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Abstract: Sleep staging has been widely used as an approach in sleep diagnoses at sleep clinics.
Graph neural network (GNN)-based methods have been extensively applied for automatic sleep stage
classifications with significant results. However, the existing GNN-based methods rely on a static
adjacency matrix to capture the features of the different electroencephalogram (EEG) channels, which
cannot grasp the information of each electrode. Meanwhile, these methods ignore the importance
of spatiotemporal relations in classifying sleep stages. In this work, we propose a combination of
a dynamic and static spatiotemporal graph convolutional network (ST-GCN) with inter-temporal
attention blocks to overcome two shortcomings. The proposed method consists of a GCN with a
CNN that takes into account the intra-frame dependency of each electrode in the brain region to
extract spatial and temporal features separately. In addition, the attention block was used to capture
the long-range dependencies between the different electrodes in the brain region, which helps the
model to classify the dynamics of each sleep stage more accurately. In our experiments, we used
the sleep-EDF and the subgroup III of the ISRUC-SLEEP dataset to compare with the most current
methods. The results show that our method performs better in accuracy from 4.6% to 5.3%, in Kappa
from 0.06 to 0.07, and in macro-F score from 4.9% to 5.7%. The proposed method has the potential to
be an effective tool for improving sleep disorders.

Keywords: sleep stage classification; spatiotemporal graph convolutional network; attention

1. Introduction

Sleep is an indispensable physiological phenomenon for human beings, which acts as
preventive medicine for physical and mental diseases and mood improvement [1]. How-
ever, due to social competition, work pressure, and the accelerated aging of the population,
sleep disorders have become health risks that cannot be ignored; these disorders are mainly
manifested as insomnia, circadian rhythm disorders, and obstructive sleep apnea (OSA)
syndrome [2,3]. The incidence and characteristics of various sleep disorders vary at different
sleep stages. In order to make diagnoses, sleep specialists have introduced polysomnogram
(PSG) [4] to monitor and record data from the body. PSG is a biological signal obtained
through various sensors on different parts of the body, including an electroencephalogram
(EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG).
EEG is a cost-effective and, typically, a non-invasive test for monitoring and recording
electrical activity during sleep. Moreover, EMGs and EOGs have been used as two im-
portant switches for detecting rapid eye movement (REM) sleep [5]. Therefore, human
experts need to combine other biological signals (such as EEG, EOG, and EMG) to achieve
manual sleep stage classification. Rechtschaffen and Kales (R&K) [6] delineated six sleep
stages during sleep using early PSG. They categorize non-rapid eye movements (NREMs)
into four sleep stages (S1, S2, S3, and S4). For standardization, the American Academy of
Sleep Medicine (AASM) [7] has defined the sleep staging criteria to achieve sleep scoring.
According to the AASM manual, sleep experts use consecutive 30-s epochs of PSG data to
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classify five stages. These are wake, rapid eye movement (also referred to as stage R), and
three NREMs, N1, N2, and N3. Based on the R&K criteria or the AASM criteria, sleep stages
are shown in Figure 1. Manual sleep stage classification is a laborious task [8]. Therefore,
automatic sleep stage classification with rapid and high accuracy based on EEG signals is
of great research interest.

Looking back on the past decades, the various methods in the relevant studies on
sleep stage classification have been proposed. According to studies [1], sleep stage research
has far-reaching implications for biomedical practice. In the early days, researchers used
the hand-engineered feature-based methods to extract features in the time and frequency
domains for sleep stage analysis. For example, Tsinalis et al. [9] made the precision
of sleep stage classification up to 78.9% via the extracted features in the time-frequency
domains. Lee et al. [10] developed an automatic sleep staging system with a mean
percentage agreement of 75.52% for diagnosing OSA, using single-channel frontal EEG
to classify wake, light sleep, deep sleep, and REM sleep. In order to achieve sleep stage
classification, some machine learning-based methods [11,12] have been introduced in
sleep stage classifications, e.g., support vector machine (SVM) [13] and random forest [14].
However, these methods have some limitations, such as the need to observe each PSG
epoch for extracting features with a prior knowledge. For the time being, more studies are
focusing on deep learning-based methods. Owing to the availability of high-quality datasets
of EEG signals, deep learning-based methods are widely used to extract features from EEG
signals for sleep stage classification. In our opinion, the latest deep learning-based methods
for sleep stage classification can be split into two categories: non-GCN-based methods and
GCN-based methods.

Sleep Staging

Wake Non-rapid eye movement rapid eye movement

S1 S4S2 S3

N1 N2 N3

W R

W R

R&K Criteria

AASM Criteria

Figure 1. Terminology used by R&K and AASM for sleep stage classification. In R&K criteria, the
sleep stage is classified into W (wake), S1, S2, S3, S4, and R (rapid eye movement). In AASM criteria,
S3 and S4 are merged into a single stage N3.

1. Non-GCN-based Methods
More studies are solving the task of sleep stage classification based on recurrent neural
networks (RNNs) and convolutional neural networks (CNNs). RNNs are commonly
used to model the temporal dynamics of EEG signals [15]. In SeqSleepNet [16], a
hierarchical RNN is used to model sleep staging and achieve accuracy up to 87.1%.
In RNN, there are two kinds of the most representative structures, long short-term
memory (LSTM) [17] and gated recurrent unit (GRU) [18]. For example, IITnet [19] is
proposed to automatically score sleep stages via BiLSTM. However, the problem of
gradient disappearance or explosion occurs during RNN training, which makes it diffi-
cult to train a deep RNN model. Compared to RNNs, CNNs have high performance in
parallel computing. To extract local and global features, Tsinalis et al. [20] proposed
an automatic classification approach for sleep stage scoring based on single-channel
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EEG. Phan et al. [21] used a simple yet efficient CNN to extract sleep features from
EEG signals. In addition, SleepEEGNet [22] employs deep CNNs as the backbone
network for sleep stage classification, achieving an accuracy of 84.26 %. Chanbon et al.
[23] introduce an end-to-end deep learning approach for sleep stage classification
using multivariate and multimodal EEG signals. Furthermore, there are some works
that combine CNN with RNN to simultaneously extract spatial and temporal features
for sleep stage classification, e.g., DeepSleepNet [24] and TinySleepNet [25]. How-
ever, EEGs are non-Euclidean data, which naturally results in CNNs and RNNs being
limited in feature extractions. Furthermore, their development potential is further
hindered by the enormous parameter overhead.

2. GCN-based methods.
The graph convolutional network (GCN) [26] is an advanced neural network structure
for processing graph structured data. Since EEG channels are structured data with
temporal relations, each channel can be considered as a node in the graph. For this rea-
son, GCN-based methods have been proven to be more powerful in processing EEGs.
Joint analysis of EEG and eye-tracking recordings is raised by Zhang et al. [27], whose
strategy is to introduce GCN to fuse features. However, EEG channel signals include
the temporal dynamic information of brain activity and the functional dependence
between brain regions. To remedy the deficiency of the traditional spatiotemporal
prediction model, the spatiotemporal graph convolutional network (ST-GCN) [28] is
proposed to model spatiotemporal relations and to learn the dynamic EEG for the
task of sleep staging. For example, the GraphSleepNet [29] is proposed to utilize
brain spatial features and transition information among sleep stages to achieve more
specific performance. However, the dependence on non-adjacent electrodes placed
in different brain regions is often overlooked. Since then, Jia et al. [30] propose an
multi-view spatial-temporal graph convolutional network (MSTGCN) to extract the
most relevant spatial and temporal information with superior performance. They
introduce spatiotemporal attention to extract temporal and spatial information, re-
spectively. However, this method makes it ineffective to capture the spatiotemporal
dependencies on separated attention.

After summarizing the previous works, there are three shortcomings that need to be
solved: (1) topological connections of electrodes in context are not well captured; (2) these
methods force GCNs to aggregate features in different channels with the same topology,
which limits the upper bound of model performance; and (3) attention weights are not
sufficient to summarize long-range spatiotemporal characteristics. In order to address the
aforementioned challenges, we propose a combination of dynamic and static ST-GCN with
inter-temporal attention blocks for automatic sleep stage classification.

Overall, the main contributions of our proposed approach can be summarized as follows:

• In previous work, sleep stage classification is achieved by complex modeling. In
contrast, our proposed method is to leverage spatial graph convolutions along with
interleaving temporal convolutions to achieve spatiotemporal modeling, which can be
simpler yet efficient.

• The inter-temporal attention blocks are introduced to achieve an automatic sleep stage
classification, which can withdraw the most informative information across space and
time, further proving that capture spatiotemporal relation plays an important role in
sleep stage classification.

• The proposed model significantly outperforms state-of-the-art methods on the sleep-
EDF and the subgroup III of the ISRUC-SLEEP dataset. Our proposed method achieves
better performance with 91.0% and 87.4% accuracy, both outperforming the state-of-
the-art methods (86.4% and 82.1%).

The rest of this paper is organized as follows: In Section 2, we present a series of
preparatory works for our study. In Section 3, we briefly describe the proposed network
framework, including the dynamic and static ST-GCN and the inter-temporal attention
block. The dataset used, the experiments, and the experimental results are presented in
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Section 4. Moreover, finally, we conclude this work and provide an outlook on future work
in Section 5.

2. Preliminaries

A sleep stage network is described as an undirected graph G = (V, E), where
V = {V1, V2, · · · , Vn} is the collection of N nodes representing electrodes in the brain,
and the edge set E represents the connection between nodes captured by an adjacency
matrix A ∈ N × N. A is a matrix composed of 0 and 1 , where 1 represents that the
corresponding electrodes are connected, and 0 otherwise. Graph G is made up of a 30-s
EEG signal sequence St. The sleep feature matrix is the input of G. We define the raw
signal sequence as S = {S1, S2, · · · , Sm} ∈ Rm×Q×T , where m denotes the number of sam-
ples, Q means the number of electrodes, and T is the time series length of each sample
Si ∈ S(i ∈ {1, 2, · · · , m}). Inspired by Hyvräinen’s work [31], we can extract the features
of differential entropy (DE) on different frequency bands and define them on each sample
feature matrix. Therefore, we can obtain a feature matrix at each sample i, denoting the Fde
features of the nodes N.

Xi =
(

xi
1, xi

2, · · · , xi
N

)T
∈ RN×Fde (1)

Therein, xi
n ∈ RFde(n ∈ {1, 2, · · · , N}) denotes the Fde features of electrode node n at

sample i.
The objective of our study is to establish a mapping relationship between sleep signals

and sleep stages using a spatiotemporal neural graph network. The issue of sleep stage is
described as follows:

C = (X1, X1+d, · · · , X1+kd) ∈ RN×Fde×Tn (2)

The given Equation (2) can identify the current sleep stage S. Therein, C denotes
the temporal context of X1+kd, S denotes the sleep stage class label defined by X1+kd, Tn
indicates the length of sleep stage networks, d denotes the temporal context coefficient, and
k is the number of intercepted time segments in a continuous EEG signal.

3. Methods

In this section, we introduce the components of our proposed network of sleep stage
classification in detail.

3.1. Network Architecture

Figure 2 illustrates our network architecture. Inspired by spatiotemporal graph convo-
lutional networks (ST-GCN) [28], we construct the network of sleep stage classification by
nine serial connected ST-GCN modules that can extract more detailed feature information.
The ST-GCN module contains a sequential execution of a GCN block and a temporal convo-
lutional network (TCN) block. The TCN block is a one-dimensional CNN used for sequence
modeling tasks. The GCN block and the TCN block in GCN aggregate features along the
spatial dimension and the temporal dimension, respectively. Each ST-GCN module is
followed by an attention block (ATT). The function of the ATT block allows the network
architecture to pay more attention to important features of the sleep stage, thus better
capturing spatiotemporal relations. As far as we know, this is the first attempt to introduce
attention enhancement and spatiotemporal separated feature extraction together for sleep
stage classification using EEGs. Each module is presented separately in the following
subsections.
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Output

Input

GCN Block
TCN Block

(CNN)

ST-GCN Module

ATT Block ST-GCN Module

Figure 2. The proposed network architecture for sleep stage classification. The network consists of
nine ST-GCN modules, each followed by an attention (ATT) block. Each ST-GCN module contains a
GCN block followed by a TCN block. The numbers of output channel for ST-GCN modules are 66,
66, 66, 132, 132, 132, 264, 264, 264.

3.2. Graph Convolutional Network Module

In our work, we construct a spatiotemporal graph with the electrodes in the brain
as graph nodes and natural connections in different brain region electrodes and time as
graph edges. In sleep stage classification tasks, it is important that we model the spatial
dependencies in the sleep stage network. GCN is able to effectively extract key point
information from the spatiotemporal graph. To capture the dependency created by the
topological structures of the electrodes in the context, the layer-wise update rule of GCNs
may be implemented to features at time T on sleep inputs defined by features X and the
graph structure Ã, as follows:

Xl+1
T = λ

(
D̃−

1
2 ÃD̃−

1
2 X(l)

T µ(l)
)

(3)

Therein, D̃ is the diagonal degree matrix of Ã, and the sleep graph with self-loops Ã = A + I
consists of an adjacency matrix A and an identity matrix I. This allows Ã to preserve the
identity features. The λ(·) is an activation function and the µ denotes the weight matrix.
Moreover, D̃−

1
2 ÃD̃−

1
2 can be conceived as an approximate spatial mean feature aggregation

from the immediate neighborhood followed by an activated linear layer.
In static methods, Ã is defined manually or set as a trainable parameter. The topology

is predefined according to the structure, and is fixed in both the training and testing phases.
Notably, these methods have some limitations, such as the need for a prior knowledge
and the inability to construct dynamic graph topologies. To overcome these limitations,
the model is usually required to be generated adaptively depending on the input sample.
Therefore, a dynamic ST-GCN [29] is proposed that defines a non-negative function to
represent the connection relationship between electrode nodes Ni and Nj based on the
input feature matrix. From this effect, the dynamic adjacency matrix is more powerful since
it can be dynamically adapted during the training process and has a stronger generalization
ability compared to static methods due to the dynamic topologies. Although the use
of dynamic topologies leads to good performance, the original structural information is
often discarded. Therefore, we propose a combination of dynamic and static GCN that
incorporates contextual features of all brain regions to learn correlations between arbitrary
pairs of points.

In the static branch, we use the physical graph Gp from the physical connections of the
electrode structure and the parameterized mask Gm is used to pay attention to the physical
graph Gp. The static topology information of the electrode structure is extracted in the
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static branch, which has been shown to be useful for the final prediction. The output of the
static branch can be shown as follows:

Outputstatic = λ
(
Gp + Gm

)
X(l)

T µ(l) (4)

In the dynamic branch, the predicted dynamic graph Gd is used as input. The output of
the dynamic branch extracts the global context-enriched topology of the electrode structure.
We represent the output of the dynamic branch as:

Outputdynamic = GdX(l)
T µ(l)

′
(5)

therein, the learnable kernel µ(l)
′

is not shared between the static and dynamic branches.
Moreover, we fuse static and context-enriched topology features extracted by the static and
dynamic branches using a weighted summation method. It can be expressed as:

Output = Outputdynamic + φOutputstatic (6)

where φ goes from 0 to 1, which is a balance between the output of the static and dynamic
branches.

3.3. Multi-Scale CNN Module

Temporal modeling is essential to sleep stage classification as well. Studies [32–34]
show that RNNs achieve great performance in temporal modeling tasks. However, the
main shortcomings of RNNs are time, cost, and its inability to retain long-term memory.
Namely, RNNs cannot perform massively parallel processings like CNNs. TCN [35], as a
temporal variant of CNN, has promising performance in time series forecasting. Since sleep
stage classification is time-dependent, TCN is used to capture dependencies between sleep
stages for achieving sleep stage classification. Multi-scale convolutional neural networks
can adaptively fuse multi-scale temporal features extracted by different scale convolution
kernels. Thus, they can better model temporal topological features.

In order to achieve temporal modeling, many previous studies [36–38] have used
temporal convolutions with a fixed kernel size kt × 1 throughout the architecture. As
a natural extension to the multi-scale spatial aggregation, we used multi-scale learning
to improve vanilla temporal convolutional layers, as shown in Figure 3. To reduce the
computational costs incurred by the extra branches, we introduce the idea of a bottleneck
design [39], set the kernel size to 3 × 1, and employ different dilation factors [40] instead
of larger kernels for larger receptive fields to construct a multi-scale time-series layer.
Specifically, seven temporal convolution branches are arranged in parallel. Each branch
uses a bottleneck structure (i.e., 1× 1 convolution) to reduce the number of feature channels
and the calculation amount, thus accelerating the training speed and model inference.
Moreover, as the input passes forward, the functions of distinct branches diverge, which
can be divided into the following four types.

• Multi-scale temporal feature extraction: in the four temporal convolution branches,
each branch consists of 3× 1 temporal convolutions. Each 3× 1 temporal convolution
uses different dilations to obtain multi-scale temporal receptive fields.

• Feature processing within the current frame: this second type only has a temporal
convolution with the kernel size 1 × 1 to concentrate features within a single frame.

• Emphasizing the most salient information within the consecutive frames: the third
type is to be followed by a 3× 1 max-pooling layer to draw the most important features.

• Gradient preservation: to preserve gradients during back-propagation, we add a
residual path in the final type.

Finally, we use residual connections [41] to facilitate training.
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Figure 3. Multi-scale convolutional neural network architecture.

3.4. Inter-Temporal Attention

Most existing approaches [28,38,42] use graph convolution to extract spatial relations
at each time step and 1D convolutional layers to model temporal dynamics. However,
these methods make it difficult to obtain the direct information flow across spacetime, and
complex regional joint spatiotemporal dependencies are not captured. In other words,
the factorized modeling cannot capture the long-range features with precise temporal
information. In recent years, attention mechanisms have found wide application in various
classification tasks, which have made remarkable achievements [43,44]. The essence of
attention mechanisms is to select the relatively critical information from the input. In our
work, we consider the spatiotemporal relation of the EEG data and the stability of the
learned representations for different sleep stage sequences. For example, in sleep stages R
and N1, the topological features of adjacent electrodes are similar, as shown in Figure 4a,c.
To extract strongly distinctive features, there is a need for long-range dependencies in time
and precise temporal information in space. In the spatial dimension, the shorter the path
length, the more efficient the information transfer between the two electrodes. We pass the
relevant features of the distant (informative) electrode to the target electrodes with much
higher weights. An example is given in Figure 4b. The feature weights of electrode F3 are
passed to electrodes O1 or O2, which can pay attention to important features of distant
electrodes in classifying similar sleep stages and better achieve sleep stage classification.
Moreover, each electrode is expressed by a time series. In the temporal dimension, there
are similarities among neighboring sleep stages, and we attend to important time steps of
each electrode. Therefore, the inter-temporal attention is introduced to capture the spatial
and temporal correlations in the sleep stage classification network.

The classification tasks introduce attention mechanisms to improve the classification
effects, which are mainly implemented by a multi-layer perception (MLP), such as the
SENet structure [45]. These modules are usually executed independently for each channel
or spatial dimension, while other dimensions are globally averaged into a single unit.
Since there is a strong link between spatial and temporal information based on GCN in
sleep stage classification. It is clear that features separated from frames and electrodes are
sub-optimal for weighting the importance of electrodes in different sleep stages, owing to
the fact that the spatiotemporal relations are ignored.

We separately consider that the frame and electrode are sub-optimal for weighting
the importance of the electrode structure in the sleep stage classification. As an application
of coordinate attention [46] for sleep stage classification, we propose an inter-temporal
attention to enhance the model’s ability to extract informative features. It not only identifies
the most informative points in certain frames from the whole input sequence, it can also
help the network of sleep stage classification to capture richer features. Figure 5 is the
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overview diagram of the inter-temporal attention block. We present the details of an
attention block in detail.

(a)

(b) (c)

Figure 4. (a) An example of a profile of the sleep stages; (b) EEG electrode placement in the 10–20 system,
and the F, T, C, P, and O denote frontal, temporal, central, parietal, and occipital lobe placements,
respectively; (c) EEG waves and events during sleep [11].

• We used a sequence of EEG signals as input, a sequence of EEG signals consists of T
number of frames. Each frame consisted of sleep information with dimension C×V,
where V is the number of electrodes and C is the number of channels. The input
features (Finput) were passed through temporal pooling (Gt) and spatial pooling (Gs),
respectively. After the operation of pooling, we aggregated the information in the
frame- and electrode- dimension, yielding two sets of feature maps with temporal- and
spatial-aware characteristics, the electrode features (GtFinput), and the frame features
(GsFinput).

• We used the concatenation (⊕) operation to obtain the pooled feature vectors (Fcompact),
and used the fully connected layer (FC layer) to obtain the compact information. The
activation function Swish (η) [47] is utilized in this FC layer.

• We used two relatively independent FC layers to recover the electrode features and
the frame features into the same shape as the input separately. Then, applying the
sigmoid activation function (τ) to the updated tensor. Hence, we can obtain two
sets of attention scores, which are from the frame dimensions and the electrode
dimensions, respectively. We used the attention scores to reweigh the raw feature
maps in frame- and electrode- dimensions. Namely, the T(Fcompact) and S(Fcompact)
denote the transfer matrix of the frame and electrode, respectively. In two independent
FC layers, we multiplied the obtained attention scores for frame dimensions and
electrode dimensions by the channel-wise outer-product (⊗).
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• An element-wise product (�) was performed, resulting in output feature maps
(Foutput). The results of the multiplication could be considered as the attention scores
for each electrode in the whole sleep cycle.
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Figure 5. The overview of the inter-temporal attention block. C, T, and V denote the numbers of
input channels, the length of the sequence, and the number of electrodes, respectively. BN denotes
the batch normalization.

The inter-temporal attention module can be explained concisely and intuitively with
the following two equations:

Fcompact = η
(

MLP ·
(
GtFinput ⊕ GsFinput

))
(7)

Foutput = Finput �
(
τ
(
T
(

Fcompact
)
⊗ S

(
Fcompact

)))
(8)

To extract the most noteworthy information from the EEG signal sequence, we perform
the max pooling operation under the frame- and electrode- dimensions, respectively. The
max pooling plays a similar role as the attention mechanism, the maximum weight of the
two dimensions can be selected by this operation. Then, the two groups of the obtained
feature maps are concatenated, as shown in Figure 6a. We use the fully connected layer to
squeeze the dimensions of the concatenated feature map. Thus, we obtain a continuous
feature mapping for our subsequent extraction of the different dimensions of feature
attention. After the split operation, two sets of attention scores for the frame dimension and
the electrode dimension can be obtained, respectively. What we need is a relationship of
attention across time and space, the attention scores of frames and electrodes are multiplied
by a channel-wise outer-product, as shown in Figure 6b. Moreover, the result can be seen
as the attention scores for each electrode in the whole EEG signal sequence. The attention
score is a trainable inter-temporal signal. The joint spatiotemporal attention weight can
be seen as the interaction of temporal attention weight and spatial attention weight, and
we aggregate the temporal attention branch on the left and the spatial attention branch on
the right, as shown in Figure 6c. Finally, we assign the generated spatiotemporal attention
weights to the feature maps to obtain the attention responses across space and time. The
most informative frames and electrodes can be more accurately located using the attention
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block, which helps the model to better complete sleep stage classification. As far as we
know, this is the first time that inter-temporal attention blocks are introduced for automatic
sleep stage classification.

(a)

(b)

(c)

Figure 6. The details of our introduced inter-temporal attention block. (a) The pooled temporal and
spatial feature vectors are concatenated; (b) outer product multiplication of frame- and electrode-
matrices. Each electrode and the corresponding frame are multiplied with each other to product
matrices A, attention maps; (c) example of obtaining the joint spatiotemporal attention weight. The
inter-temporal attention blocks capture long-range features with precise temporal information.

4. Results

In this section, we evaluate the performance of the proposed method using the publicly
available ISRUC-SLEEP dataset. The detailed description of the ISRUC-SLEEP dataset,
sleep-EDF dataset, and the experimental setups can be given in the first two subsections.
Then, we report the results of our proposed model compared to the other state-of-the-art
models on the same dataset.

4.1. Dataset and Experimental Settings

To evaluate the performance of our method, we use the two publicly available datasets
in this study: sleep-EDF dataset [48,49] and ISRUC-SLEEP dataset [50], which are the most
widely used open-source datasets for state-of-the-art methods of sleep stage classification.

4.1.1. Sleep-EDF Dataset

The sleep-EDF dataset records the EEG of 20 healthy Caucasian male and female
subjects (ages 28.7 ± 2.9) without medication, and each EEG is sampled at 100 HZ from
Fpz-Cz and Pz-Oz electrode locations. The EEG recording is manually classified into eight
patterns (Wake, S1, S2, S3, S4, REM, movement, and unknown) according to the scoring
rules of R&K [6]. In our experiment, we combine the S3 and S4 stages into one stage N3
according to the AASM manual [7]. As the EEG is recorded over a long period of time, the
stages movement and unknown are recorded at the beginning and end of each recording,
when the subjects are awake. Therefore, movements (and unknown) are not used for
sleep stage classification. Consequently, we obtain a dataset with five classes, including
W (Wake), N1 (S1), N2 (S2), N3 (S3 + S4) and R (REM). We use the 30-min EEG before and
after the sleep period as experimental data.



Life 2022, 12, 622 11 of 18

4.1.2. ISRUC-SLEEP Dataset

The ISRUC-SLEEP dataset from the Portuguese Foundation for Science and Technology
(PFST) has three subgroups, with each subgroup recording the EEGs of 100 participants,
8 participants, and 10 participants, respectively. In order to compare healthy subjects with
the patients suffering from sleep disorders, we used the subgroup III as the experimental
dataset in our study; the EEG recordings of nine healthy male subjects and one healthy
female subject aged between 30 and 58 years. Moreover, each EEG recording contained
six EEG channels (i.e., C3-A2, C4-A1, F3-A2, F4-A1, O1-A2, and O2-A1) and is sampled at
200 Hz. The EEG recordings were visually scored by a human expert. According to the
AASM manual [7], there were five classes in this dataset, including W (Wake), N1, N2, N3,
and R (REM). Table 1 shows the number of sleep stages in two different datasets.

Table 1. Details of the number of sleep stages in the subgroup III of the ISRUC-SLEEP dataset and
sleep-EDF dataset.

Dataset W N1 N2 N3 R Total

Sleep-EDF 7927 2804 17,799 5703 7717 41,950
ISRUC-SLEEP 1817 1248 2678 2035 1111 8889

4.2. Experimental Settings

We use the 20-fold cross-validation and 10-fold cross-validation to evaluate our
method. In each iteration, we use the recordings of one subject as the test set, while the
remaining one recording is considered as the training set. We implement our model with
PyTorch 1.7.1, CUDA 11.4, and Anaconda 4.10.3. The hyperparameters of our experiment
are listed in Table 2.

Table 2. The hyperparameters of our experiment.

Hyperparameters Value

Optimizer Adam
Batch size 64

Number of training epochs 120
Learning rate Initial learning rate is 0.001 and is decayed by 10 at the 30th, 60th, and 90th epoch.

Dropout probability 0.2
Layer number of ST-GCN 9

Reduction ratio 4
Numbers of output channel for ST-GCN 66, 66, 66, 132, 132, 132, 264, 264, 264

4.3. The Performance of Sleep Stage Classification

In our study, we use some metrics to evaluate the proposed model [51–53], e.g.,
the macro-precision, macro-recall, macro-F score, and Cohen’s Kappa coefficient. The
macro-precision (Pmacro), macro-recall (Rmacro), macro-F score (Fmacro), and Cohen’s Kappa
coefficient (κ) are calculated as follows:

Pmacro =
1
n

n

∑
i=1

(
TP

TP + FP

)
i

(9)

Rmacro =
1
n

n

∑
i=1

(
TP

TP + FN

)
i

(10)

Fmacro = 2× Pmacro × Rmacro

Pmacro + Rmacro
(11)

κ = 1− 1− po

1− pe
(12)
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Therein, TP, FP, and FN stand, respectively, for the true positives, false positives, and
false negatives of class i. In our experiment, n represents the number of subjects. In the
Equation (12), po is the accuracy of our model, and pe denotes the hypothetical probability
of chance agreement.

Macro-averaged performance obtained with the sleep-EDF dataset and the subgroup
III of the ISRUC-SLEEP dataset are shown in Tables 3 and 4. From Table 3, we can calculate
that the macro-precision, macro-recall, and macro-F score are 87.4%, 90.9%, and 89.0%,
respectively. From the Table 4, the macro-precision, macro-recall, and macro-F score are
86.6%, 86.5%, and 86.5%, respectively. In two different datasets, we obtain an accuracy of
91.0 % and 87.4 %, respectively. The Cohen’s kappa coefficients are 0.88 and 0.84, which
is considered ideal as it outperforms the standard of 0.8 [52]. To validate the effect of
introducing the ATT blocks, we use a 20-fold cross-validation on the sleep-EDF dataset and
a 10-fold cross-validation on the subgroup III of the ISRUC-SLEEP dataset. The results of
the comparisons are described in Figure 7. Figure 7 presents that the model with the ATT
blocks performed better than the model without the ATT blocks in terms of overall accuracy
and F1-score for each sleep stage. The performance has been significantly improved.

Table 3. The confusion matrix of our proposed method on the sleep-EDF dataset.

Predicted Stage

W N1 N2 N3 R Total

Actual stage

W 7371 214 94 147 101 7927

N1 53 2496 201 44 10 2804

N2 480 552 16,019 187 561 17,799

N3 147 93 249 5123 91 5703

R 21 103 15 410 7168 7717

Total 8072 3458 16,578 5911 7931 41,950

Table 4. The confusion matrix of our proposed method on the subgroup III of the ISRUC-SLEEP
dataset.

Predicted Stage

W N1 N2 N3 R Total

Actual stage

W 1682 83 37 7 8 1817

N1 94 878 183 6 87 1248

N2 19 179 2297 158 25 2678

N3 4 3 122 1905 1 2035

R 8 59 37 3 1004 1111

Total 1807 1202 2676 2079 1125 8889
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Figure 7. The comparison result of introducing ATT blocks and no ATT blocks. We employ the
sleep-EDF dataset to obtain the comparison results, as shown in sub-figure (a) and sub-figure (b).
The sub-figure (c) and sub-figure (d) present the performance comparison of introducing ATT blocks
and no ATT blocks on the subgroup III of the ISRUC-SLEEP dataset. Obviously, the model with ATT
blocks yields the best results in terms of all kinds of measuring metrics.

4.4. Comparisons with State-of-the-Art Models

To verify the superiority of our proposed model, we compare it with state-of-the-art
models on the sleep-EDF dataset and the subgroup III of the ISRUC-SLEEP dataset. We use
the same experimental settings to train all models. Compared to other baseline methods,
our model outperforms significantly better than the state-of-the-art methods, as can be
seen in Tables 5 and 6. First, we consider previous works that utilize RNN and CNN to
extract the spatial or temporal features for sleep stage classification. These non-GCN-based
methods use grid data as input to high accuracy. However, EEGs, as non-Euclidean data,
can be well processed by powerful GCNs. Therefore, we use two datasets to evaluate the
performance of existing GCN-based methods and perform a comparative analysis.

As shown in Tables 5 and 6, our proposed method presents the best overall perfor-
mance compared to the state-of-the-art methods. The proposed method achieves the best
accuracy (91.0% and 87.4%), the macro-F score (89.0% and 86.5%), and Kappa (0.88 and
0.84) on two datasets. For the subgroup III of ISRUC-SLEEP dataset, the proposed method
provides the highest accuracy for each sleep stage. For the sleep-EDF dataset, our method
achieves the highest accuracy for each sleep stage except for N3 stage (sub-optimal). For
N1 stage, Tables 5 and 6 show that the classification effect for N1 stage on the two dataset
is not as ideal as for the other sleep stages. It can be explained by two reasons. First, a
number of samples in N1 stage belong to the sleep transition period [54], thus the N1 stage
is misclassified into other stages. Second, the N1 stage occupies a small proportion of the
dataset. In particular, in the sleep-EDF dataset, the proportion of N1 stage is only 6.7%.
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Table 5. Comparison between our proposed method and the other state-of-the-art methods on
the sleep-EDF dataset across overall performance and F1-score for each sleep stage. The numbers
in bold indicate the highest performance metrics of all methods and the underlined result is the
sub-optimal result.

Performance of Quality Assessment Global F1-Score for Sleep Stage (%)

Method (Year) Accuracy (%) Macro-F Score (%) Kappa W N1 N2 N3 R

Non-GCN-Based Methods

Tsinalis et al. [20] (2016) 74.8 69.8 – 65.4 43.7 80.6 84.9 74.5
Tsinalis et al. [9] (2016) 78.9 73.7 – 71.6 47.0 84.6 84.0 81.4

DeepSleepNet [24] (2017) 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
SeqSleepNet [16] (2017) 81.2 74.6 0.73 74.1 46.9 86.9 81.2 83.8
Phan et al. [21] (2018) 82.3 74.7 0.75 77.3 40.5 87.4 86.0 82.3

IITNet [19] (2019) 84.0 77.7 0.78 87.9 44.7 88.0 85.7 82.1
SleepEEGNet [22] (2019) 84.3 79.7 0.79 89.2 52.2 86.8 85.1 85.0
TinySleepNet [25] (2020) 85.4 80.5 0.80 90.1 51.4 88.5 88.3 84.3

GCN-Based Methods

GraphSleepNet [29] (2021) 84.2 81.0 0.79 83.2 69.0 88.4 74.9 89.6
Jia et al. [30] (2021) 86.4 84.1 0.82 85.5 75.3 89.8 80.4 89.3

Our proposed method 91.0 89.0 0.88 92.1 79.7 93.2 88.2 91.6

Table 6. Comparison between our proposed method and the other state-of-the-art methods on
subgroup III of ISRUC-SLEEP dataset across overall performance and F1-score for each sleep stage.
The numbers in bold indicate the highest performance metrics of all methods and the underlined
result is the sub-optimal result.

Performance of Quality Assessment Global F1-Score for Sleep Stages (%)

Study (Year) Accuracy (%) Macro-F Score (%) Kappa W N1 N2 N3 R

Non-GCN-Based Methods

Memar et al. [14] (2017) 72.9 70.8 0.65 85.8 47.3 70.4 80.9 69.9
Dong et al. [11] (2017) 77.9 75.8 0.71 86.0 46.9 76.0 87.5 82.8

DeepSleepNet [24] (2017) 78.8 77.9 0.73 88.7 60.2 74.6 85.8 80.2
RotSVM [13] (2018) 73.3 72.1 0.66 86.8 52.3 69.9 78.6 73.1

Phan et al. [21] (2018) 78.9 76.3 0.73 83.6 43.9 79.3 87.9 86.7
Chambon et al. [23] (2018) 78.1 76.8 0.72 87.0 55.0 76.0 85.1 80.9
Ghimatgar et al. [55] (2019) 75.7 73.5 0.69 85.0 49.4 75.4 83.1 74.8

Shen et al. [56] (2020) 81.7 80.2 0.76 89.1 62.5 80.4 86.5 82.4

GCN-Based Methods

GraphSleepNet [29] (2021) 79.9 78.7 0.74 87.8 57.4 77.6 86.4 84.1
Jia et al. [30] (2021) 82.1 80.8 0.77 89.4 59.6 80.6 89.0 85.6

Our proposed method 87.4 86.5 0.84 92.8 71.7 85.8 92.6 89.8

5. Discussion

Sleep disorders are highly prevalent in the world. Especially in the United States,
nearly 25% of adults suffer from sleep disorders [57]. Sleep disorders not only affect the
quality of life, but also lead to health problems, such as heart disease and stroke. For people
with sleep disorders to obtain adequate sleep, they may require the help of an appropriate
method for sleep stage classification. In this work, we use a combination of dynamic and
static ST-GCN with inter-temporal attention blocks to automatically classify sleep stages.
We first consider that the distribution of brain electrodes is characteristic of non-Euclidean
data. After the addition of ATT blocks, the sleep stage classification network achieves better
performance. This confirms that spatial and temporal correlations play an important role
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in the sleep stage classification. The obtained results suggest that our method is promising
in detecting new abnormalities in sleep and continuously improving our understanding of
sleep mechanisms.

The NREM stages are divided into three sleep stages (N1, N2, and N3) and are asso-
ciated with the depth of sleep. Research shows that the stage N3 may affect the ability
to learn new information and memory retention [58]. In simple terms, N3 is the deepest
sleep stage, which has the strongest repair function. Tafaro et al. [59] report a positive
relationship between sleep quality and survival in centenarians. From our experiment,
the proposed method shows excellent performance in classifying the stage N3 compared
with stages N1 and N2. Therefore, accurate detection of the stage N3 provides an aid to
long-term care, health and welfare services for the elderly. One study [60] shows that
patients with REMOSA in REM sleep had a significantly more collapsed airway and better
ventilatory control stability compared with NREM sleep. Moreover, as it is suggested that
the increased proportion of N3 stage may reveal a lower severity of OSA [61], our method
can be used as an ancillary treatment.

There are some challenges in more generic terms. First, since the stage N1 is a transition
period between wakefulness and sleep, it is difficult to detect this stage correctly. The
system should be improved for the diagnosis of sleep fragmentation, such as obstructive
sleep apnea. Second, the dataset is not perfect due to human errors. As far as we know,
sleep scoring is defined by sleep experts. It is inevitable that similar sleep stages may be
incorrectly marked. Therefore, the question for many sleep stage classification networks is
how to use high-quality sleep stage datasets for the training process. In the future, we will
develop a sleep stage system that provides more human-like performance to overcome the
above challenges.

6. Conclusions

In this work, we propose a combination of dynamic and static ST-GCN with inter-
temporal attention blocks for automatic sleep stage classification. Spatial graph convolu-
tions and temporal convolutions are used to model the EEG data. We use a combination of
dynamic and static ST-GCN to capture the global context-enriched topology and employ
temporal convolution with dilation to enlarge the temporal receptive field. Furthermore,
to the best of our knowledge, we introduce the attention blocks for the first time in the
field of sleep stage classification to model the relationship between different EEG channels,
which can capture long-range dependencies for sleep stage classification. The comparative
results indicate that our method has powerful capability and expressiveness in sleep stage
classification. Therefore, we believe that our method could be a complementary tool to
help scientists to monitor the sleep status of patients to initiate appropriate treatments. In
the future, since our method is used for sleep stage classification based on EEGs, we will
apply it to a broader range of other physiological signal classification tasks.
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The following abbreviations are used in this manuscript:

PSG Polysomnogram
EEG Electroencephalogram
EOG Electrooculogram
EMG Electromyogram
ECG Electrocardiogram
REM Rapid Eye Movement
R&K Rechtschaffen and Kales
NREM Non-Rapid Eye Movement
AASM American Academy of Sleep Medicine
SVM Support Vector Machine
GCN Graph Convolutional Network
RNN Recurrent Neural Network
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
ST-GCN Spatiotemporal Graph Convolutional Network
MSTGCN Multi-View Spatial-Temporal Graph Convolutional Network
DE Differential Entropy
TCN Temporal Convolutional Network
MLP Multi-Layer Perceptron
FC layer Fully Connected Layer
PFST Portuguese Foundation for Science and Technology
REM Rapid Eye Movement
TP True Positive
FP False Positive
FN False Negative
OSA Obstructive Sleep Apnea
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