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This paper reports on a fabrication method to obtain multiple thermal sensors by employ-
ing an array of graphite thermocouple patterns on commonly available Xerox paper. The
graphite thermocouples are patterned using two different grade graphite pencils, which
show a stable and reproducible thermal sensitivity. The fabricated paper devices with mul-
tiple thermocouple arrays are capable of producing temperature mapping of the desired
area. Different thermal conditions were applied to test and confirm the working of these
devices. The present work shows that simple graphite trace patterns can convert a piece
of paper into a thermal mapping device.
� 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Hardware in context

Temperature sensing is crucial in a wide variety of applications [1,2]. Different thermal sensors are being used in many
industries including medical, agriculture, automotive, and so on [1,3–6]. Thermocouples are considered as a universal type of
thermometers among other thermal sensors because of their simple configuration and passive nature [7–9]. A conventional
thermocouple is made of two different metals/conductors, which are joined at one point to form a junction for thermal sens-
ing [3,10]. As thermocouples are based on the Seebeck effect, dissimilar conductors of different thermopower (S =DV/DT; DV
is the voltage generated from a conductor due to the temperature difference, DT) are necessary to construct these devices
[11,12]. The two conductors generate different voltages when the junction is heated; as a result, the thermocouple develops
a net electrical voltage that can be used to measure temperature [13].

Fig. 1 shows a schematic structure of a traditional thermocouple with its working principle. If Vc1 and Vc2 are the voltages
generated from conductor-1 (C1) and conductor-2 (C2), respectively, under a given temperature difference, DT, then the net
output voltage signal (V) from the thermocouple is expressed as
V ¼ Vc1 � Vc2 ð1Þ
where Vc1 = S1DT andVc2 = S2DT (S1 and S2 are the thermopowers of conductors C1 and C2, respectively). Therefore, V can also
be expressed as: [14]
V ¼ ðS1 � S2ÞDT ¼ STDT ð2Þ

The sensitivity of the thermocouple (ST = S1 – S2) can be obtained from the ratio of net output voltage and temperature

difference between the junction and surroundings.
Thin film-type thermocouples are attractive because of their lightweight structures and construction possibilities of flex-

ible sensors [2,7]. Also, these film type thermocouples are suitable to construct planar sensor arrays which can be used to
obtain the two-dimensional local temperature distribution of a surface or object [7]. Here, we have designed and built
low-cost temperature mapping sensor arrays on commonly available Xerox paper using graphite pencils. The ability of dif-
ferent grade graphite pencils to show different thermopowers has been utilized to construct multiple sensor arrays of single
conductor thermocouples in the form of completely graphite-based multiple sensor devices [11]. Typically, single-conductor
thermocouples are fabricated from a single metal strip/layer, which requires two dissimilar width patterns of a metal of
which at least one with sub-micron or nanoscale width in order to achieve different thermopowers from a single metal
[10,14,15]. Such devices demand special fabrication techniques such as electron-beam lithography or photolithography in
order to form sub-micron width metal patterns [7,16]. In addition, the multiple thermal sensor patterns are obtained by
using special fabrication facilities, such as screen printing or thin film deposition techniques [1,15]. Here, a very simple
method for constructing multiple sensor patterns has been demonstrated using commonly available graphite pencils and
cellulose paper, and the presented method can be useful in the fabrication of low-cost thermal sensors. Also, the thermal
sensitivities of these simple graphite sensors are comparable to single metal thermocouple sensor patterns [7,10].
2. Hardware description

Thin-film type thermocouple arrays are in general obtained from the deposition of two dissimilar conductor patterns on
desired substrates [2,7,8]. Here, graphite-on-paper based thermal sensors are fabricated simply with hand drawing using
two pencil grades (HB and 6B pencils). The HB and 6B grades were chosen to fabricate thermocouples as they produce a max-
imum thermal sensitivity in the resulting thermocouple sensors [11]. Graphite pencils (WH Smith) and commonly available
office Xerox paper (80 g m�2) were used to construct these multiple sensor arrays.

A single junction thermocouple was first fabricated in order to study its output characteristics and obtain the thermal
sensitivity of the sensor. Two devices of 4-junction and 16-junction arrays were fabricated in order to demonstrate their suc-
cessful functioning as local thermal distribution/mapping sensors. The16-junction device consists of an array of 4 � 4 sens-
ing junctions covering a thermal mapping area of 3 cm � 3 cm. Fig. 2 shows real pictures of the designed single-junction, 4-
junction, and 16-junction sensor patterns on Xerox paper. An equivalent schematic of these sensors is depicted in Fig. 3 to
show the distinctions between the HB and 6B pencil traces and the resulting junctions formed between them.
Fig. 1. Schematic of a thermocouple and its working principle.
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Fig. 3. Schematic illustrations of the designed (a) single-junction, (b) 4-junction, and (c) 16-junction sensor patterns. The yellow background represents the
sensing area or temperature mapping area and a red dotted circle in (a) shows the junction of the thermocouple.

Fig. 2. Real pictures of the designed (a) single-junction, (b) 4-junction, and (c) 16-junction sensor patterns on Xerox paper. Every junction in the sensors is a
combination of HB and 6B trace.

Fig. 4. Schematic illustrations of alternative designs of (a) 4-junction and (b) 16-junction multiple sensor arrays (the dotted red circles indicate junctions of
the devices).
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Fig. 5. Output voltage data of a single junction thermocouple with respect to temperature difference (DT).

Fig. 6. Relative thermopower variation of four graphite thermocouple junctions in a 2 � 2 sensor array (all data are normalized to the output of the J1
sensor).
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Fig. 8. Temperature maps obtained from a graphite-based multiple sensor device (4 � 4 array). (a & d) show two different heating configurations where the
hot plate was heated to � 60 �C, (b & e) are the raw temperature data of the sensors, and (c & f) are the temperature maps obtained from a smooth
interpolation method.

Fig. 7. Output voltage data of three graphite sensor devices with respect to temperature difference (DT).
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Fig. 9. An illustration to show the measurement procedure for the multiple sensor array. V1, V2, V3, and V4 are the voltage outputs of the junction 1, 2, 3,
and 4, respectively.

Fig. 10. Thermal sensitivity of a device as a function of bending cycles.
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3. Design files summary
Design file name
 File type
 Open source license
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Location of the file
Fig. 1
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 2
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)

https://doi.org/10.17632/cg38djj8y5.2)
https://doi.org/10.17632/cg38djj8y5.2)
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⇑ (continued)
Design file name
 File type
 Open source license
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Location of the file
Fig. 3
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 4
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 5
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 6
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 7
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 8
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 9
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
Fig. 10
 JPG
 CC BY 4.0
 Available with the article
(https://doi.org/10.17632/cg38djj8y5.2)
4. Bill of materials summary
Designator
 Component
 Number
 Cost per unit -
currency
Total cost -
currency
Source of materials
 Material
type
Graphite Pencils
(WHSmith)
HB and 6B
Pencils
2
 $ 0.17
 $ 0.34
 https://www.whsmith.
co.uk/products/whsmith-
silver-hb-pencils-pack-
of-12/5013872077181.
html
Organic
(Carbon)
5. Build instructions

The construction of the graphite sensors involves the following simple steps:
As shown by Fig. 3 (a), the single junction sensor consists of a HB trace and a 6B trace overlapping at one end forming a

junction between them. Pencil trace width of � 1 mm was maintained for both HB and 6B patterns and a length of 5–6 cm
were used to construct all the sensor devices. A uniform and repeated pencil writing of about 20 cycles for each trace was
performed to achieve good connectivity between the graphitic structures and reproducibility. A similar procedure was fol-
lowed to fabricate multiple sensor arrays (Fig. 3 (b-c)) by keeping a space of 1 cm between the junctions, as a result, a 4-
junction array covers an effective measuring area of 1 cm � 1 cm and a 16-junction array covers an area of 3 cm � 3 cm.
The junction area of the sensor array was then covered with a polyimide tape, which acts as a protective coating for the junc-
tions and improves the physical stability of the devices.

Alternative designs of multiple sensor arrays were also tested during the initial stage; the schematic structures of such
designs are shown in Fig. 4. These devices also provide similar output information but the output leads are in all directions
while the proposed designs (Fig. 3) have all the output leads on one side of the device making it convenient to read and col-
lect the output data.

6. Operation instructions

Please refer ‘‘Validation and characterisation” section.

https://doi.org/10.17632/cg38djj8y5.2)
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7. Validation and characterisation

The thermal sensitivity of a graphite thermocouple formed using HB and 6B pencil traces was obtained by measuring its
output voltages at different heating temperatures of the junction. A simple lab-made measurement setup was used to
achieve different heating temperatures [17]. Digital voltmeters (Model: HMC 8012 DMM) and standard temperature indica-
tors were used for all the measurements, and measurements were repeated to confirm the reproducibility of the outputs.
Fig. 5 shows the output characteristics of single junction graphite sensor. The output voltage data show a linear change with
respect to temperature difference (DT) applied to the device. A linear fitting of the data was carried out to obtain the thermal
sensitivity of the sensor, which gave a slope value of 7.6 (±0.4) mV K�1 with a coefficient of determination (R2) value of 0.995.
This sensitivity has been used in the characterisation of multiple sensor array devices to represent their voltage outputs as
temperature readings. These sensors can provide temperature information with a resolution better than 0.2 K with a micro-
voltmeter (as the micro-voltmeter can measure a minimum value of 1 mV, these graphite sensors with sensitivity
of � 7 mV K�1 can provide a temperature resolution of 1 mV / 7 mV K�1 = 0.14 K, or approximately better than 0.2 K).

Fig. 6 shows the typical thermopower deviations of four individual junctions of the same multiple sensor device (2 � 2
array). The thermopower of these four graphite thermocouple junctions in a 2 � 2 array are all normalised to the reading of
the first junction and all the sensors show very small deviation, which indicated good reproducibility of the sensor array. The
reproducibility has been further confirmed by testing three devices; the output voltages shown in Fig. 7 indicate that these
graphite based sensors can produce reproducible results.

The performance and reliability of the present graphite-on-paper multiple sensor arrays to obtain two-dimensional map-
ping of local temperatures has been demonstrated by fixing a 4 � 4-sensorarray device on a hot metal plate. Two different
heating configurations as shown in Fig. 8 (a & d) were used to test proper working of the sensor device. All the readings were
measured when the corresponding hot plate temperature was nearly stable. The measurement procedure of these multiple
sensor arrays is quite straightforward. The 4 � 4-array device consists of four columns each with four junctions. For every
column, the first trace (for example, HB trace is the first trace in column 1) acts as a common lead for all the voltage outputs
of the sensors in that column. Fig. 9 gives an illustration on the measurement procedure with highlighting the first column
sensors. The same procedure was followed for all the columns to obtain 16 output voltage readings that are represented by
Fig. 8. Also, these paper devices packaged inside the polyimide tape (Kapton tape) can be used multiple times without any
degradation in the output properties. A device outputs have been studied after multiple bending cycles (Fig. 10) to confirm
its reproducibility. The bending was performed along the length of the graphite traces with an approximate bending angle of
90�.

The sensitivity values of the present graphite based sensors are comparable to single metal based thermocouple sensors.
For illustration, in Ni and Pd thin film based single metal thermocouples, sensitivities of about 5 lV K�1 have been reported
[7,10,18]. Higher thermal sensitivities of about 35–40 lV K�1 have been reported in graphene based devices [1,15]. Similar
improvements in the sensitivity can be expected from the present graphite based devices through the use of proper dopants
[19]. In conclusion, the present study shows that these simple graphite trace patterns can convert a piece of paper into a
thermal mapping device. The major elements of these sensors, the graphite and cellulose paper are abundant, low-cost,
and non-toxic [20–25]. Therefore, extremely simple, cheap and disposable thermal sensors can be obtained with a simple
pencil art. A more number of sensors can be accommodated on a specific area with standard thin film deposition techniques
or screen-printing based methods to obtain temperature mapping of an area with high resolution. Further, the existing ther-
moelectric energy conversion devices/generators are usually manufactured from toxic and expensive semiconductors such
as bismuth tellurides, led tellurides, and their alloys [26–28]. Therefore, the current thermoelectric research is focused on
finding low-cost and non-toxic thermoelectric conductors for the application [29–37]. With some improvements and mod-
ifications in the thermoelectric properties of graphite such as by organic doping or alloying with other semiconductors, they
can also be utilized in the fabrication of thermoelectric devices [19,38–45].
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