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Abstract

The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial
architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein
1(Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by
gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently
transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs
when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin
immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western
Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the
responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody
there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared
with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the
ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen
in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of
PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.
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Introduction

The role of the hormone gastrin in the physiological regulation

of gastric acid secretion is well established [1]. Additionally, there

is increasing evidence to indicate that activation of the CCK2

receptor triggers a range of mechanisms that can be broadly

categorized as associated with tissue defence and maintenance of

gastric epithelial architecture [2]. These include epithelial cell

proliferation [3], migration [4], invasion [5], tubulogenesis [6] and

apoptosis [7]. Within the gastric epithelium, CCK2 receptors are

primarily expressed by parietal cells and enterochromaffin-like

(ECL) cells so that many of these responses are likely to result from

paracrine cascades involving multiple cell types [2,8]. Functional

genomics approaches have identified a range of genes, whose

expression is regulated by gastrin and that were hitherto un-

recognized as targets of this hormone [9,10,11,12].

There has been relatively good progress in elucidating the

mechanisms by which gastrin physiologically regulates expression

of genes involved in the acid secretory pathway such as Histidine

decarboxylase, Vesicular monoamine transporter2 (VMAT2)and chromogra-

nin A, which are key to ECL cell histamine synthesis and secretion

[13,14,15,16,17,18,19]. Considerably less is known about the

transcriptional mechanisms by which gastrin regulates genes that

may be involved in the maintenance of gastric epithelial

architecture. We recently identified a gastrin response element in

the proximal promoter of the VMAT2 gene, and showed that its

activity was dependent on binding to a beta subunit of the 20S

proteasome [15]. In the present study we sought to determine if

other gastrin-regulated ECL cell genes, involved in maintenance of

epithelial architecture were also dependent of proteasome

subunits. We report here that the genes encoding regenerating

protein 1 (Reg1) and plasminogen activator inhibitor type 2 (PAI-

2) depend upon proteasome beta subunits for gastrin-mediated

transcription. We also report that activation of the CCK2 receptor

induces subcellular redistribution of proteasome beta subunit

PSMB1, consistent with a transcriptional function.

Materials and Methods

Cells, Plasmids and Reagents
AGS cells stably transfected with full length cDNA for the

human CCK2 receptor (AGS-GR) [18]were cultured in HAMS/

F12 Nutrient mix media containing 10% FBS and 1% penicillin/

streptomycin, and incubated at 37uC in a humidified atmosphere

of 5.5% CO2/94.5% air.

A luciferase reporter construct containing 2340 bp of the

human PAI-2 promoter has been described previously [12];

a further construct containing 1.6 Kb of the PAI-2 promoter was

generated using PCR on the 2340 bp template. Generation of
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2111 bp luciferase reporter construct containing the rat Reg1

promoter has been described previously [20]. Heptadecapeptide

amidated gastrin (G17) was purchased from Bachem (St. Helens,

UK); IL-8 and PD98059 were obtained from Calbiochem

(Nottingham, UK); PGE2 was from Enzo Life Sciences (Exeter,

UK), L740,093 was from Merck (West Drayton, UK) and 740-YP

was from R&D systems (Abingdon, UK). All other chemicals were

obtained from Sigma (Poole, UK).

Immunocytochemistry
AGS-GR cells were cultured in a four-chamber culture slide

(26104 cells per chamber) and incubated for 24 h. Following

incubation, cells were treated with reagents as detailed in results,

for up to 6 h. After treatment, the cells were fixed using

paraformaldehyde (4%), permeabilized with Triton X-100 and

processed for immunocytochemistry as previously described [21].

The proteasome subunits PSMB1 and PSMC1 were detected

using primary rabbit polyclonal antibodies (Enzo) and PSMA5 was

detected using a primary mouse monoclonal antibody (Enzo). All

primary antibodies were used at a dilution of 1:500, and visualized

with either fluorescein-conjugated or Texas-Red-conjugated don-

key anti-rabbit or anti-mouse secondary antibodies (Stratech,

Soham, UK; 1:400dilution), using an Axioplan 2 fluorescence

microscope and AxioVision 4.6 software with deconvolution

options (Carl Zeiss Microscopy, Cambridge, UK).

Nuclear Extracts
Nuclear, cytoplasmic or total cell extracts were prepared from

AGS-GR cells using a Nuclear Extraction Kit from Active Motif

(La Hulpe, Belgium). Protein concentration was determined using

a Bio-Rad DC protein assay (Bio-Rad, Hemel Hempstead, UK).

Western Blots
Cytoplasmic (40 mg) and nuclear extracts (60–80 mg) were

resolved using 10% SDS-PAGE gels, and the proteins transferred

to Amersham Hybond ECL membrane (GE Healthcare Life

Sciences, Little Chalfont, UK). Membranes were incubated with

a primary rabbit polyclonal antibody for PSMB1 (Santa Cruz

Biotechnology, Santa Cruz, USA) at a dilution of 1:1000 overnight

at 4uC. The following day the membrane was washed with TBS

containing 0.1% Tween20, and incubated for one hour with

a HRP-conjugated anti-rabbit secondary antibody (Santa Cruz),

1:10000; the HRP was activated using the Immun-Star Western C

Kit (Bio-Rad) and detection was carried out on a Bio-Rad

ChemiDoc XRS+ with Image Lab V3.0 software (Bio-Rad).

Membranes were re-blotted for PSMA5 and PSMC1 (Enzo), and

finally HSP90 (cytoplasmic, Santa Cruz) or lamin (nuclear, Santa

Cruz). Densitometry was performed using the Image Lab V3.0

software.

Transfections, RNAi and Luciferase Assays
AGS-GR cells were cultured in six well plates (50,000 cells/

well), 24 h post seeding the cells were transfected with validated

siRNA for proteasome subunit or scrambled control (30 nM, Life

Technologies, Paisley, UK) using the magnefect nano system

(Nanotherics, Keele, UK) according to the manufacturer’s

instructions. The settings used were; oscillation frequency, 2 Hz;

displacement, 0.2 mm; 3600 cycles. Two days after siRNA

transfection, the cells were transfected with the luciferase

constructs for either PAI-2 or Reg1 (1 mg per well) and the

constitutively active renilla reporter vector phRL-SV40 (Promega,

Southampton, UK; 2.5 ng per well). After 24 h incubation, cells

were treated with either serum free medium or 2 nM G17 in

serum free medium for 6 h. Cells were then lysed and analysed

using a dual luciferase assay system (Promega) according to the

manufacturer’s instructions and luminescence determined using

a Lumat LB9507 luminometer (Berthold, Redbourne, UK).

Knockdown efficiency was assessed by western blot of whole cell

extracts 72 h after transfection.

ChIP Assays
ChIP assays were performed using the SimpleChIP Enzymatic

Chromatin IP Kit (Magnetic beads), from Cell Signalling

Technology (NEB, Hitchin, UK), according to the manufacturer’s

instructions. Briefly, 46107 AGS-GR cells were seeded in four

15 cm dishes (16107 per dish) and incubated overnight. Cells were

then treated with either 261029 M G17 in serum free medium, or

in serum free medium alone as a control, for two hours.

Crosslinking of protein and DNA was achieved by adding

formaldehyde to a final concentration of 1% for 10 min. DNA

was digested using micrococcal nuclease (8000 gel units, 37uC,
20 min) and cell nuclei were lysed using a Bioruptor plus sonicator

(Diagenode, Liege, Belgium; 7 pulses of 30 sec, with 30 sec rest at

4uC). Chromatin immunoprecipitation was carried out using an

antibody for PSMB1 (Santa Cruz, sc-67345) and normal rabbit

IgG to act as a negative control. DNA recovered from the

immunoprecipitations was analysed by real time PCR on an

Applied Biosystems 7500 system (Life Technologies) using a SYBR

green mastermix with low Rox (Primer Design, Southampton,

UK). Primers (Eurogentec, Southampton, UK) used for amplifi-

cation were as follows: PAI-2, -198 (relative to the start of

transcription), 59-TCTTAAGTTTCAGAGTGACC-39 and +51,
59- TCTCTGAGTTGCTGTCTG-39, Reg1 -200, 59-TGAG-

CAAGAGCAAAGTCCACCT and +18, 59-CTGTAG-

GAGCTTTAATCAGGATCTGAGA-39. The DDCt algorithm

was used to determine relative amplification in the PSMB1

immunoprecipitated samples compared to IgG, included in each

PCR reaction.

Results

We used the gastric cancer cell line AGS, transfected with the

CCK2 (gastrin) receptor (AGS-GR, [18], which has been used

extensively to characterize gastrin-stimulated gene transcription

[2].

In unstimulated AGS-GR cells, immunoreactivity for protea-

some beta subunit PSMB1 was observed throughout the cytoplasm

and nucleus as previously described (Fig. 1) [15]. Similar

distributions were also observed for an alpha subunit (PSMA5)

and a regulatory subunit (PSMC1), (Fig. 1). After exposure to

gastrin (G17, 261029 M), within 1 h cytoplasmic staining of the

beta subunit was reduced and after 2 h was virtually absent, while

nuclear staining was retained or intensified (Fig. 1). After 6 h

exposure to gastrin, subcellular distribution had reverted to that

seen in control unstimulated cells (Fig. 1). In the case of the

regulatory subunit PSMC1, and to a lesser extent the alpha

subunit PSMA5, gastrin induced a partially perinuclear cytoplas-

mic localization, but there was no evidence of increased nuclear,

or reduced cytoplasmic abundance (Figs. 1 and 2). Dual staining

for PSMB1 and PSMA5 following gastrin stimulation clearly

demonstrated disappearance of cytoplasmic PSMB1, whilst

cytoplasmic PSMA5 was retained (Fig. 2). Gastrin had no effect

in the presence of the CCK2 receptor antagonist L740093

(1027 M). In order to further explore and quantify the subcellular

distribution of proteasome subunits we prepared nuclear and

cytoplasmic extracts of gastrin-stimulated or unstimulated AGS-

GR cells and subjected them to Western blot for alpha, beta and
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regulatory proteasome subunits. In unstimulated cells, the nuclear:

cytoplasmic ratio of PSMB1 (standardized to lamin and HSP90,

respectively) was 1.6760.43. After stimulation with gastrin (G17,

261029 M for 2 h), the nuclear: cytoplasmic ratio was increased

to 10.6362.63 (p,0.001, ANOVA, n= 7). No changes were

observed in nuclear: cytoplasmic ratios of PSMA5 (control

4.7961.34, gastrin 6.1460.98) or PSMC1 (control 3.7661.13,

gastrin 4.4261.25) (Fig. 3).

In order to determine if activation of other GPCRs, or other

receptor types might influence PSMB1 subcellular distribution we

targeted a number of receptors reported to be functionally

expressed in AGS cells. No effect on PSMB1 distribution was

seen on activating the histamine H2 receptor [22] with 1025 M

histamine, the interleukin-8 receptor with 1.661028 M IL-8 or the

prostaglandin E2 receptor with 2.861025 M PGE2 [23,24].

PSMB1 was also unaffected by LPA at a dose (561025 M) that

stimulates branching morphogenesis in AGS-GR cells cultured on

artificial basement membrane [6].

We also asked if functionally expressed tyrosine kinase receptors

might activate PSMB1 redistribution. PSMB1 distribution was not

altered by activation of the EGF receptor with EGF (861029 M),

a dose known to activate TFF1 expression in this cell type [25],

and was unaffected by a second tyrosine kinase receptor, c-met, in

response to 100 ng.ml21 HGF.

Since previous studies indicate that many downstream effects of

CCK2R activation are mediated by PKC [2] we used PMA as

a receptor-independent activator of AGS-GR cells. When cells

were stimulated with PMA (1027 M) proteasome subunit PSMB1

underwent a subcellular redistribution similar to that seen in

response to gastrin (Fig. 2). Moreover, the response to gastrin

could be inhibited by application of the PKC inhibitor Ro-32-

0432 (1026 M) (Fig. 2). Gastrin may also act in part to activate

Figure 1. Localization of proteasome subunits in AGS-GR cells. A, PSMB1 in unstimulated cells; note cytoplasmic and nuclear location. B,
PSMB1 in cells after 2 h exposure to gastrin (G17, 261029 M); note absence of cytoplasmic staining. C, PSMB1 in cells 6 h after exposure to gastrin;
note reappearance of cytoplasmic staining. D,E,F, localization of PSMA5 under conditions comparable to A,B,C, respectively; note retention of
cytoplasmic localization during gastrin stimulation. G,H,I, localization of PSMC1 under conditions comparable to A,B,C, respectively; note retention of
cytoplasmic localization during gastrin stimulation, with increased perinuclear staining. Scale bars, 20 mm.
doi:10.1371/journal.pone.0059913.g001
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PI3-kinase [26], but we found PSMB1 localization to be un-

affected by the PI3-kinase activator, 740Y-P (261025 M).

As well as its direct effects, gastrin induces paracrine activation

of the PAI-2 gene by multiple pathways involving the EGF and IL-

8 receptors [23]. In the present study neither EGF nor PGE2

affected subcellular distribution of proteasome subunits, neverthe-

less we explored the possibility of paracrine activation perhaps

involving different pathways. AGS-GR cells and AGS cells that

constitutively express GFP (AGS-GFP) [27]were co-cultured in

a 1:1 ratio. When the co-culture was exposed to gastrin (G17,

1029 M) for 2 h, AGS-GR cells demonstrated the previously

described subcellular redistribution of PSMB1 whereas AGS-GFP

cells were unaffected, suggesting that direct activation of the

CCK2 receptor was required.

We have previously demonstrated gastrin responsiveness of PAI-

2 [12,23] and Reg1 [20,28]. In order to determine the requirement

for proteasome subunits in gastrin-stimulated transcription of these

genes we knocked down PSMB1 or PSMA5 using RNA

interference. Analysis by Western Blot indicated that 72 h

following transfection of AGS-GR cells with PSMB1 siRNA,

PSMB1 protein abundance was reduced to 31.265.5 (n = 3) per

cent that seen in cells transfected with scrambled control RNA

(Fig. 4). After transfection with PSMA5 siRNA, PSMA5 protein

was reduced to 24.9615.5 (n = 3) per cent that seen in cells

transfected with scrambled RNA (Fig. 4).

In cells transfected with scrambled RNA and with a promoter-

reporter construct containing 1.6 kb of the PAI-2 promoter,

treatment with gastrin (G17, 261029 M) increased reporter

activity 10.560.9 fold (n = 5) compared with unstimulated cells

(Fig. 5). In contrast, in cells with PSMB1 knocked down, the

response to gastrin of the PAI-2 promoter was significantly reduced

5-fold (p,0.001, n = 5, ANOVA, Fig. 5). In cells with PSMA5

knocked down there was a modest reduction in the gastrin-

responsiveness of PAI-2 to 61.8616.8 of that seen in cells

transfected with scrambled RNA (Fig. 6).

In cells transfected with scrambled RNA and a promoter-

reporter construct containing 2.1 kb of the Reg1 promoter,

treatment with gastrin increased reporter activity by 2.460.4 fold

(n = 9) compared with unstimulated cells (Fig. 5). In contrast, in

cells with PSMB1 knocked down, the response to gastrin of the

Reg1 promoter was virtually abolished (p,0.05, ANOVA, n= 9,

Fig. 5). When PSMA5 was knocked down, there was a less marked

reduction in the Reg1 responsiveness to gastrin to 58.4% 64.9% of

that seen in cells transfected with scrambled RNA (Fig. 6).

In order to determine if there was binding of proteasome

subunits to the PAI-2 and Reg1 promoters ‘‘in vivo’’ during gastrin

stimulation we performed ChIP assays on AGS-GR cells using an

anti PSMB1 antibody for immunoprecipitation, or IgG as

a negative control. In three separate immunoprecipitation

experiments, using chromatin from cells stimulated with gastrin

(G17, 261029 M for 2 h) we observed a 7.962.5 fold enrichment

of DNA using primers that generated a 250 bp amplicon

incorporating the region of the PAI-2 promoter known to be

responsive to gastrin [12,23]. Using primers that generated

a 218 bp amplicon including the gastrin responsive region of the

Reg1 promoter [20,28], we observed a 10.064.6 fold enrichment.

Figure 2. Localization of proteasome subunits in AGS-GR cells. A, PSMB1 in unstimulated AGS-GR cells; note cytoplasmic and nuclear
localization. B, PSMB1 in AGS-GR cells following 2 h exposure to PMA (1027 M); note reduction of cytoplasmic and intensification of nuclear staining.
C, PSMB1 in AGS –GR cells following 2 h exposure to gastrin (G17, 261029 M) in the presence of the PKC inhibitor Ro-32-0432 (1026 M); note nuclear
and cytoplasmic localization, comparable to unstimulated cells shown in A. D, PSMA5 (FITC) in AGS cells following 2 h exposure to gastrin (G17,
261029 M); note retention of cytoplasmic staining with intensification in the perinuclear region. E, PSMB1(Texas red) in AGS cells following 2 h
exposure to gastrin (G17, 261029 M); note absence of cytoplasmic staining. F, overlay of D and E. Scale bars, 20 mm.
doi:10.1371/journal.pone.0059913.g002
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In two separate experiments using unstimulated cells there was no

discernible enrichment of DNA (PAI-2, 0.17 and 0.3 fold; Reg1,

1.79 and 1.76 fold).

Discussion

In the present study, we show that gastrin induces subcellular

redistribution of the proteasome subunit PSMB1 from cytoplasm

to nucleus. We also show that PSMB1 binds to the PAI-2 and Reg1

promoters in vivo and is required for gastrin-stimulated increases in

expression of PAI-2 and Reg1. These findings indicate that

proteasome subunits form part of the transcriptional machinery

to regulate expression of gastrin responsive ECL-cell genes that are

involved in the maintenance of gastric mucosal integrity.

It is well established that the ubiquitin-proteasome pathway is

important for modulating intracellular concentrations of a variety

of generally short-lived molecules, including transcription factors

[29,30,31,32]. However, it is becoming increasingly clear that the

proteasome is also able to regulate transcription by a variety of

mechanisms not related to its proteolytic activity [33,34,35]. As

part of these mechanisms, proteasome subunits may be recruited

to regions of transcription, and this may involve elements of both

the 20s catalytic core and the 19s regulatory complex

[33,36,37,38]. We previously reported that the proteasome

subunit PSMB1, a component of the 20s central catalytic core of

the proteasome, was recruited to the promoter of VMAT2 in

response to stimulation of AGS-GR cells by gastrin and was

required for gastrin-stimulated VMAT2 expression [15]. Binding of

PSMB1 to a gastrin response element in the VMAT2 promoter has

subsequently been independently confirmed [39]. Moreover,

PSMB1 has been shown to bind to the promoter and be required

for activation of retinol binding protein4 via a G4KA element, which

taken with the present data indicates that this subunit can interact

with a variety of DNA sequences within promoters to increase

transcription. The nature of the physical interaction of PSMB1

and promoters remains to be established; conceivably it might act

as a docking site for other proteins.

Proteasomes and their subunits are distributed throughout the

cytoplasm and nucleus in most cell types [40] including the AGS-

GR cells used in the present study [15]. One possibility is that

PSMB1 already resident in the nucleus interacts with the PAI-2

and Reg1 promoters to upregulate transcription in response to

activation of the CCK2 receptor. However, we found that

CCK2R activation elicited a significant increase in the nucle-

ar:cytoplasmic ratio of PSMB1 within the time frame that PSMB1

bound to the PAI-2 and Reg1 promoters in ChIP studies. This

raises the possibility that transcriptional regulation by PSMB1 in

response to gastrin depends, at least in part, on movement of the

subunit to the nucleus. Proteasomes appear to be imported into

the nucleus as immature precursor complexes [41] and in some

cases specific individual subunits may be imported preferentially

[42]. Some alpha subunits contain recognizable nuclear localiza-

tion signals [43,44], but most subunits, including PSMB1, do not.

It may be that PSMB1 has an as yet unrecognized NLS [39] or it

may enter the nucleus combined with other proteins. Subcellular

distribution of proteasomes varies with the cell cycle, particularly

in association with alterations in the nuclear membrane [45,46].

Nuclear localization of PSMB1 in response to GPCR activation

has not been reported previously, although enhanced nuclear

localization of proteasomes has been described in certain disease

conditions [47,48,49] and in response to knockdown of GLUT4

[39]. Interestingly, knockdown of PSMA5 caused a modest

reduction of gastrin-mediated PAI-2 and Reg1 transcription.

Conceivably PSMA5 (or other subunits) may be involved with

transport of PSMB1 to the nuclear compartment, without itself

entering.

In many cases, signalling events downstream of the CCK2R are

mediated by PKC [2], and in the present study, the gastrin-

stimulated redistribution of PSMB1 was mimicked by PMA and

prevented by the PKC inhibitor Ro-32-0432. CCK2R signalling

may also occur via PI3-kinase [26], but in the present study an

activator of this protein failed to affect PSMB1 localization. The

specificity of the CCK2R response was demonstrated by the fact

that it was prevented in the presence of a gastrin antagonist, and

that a range of other GPCRs known to be functional on AGS-GR

cells [6,22,23,24] did not affect PSMB1 localization. PSMB1 was

also unaffected by activation of the EGF receptor, which is

consistent with the finding that PSMB1 is not required for

Figure 3. Nuclear and cytoplasmic abundance of proteasome
subunits in gastrin-stimulated AGS-GR cells. A, representative
western blot of proteasome subunits in cytoplasmic (left panel) and
nuclear (right panel) extracts of AGS-GR cells, 0, 60, 90 or 120 minutes
after stimulation with gastrin (G17, 261029 M). Blots were re-probed
with HSP90 (cytoplasmic) or lamin (nuclear). B, signals at 0 (control) and
120 (gastrin) minutes of gastrin stimulation were quantified by
densitometry and normalized to HSP90 or lamin. Nuclear to cytoplasmic
ratios at 0 min ( = 1.0) versus 120 min are shown for PSMB1, PSMA5 and
PSMC1. ***, p,0.001; n = 7, ANOVA.
doi:10.1371/journal.pone.0059913.g003

Figure 4. Knockdown of proteasome subunits in AGS-GR cells.
Representative western blots of PSMB1 (left panel) and PSMA5 (right
panel), in AGS-GR cells 72 hours after transfection with validated siRNA
or scrambled control. Left lanes, scrambled control (Scr), right panels,
knockdown (KD). Blots were re-probed for HSP90.
doi:10.1371/journal.pone.0059913.g004
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activation of TFF1 by either the EGF or CCK2 receptors in AGS-

GR cells [15].

Functional genomics approaches have led to the recognition of

hitherto unsuspected targets of gastrin, that are involved in

maintaining function and integrity of the gastric epithelium

[9,10,11,12]. One such target gene, PAI-2 is expressed in several

cell types in the gastric mucosa including histamine-secreting ECL

cells [12,24]. It is an inhibitor of the urokinase plasminogen

activator system [50,51], and in the stomach is also increased by

Helicobacter pylori and is associated with inhibition of cell invasion

and suppression of apoptosis [12,24].

Within the gastric epithelium, the Reg1 gene is also a target of

gastrin [20,28,52,53] and is expressed in ECL cells as well as

pepsinogen-secreting chief cells [53]. Gastric Reg1 expression is

increased by stress and by mucosal damage, and may act to alter

the proportions of epithelial cell types [52,54,55]. The present data

are therefore consistent with the idea that PSMB1 is part of the

transcriptional machinery required for gastrin-stimulated expres-

sion of genes involved in the maintenance of gastric epithelial

architecture. Interestingly the gastrin sensitive genes so far

identified to be PSMB1-dependent, PAI-2, Reg1, and VMAT2

[15] are all expressed in ECL cells, whilst TFF1 which did not

Figure 5. Gastrin-responsiveness of the PAI-2 and Reg1 promoters following PSMB1 knockdown. Response of the PAI-2 (left panel) and
Reg1 (right panel) promoters to gastrin (G17, 261029 M) in AGS cells transfected with PSMB1 siRNA (KD) or scrambled RNA (Scr). Open bars,
unstimulated cells; closed bars, cells stimulated with gastrin (G17, 261029 M) for 6 h. Values are mean 6 SEM, n= 5–9. ***, p,0.001; *, p,0.05.
doi:10.1371/journal.pone.0059913.g005

Figure 6. Gastrin-responsiveness of the PAI-2 and Reg1 promoters following PSMA5 knockdown. Response of the PAI-2 (left panel) and
Reg1 (right panel) promoters to gastrin (G17, 261029 M) in AGS cells transfected with PSMA5 siRNA (KD) or scrambled RNA (Scr). Open bars,
unstimulated cells; closed bars, cells stimulated with gastrin (G17, 261029 M) for 6 h. Values are mean 6 SEM, n= 4–6.
doi:10.1371/journal.pone.0059913.g006
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demonstrate PSMB1 dependency [15], is not. It remains to be

established if any gastrin sensitive genes expressed in cells other

than ECL cells exhibit this mechanism.
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