses of different immunosuppressants, which would expose the

recipients to high infection risks and other side effects. Although
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more and more genetically engineered pigs are created by gene-

editing technologies, the question remains as to whether it will

become possible to achieve long-time survival without

immunosuppressants, by reducing the immunogenicity of the

transgenic donors. Ethical aspects of xenotransplantation have

been discussed for many years (280), with particular

considerations on issues related to the risks for patient with

xenograft do develop and propagate porcine infections (281). (iv)

While CRISPR/Cas9 genome editing can remove the PERV gene

from pig, the risk of xenozoonosis with other roseoloviruses

remains (282). For example, porcine cytomegalovirus was the

cause of a significant reduction of the survival time of the

transplanted pig organs (283). However, such concerns can also

be appropriately handled with modern drug therapies, selective

breeding, and genetic modification.

As allotransplantation is restricted due to cell and organ

shortage, xenograft provides an alternative source of tissues, and

xenotransplantation may represent the next revolution in

medicine. More patients with end-organ failure would

undoubtedly benefit from breaking the immunological barriers

to xenotransplantation in near future.
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