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BACKGROUND: CCAAT/enhancer-binding protein-a (CEBPA) is crucial for normal granulopoiesis and is frequently disrupted in acute
myeloid leukaemia (AML). Increasing evidence suggests that CEBPA exerts its effects, in parts, by regulating specific microRNAs
(miRNAs), as previously shown for miR-223. The aim of this study was to investigate the genome-wide pattern of miRNAs regulated
by CEBPA in myeloid cells.
METHODS: In Kasumi-1 cells, conditionally expressing CEBPA, we assessed the expression of 470 human miRNAs by microarray
analysis. We further investigated the microarray results by qRT-PCR, luciferase reporter assays, and chromatin immunoprecipitation
assays.
RESULTS: In all, 18 miRNAs were more than two-fold suppressed or induced after CEBPA restoration. Among these 18 miRNAs, we
focused on CEBPA-mediated regulation of the tumour-suppressive miR-29b. We observed that miR-29b is suppressed in AML
patients with impaired CEBPA function or loss of chromosome 7q. We found that CEBPA selectively regulates miR-29b expression
on its miR-29a/b1 locus on chromosome 7q32.3, whereas miR-29b2/c on chromosome 1q32.2 is not affected.
CONCLUSION: This study reports the activation of the tumour-suppressive miR-29b by the haematopoietic key transcription factor
CEBPA. Our data provide a rationale for miR-29b suppression in AML patients with loss of chromosome 7q or CEBPA deficiency.
British Journal of Cancer (2010) 103, 275–284. doi:10.1038/sj.bjc.6605751 www.bjcancer.com
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Haematopoiesis is a highly orchestrated interaction of lineage-
specific transcription factors driving pluripotent precursor cells to
differentiate towards mature blood cells (Rosenbauer and Tenen,
2007). Increasing evidence suggests that this differentiation along
the various haematopoietic lineages is, in part, also regulated by
microRNAs (miRNAs) (Lawrie, 2007; Garzon and Croce, 2008;
Pelosi et al, 2009). miRNAs are small, non-coding RNAs, which
silence target genes by base-pairing to untranslated mRNA regions.
Thereby, miRNAs adjust expression of specific transcription factors
in a post-transcriptional manner (Shivdasani, 2006; Ambros and
Chen, 2007). Deregulation of either haematopoietic transcription
factors or miRNAs is a common event in the molecular pathogenesis
of human leukaemias (Tenen, 2003; Kluiver et al, 2006; Rosenbauer
and Tenen, 2007; Fabbri et al, 2008).

One of the key transcription factors for normal haematopoiesis
is the CCAAT/enhancer-binding protein-a (CEBPA). It has been
shown to be crucial for myeloid differentiation towards mature
granulocytes (Zhang et al, 1997; Radomska et al, 1998). In human
acute myeloid leukaemia (AML), CEBPA function is frequently
disrupted (Pabst and Mueller, 2007). Approximately 10% of
AML patients show dominant-negative mutations in the CEBPA
coding region (Pabst et al, 2001b). In addition, CEBPA expression
is suppressed by the leukaemogenic fusion proteins AML1-ETO,
AML1-MDS1-EVI1, or CBFB-SMMHC in AML patients bearing the

chromosomal rearrangements t(8;21), t(3;21) or inv(16) respec-
tively (Pabst et al, 2001a; Helbling et al, 2004, 2005).

During normal haematopoiesis, various CEBPA downstream
effectors have been described (Tenen, 2003; Mueller and Pabst,
2006), including so far at least one miRNA (miR-223) (Fazi et al,
2005; Fukao et al, 2007; Eyholzer et al, 2009). The activation of
miR-223 by CEBPA can trigger neutrophil differentiation and is
necessary for maintaining proper function of mature neutrophils
(Fazi et al, 2005, 2007; Johnnidis et al, 2008). On the basis of these
reports and the prominent role of CEBPA for normal myelopoiesis,
we assessed in this study the genome-wide regulation of miRNAs by
CEBPA in myeloid leukaemic cells. We screened 470 human miRNAs
for their expression levels in CEBPA-deficient leukaemic Kasumi-1
cells using a conditional CEBPA expression system. We identified 18
miRNAs whose expression levels changed more than two-fold
after CEBPA induction. Among them, we identified the tumour-
suppressive miR-29a/b1 cluster to be a direct target of CEBPA.

PATIENTS AND METHODS

Patients, controls and cell lines

Bone marrow samples from 66 consecutive AML patients
collected at diagnosis before treatment were used, comprising all
FAB subtypes. Leukaemic cells were collected using Ficoll gradient
(Lymphoprep; Axis-Shield PoC AS, Oslo, Norway). miRNA was
extracted using the miRNeasy Mini kit no. 217004 (Qiagen AG,Received 9 March 2010; revised 26 May 2010; accepted 27 May 2010
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Hombrechtikon, Switzerland). Mature monocytes or granulocytes
from six healthy volunteers were isolated from peripheral blood
using the EasySep selection kits nos. 18088-CD14 and 18682-
CD66b (RoboSep; StemCell Technologies, Vancouver, Canada).
CD34þ myeloid stem cells from three patients were enriched
using the CliniMacs CD34 Complete kit no. 177–01 (Miltenyi
Biotec, Auburn, CA, USA). Informed consent from patients and
volunteers was obtained according to the Declaration of Helsinki
Principles. Clinical characteristics are summarised in Supplemen-
tary Table S1 (Supplementary Material).

Leukaemic Kasumi-1 cells stably transfected with an inducible
CEBPA-oestrogen receptor (ER) fusion construct (CEBPA-ER)
(Pabst et al, 2001a) were cultured in phenol red-free RPMI 1640
supplemented with 10% foetal calf serum (FCS). The CEBPA-ER
fusion protein was activated using 1 mM b-oestradiol. All reagents
were from Sigma-Aldrich (Buchs, Switzerland).

Leukaemic U937 cells stably transfected with the tetracycline-
inducible (tet-off) oncogenic t(8;21) fusion protein AML1-ETO
(Pabst et al, 2001a) were cultured in RPMI 1640 supplemented with
10% FCS and 0.75mg ml�1 tetracycline. To induce AML1-ETO
expression the cells were extensively washed with PBS and cultured
in RPMI 1640, supplemented with 10% tetracycline-free FCS (PAA
Laboratories GmbH, Pasching, Austria).

Leukaemic HL60, K562, Kasumi-1 and U937 cells, and H1299
lung cancer cells (ATCC, Manassas VA, USA) were cultured in
RPMI 1640 with 10% FCS. The cell lines were characterised by
molecular diagnostics and cytogenetics, and cell morphology
was monitored by microscopy according to ATCC guidelines
(http://www.atcc.org 4cultures and products 4 technical support
4 technical literature 4 technical bulletin no. 8). No abnormal-
ities in cell morphology were observed in these cell lines, both at
low and high densities of cultures during the course of these
experiments. Repetitive mycoplasma screening remained negative
in these cell lines (PCR mycoplasma test kit Promokine no.
PK-CA91– 1048; PromoCell GmbH, Heidelberg, Germany).

miRNA microarray

Parental Kasumi-1 and Kasumi-1 cells with the inducible CEBPA-ER
construct were collected before and 72 h after b-oestradiol treatment.
miRNA was extracted using the miRNeasy mini kit no. 217004
(Qiagen AG), and miRNA quality was determined using Agilent 2100
Bioanalyzer (Agilent Technologies, Basel, Switzerland).

To assess miRNA expression profiles, we used the human
miRNA microarray kit no. G4470A, detecting 470 human and
64 viral miRNAs based on the Sanger database version 9.1
(http://www.mirbase.org). Scanning and image analysis were carried
out using the Agilent DNA microarray scanner (no. G2565BA; XDR
5/100, single pass, green). Feature Extraction software (version 9.5;
Agilent Technologies) was used for data extraction from raw
microarray image files using the miRNA_v1_95_May07 FE protocol
(grid 016436_D_20070426). Data analysis was carried out using
GeneSpring GX 9.0 (Agilent Technologies) expression analysis
software and expression values were corrected for oestrogen effects.
The cut-off for miRNA candidates was set at more than two-fold
changes in expression (suppression or induction) after CEBPA
restoration, and such changes had to be observed in two
independant experiments. The microarray kit, equipment and
software used for these arrays were from Agilent Technologies.

Luciferase reporter assay

The human DNA sequence comprising �682 to þ 296 bp upstream
of the primary miR-29a/b1 transcription start site (GenBank accession
number EU154353) was cloned into the pGL3b luciferase vector using
KpnI and NheI restriction sites. This construct was co-transfected with
a human CEBPA expression plasmid (pcDNA3) in H1299 cells using
Lipofectamine 2000 (Invitrogen, Basel, Switzerland). Luminescence

was detected using the Dual-Luciferase Reporter Assay (Promega,
Dübendorf, Switzerland). Primer sequences are indicated in Supple-
mentary Table S2 (Supplementary Material).

Quantitative RT-PCR

miR-29b expression in samples from AML patients and healthy
volunteers was assessed using the miScript SYBR Green PCR kit
no. 218073 and primer assay hs-miR-29b no. MS_6566 (Qiagen
AG). Expression values were normalised to the geometric mean
(Peltier and Latham, 2008) of miR-93 and miR-191 expression
(nos. MS_3346 and MS_3682 respectively; Qiagen AG). To
distinguish between miR-29a and miR-29c expression, we used
TaqMan microRNA assays no. 001212 (29a) and no. 000578 (29c)
and TaqMan universal PCR master mix No AmpErase UNG no.
4324018 (Applied Biosystems, Rotkreuz, Switzerland). Primer
sequences for pri-miR-29a/b/c detection using QuantiTect SYBR
Green PCR kit no. 204143 (Qiagen AG) are indicated in
Supplementary Table S2 (Supplementary Material). Expression
values of miR-29a/b/c and their primary transcripts in cell line
experiments were normalised to miR-93 expression, as miR-93
showed robust and stable expression during the time courses in
this study. All qRT-PCR reactions were carried out on 7900HT Fast
Real-Time PCR system (Applied Biosystems).

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation assays were performed using the
ChIP-IT Express Enzymatic kit no. 53009 (Active Motif, Rixensart,
Belgium). Immunoprecipitation of sheared chromatin of parental
U937 as well as of Kasumi-1-CEBPA-ER cells collected 72 h after
b-oestradiol treatment was performed using antibodies against
CEBPA (polyclonal rabbit IgG, sc-61X), polymerase II (sc-900X),
and rabbit IgG (sc-2027; all from Santa Cruz, Heidelberg,
Germany). Sequences of the PCR primers to detect CEBPA binding
to the pri-miR-29a/b1 promoter or to the pre-miR-223 regulatory
element as positive control (Fazi et al, 2005) are described in
Supplementary Table S2 (Supplementary Material).

Western blot analysis

Protein detection was carried out from whole-cell lysates using
antibodies against CEBPA no. 39306 (1:500; Active Motif) and
DNMT3B sc-10236 (1:500; Santa Cruz). For loading control,
b-actin antibody MAB1501 (1:105; Chemicon/Milipore, Zug,
Switzerland) was used. Horseradish-peroxidase-linked secondary
antibodies (1:5000 each) were: anti-mouse no. NA931V, anti-rabbit
no. NA934V (Amersham, GE Healthcare Bio-sciences, Uppsala,
Sweden), and anti-goat sc-2020 (Santa Cruz).

URL and statistical analysis

Conservation studies of the pri-miR-29a/b1 (GenBank accession
number EU154353) and pri-miR29b2/c (EU154351 and EU154352)
loci were carried out using http://www.genome.ucsc.edu/ (assembly
March 2006). Promoter analysis for putative CEBP binding sites
were performed using Genomatix MatInspector software, release
7.7(3) (Genomatix Software GmbH, Munich, Germany). Differences
in promoter activities and miR-29 expression levels were analysed
by t-test, with Po0.05 defining significance using GraphPad Prism
software version 4.0 (GraphPad Software Inc., La Jolla, CA, USA).

RESULTS

Genome-wide changes in miRNA expression after CEBPA
restoration in human AML

To identify miRNAs regulated by the myeloid key transcription
factor CEBPA in the haematopoietic system, we carried out miRNA
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microarrays assessing 470 human miRNAs. We used leukaemic
Kasumi-1 cells lacking detectable amounts of endogenous CEBPA,
however, containing an inducible CEBPA-ER fusion construct
(Pabst et al, 2001a). We treated these cells with b-oestradiol for
72 h to restore the CEBPA function, and analysed the changes in
miRNA expression. We found that the expression of 18 miRNAs
changed more than two-fold after restoring CEBPA function
compared with untreated Kasumi-1-CEBPA-ER cells and after
exclusion of effects because of oestrogen treatment (Table 1).
Of the 18 miRNAs, 8 (44%) were suppressed (Table 1A: miR-98,
miR-181b, miR-197, miR-210, miR-342, miR-432, miR-550, and
miR-776), whereas 10 miRNAs (56%) were induced (Table 1B:
miR-29b, miR-223, miR-370, miR-496, miR-572, miR-575 miR-630,
miR-638, miR-663, and miR-765; Supplementary Table S3).
miR-223, a previously identified target of CEBPA (Fazi et al,
2005; Fukao et al, 2007; Eyholzer et al, 2009), was confirmed and
used as a positive control for the array experiments, with a two-
fold induction after restoring CEBPA in our cell line model.

With a focus on haematopoiesis, differentiation, and/or
carcinogenesis, we summarised the rapidly increasing literature
available for the 18 identified miRNAs in Table 1 (for references
see also Supplementary Table S3). Most of these reports describe
expression patterns in various types of normal tissues and cancer,
whereas reports on the regulation of specific miRNAs are rare.

In this study, we focused on CEBPA-regulated miRNAs with
tumour-suppressive functions in haematopoiesis, and miR-29b
represented the most prominent candidate. miR-29b belongs
to a miRNA family comprising three members (miR-29a, -29b,
and -29c), which have been reported to be suppressed in various
cancer types (Fabbri et al, 2007; Mott et al, 2007; Wang et al, 2008),
including leukaemias (Li et al, 2008; Stamatopoulos et al, 2009;
Garzon et al, 2009b). Furthermore, they were shown to induce
differentiation (Wang et al, 2008; Li et al, 2009; Garzon et al,
2009b) and apoptosis (Park et al, 2009), and inhibit epigenetic
silencing due to de novo methylation (Fabbri et al, 2007; Garzon
et al, 2009b).

CEBPA mediates miR-29b expression in AML

We aimed to verify the results of the miRNA microarray by
qRT-PCR. We observed that miR-29b was, indeed, induced two-
fold after CEBPA restoration in the Kasumi-1-CEBPA-ER cell line
system (Figure 1A). We then investigated the effect of CEBPA
knock down on miR-29b expression. We used parental U937
leukaemic cells, expressing high levels of endogenous CEBPA as
well as a tet-off system conditionally expressing the oncogenic
t(8;21) fusion protein AML1-ETO (Pabst et al, 2001a). Induction of
AML1-ETO in these cells efficiently blocked CEBPA protein
expression (Figure 1B, left), which led to suppressed miR-29b
expression (Figure 1B, right).

Interestingly, CEBPA-associated expression of miR-29b was
further observed across a variety of leukaemic cell lines: the
expression of CEBPA protein and miR-29b in HL60, K562, Kasumi-1,
and U937 cells inversely correlated to the protein expression of the
previously identified miR-29b target gene DNA methyltransferase
3B (DNMT3B, Figure 1C; Fabbri et al, 2007; Garzon et al, 2009b).
As DNMT3B is mediating de novo DNA methylation and thus
epigenetically inactivates tumour suppressor genes in cancer
(Robertson et al, 1999; Rhee et al, 2002; Lin et al, 2007), these
observations connect blocked differentiation through CEBPA
suppression with deregulated methylation because of the
suppressed miR-29b activity.

miR-29b expression is suppressed in AML patients with
impaired CEBPA function or with monosomy 7 or del(7q)

To evaluate the importance of CEBPA-mediated miR-29b induc-
tion in vivo, we analysed miR-29b expression in diagnostic samples

of 66 AML patients, three samples of enriched CD34þ myeloid
stem cells, and in samples of mature granulocytes and monocytes
from 6 healthy volunteers (Figure 2).

We observed that the mean expression of miR-29b was
suppressed in the entire cohort of AML patients compared with
normal granulocytes (P¼ 0.043). In our cohort, we then separately
analysed the patients with suppressed CEBPA function. This group
comprised the AML patients with CEBPA mutations, with t(8;21)
or with inv(16) (Pabst et al, 2001a, b; Helbling et al, 2005). We
found that these AML patients had suppressed miR-29b compared
with mature granulocytes (P¼ 0.0001 for CEBPA mutated,
Po0.0001 for t(8;21) and inv(16)). Remarkably, the low miR-29b
levels were comparable with miR-29b expression in CD34þ
precursor cells, which hardly express detectable amounts of
CEBPA (Radomska et al, 1998).

In addition, we confirmed previous observations (Garzon et al,
2009a) that miR-29b is suppressed in patients with monosomy 7 or
del(7q) (P¼ 0.012). On combining AML patients with alterations
of chromosome 7q or CEBPA (n¼ 21), we observed low miR-29b
expression compared with the remaining 45 patients of our cohort,
with other or no detectable genomic alterations (P¼ 0.0002). We
thus confirmed in our cohort of 66 AML patients that miR-29b
expression is associated with CEBPA levels and therefore
suppressed in patients with disrupted CEBPA function.

Only miR-29a/b1 is induced after restoring CEBPA in
human AML cells

miR-29b belongs to the miR-29 family that is encoded in two
clusters on two chromosomes (Figure 3A): miR-29a as well as
miR-29b on chromosome 7q32.3, and miR-29c as well as, again,
miR-29b on chromosome 1q32.2. Mature miR-29b is therefore
encoded by two distinct precursor stem sequences (pre-miRNA)
on both chromosomes, a pre-miR-29b1 and pre-miR-29b2 stem.
Although the sequences of the two pre-miR-29b stems are differing,
mature miR-29b resulting from these two stem structures is identical.

Consequently, we first investigated the transcriptional effects
of CEBPA on the two miR-29 loci to define the individual
contribution of each locus to miR-29b expression. Our microarray
data indicated a roughly two-fold induction of miR-29a expression
after restoring CEBPA in Kasumi-1 cells, whereas miR-29c tended
to be suppressed (�1.3-fold). By qRT-PCR, we confirmed that
miR-29a was induced two-fold 72 h after CEBPA restoration,
similarly to miR-29b. In contrast, the expression of miR-29c was
not affected (Figure 3B). This suggests that miR-29a and miR-29b,
but not miR-29c, are regulated by CEBPA.

Previous reports (Chang et al, 2008; Wang et al, 2008) indicated
that mature miR-29 family members encoded on the same
chromosome are processed from a common primary transcript
(pri-miRNA, Figure 3C). We thus designed a series of primer pairs
dispersed over the pri-miR-29a/b1 and pri-miR-29b2/c sequences.
Again, we observed a two-fold induction of pri-miR-29a/b1
(Figure 3D, left), whereas the expression of the miR-29b2/c
primary transcript remained stable (Figure 3D, right). This is
consistent with the above-mentioned observation of suppressed
miR-29b in AML patients with aberrant chromosome 7q. We thus
concluded that CEBPA activates the expression of the miR-29a/b1
cluster on chromosome 7, whereas it does not affect miR-29b2/c on
chromosome 1 in myeloid leukaemic cells.

CEBPA specifically activates the pri-miR-29a/b1 promoter

As previously shown by RACE experiments (Chang et al, 2008),
the primary miR-29a/b1 transcript starts 35.7 kb upstream of the
pre-miR-29b1 stem structure, and the highly conserved promoter
region just upstream of this transcription start is responsible for
regulation of miR-29a/b1 expression (Figure 3C).
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A computational analysis of the conserved region spanning
�682 bp upstream to þ 296 bp downstream of the pri-miR-29a/b1
transcription start site indicated six potential CEBP binding sites
(Figure 4A). Using luciferase reporter assays, we observed that
CEBPA, indeed, activated the entire conserved promoter region
two-fold in a dose-dependent manner (Figure 4A). Deletion and
mutation constructs of the pri-miR-29a/b1 promoter identified a
CEBP binding site located þ 15 to þ 29 bp immediately down-
stream of the transcription start site to be responsible for CEBPA-
mediated activation of the pri-miR-29a/b1 promoter (Figure 4B).
Chromatin immunoprecipitation assays in myeloid leukaemic cells
confirmed that CEBPA is, in fact, binding in vivo to this part of the
pri-miR-29a/b1 locus as suggested by the luciferase experiments
(Figure 4C): both endogenous CEBPA in U937 cells and exogenous
CEBPA in Kasumi-CEBPA-ER were binding to the CEBPA site
located þ 15 to þ 29 bp downstream of the pri-miR-29a/b1
transcript start.

Furthermore, we sought to exclude additional functional
CEBPA-binding sites in the non-conserved region directly
upstream of the pre-miR29a and -29b1 stem structures. Such
additional CEBPA responsive promoter elements were reported for
CEBPA regulation of miR-223 (Fazi et al, 2005; Eyholzer et al,
2009) or miR-661 (Reddy et al, 2009). Although the computational
sequence analysis of 2.2 kb upstream of the pre-miR-29b1 stem
indicated four putative CEBP binding sites, we found that none of
them was CEBPA responsive in luciferase assays (data not shown).
We thus conclude that CEBPA activates miR-29a/b expression
through direct binding to a single site in the conserved promoter
region of the pri-miR-29a/b1 transcript on chromosome 7q32.3.

DISCUSSION

The transcription factor CEBPA is a master regulator within
normal haematopoiesis (Pabst and Mueller, 2007; Koschmieder
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Figure 2 miR-29b expression in AML patients and healthy controls.
miR-29b expression was assessed in samples from 66 AML patients, in
three samples of enriched CD34þ myeloid stem cells as well as in mature
granulocytes and monocytes from six healthy volunteers. The cohort of
consecutive AML samples showed suppressed miR-29b expression compared
with granulocytes (P¼ 0.043). Patients with CEBPA deficiency (CEBPA
mutations, t(8;21), inv(16)) or chromosome 7q alterations (monosomy 7 or
del(7q)) represented roughly one-third of the entire cohort and showed
differences in miR-29b expression compared with granulocytes from healthy
volunteers (**Po0.001 for all three subgroups with deficient CEBPA function,
and *Po0.05 for �7q) as well as compared with the remaining 45 AML
patients (wt CEBPA and 7q, **Po0.001). miR-29b expression was not
suppressed in the remaining 45 patients (wt CEBPA and 7q) if compared with
mature granulocytes (P¼ 0.182, NS). Expression levels are given as DCt-values
(Ct(miR-29b)�Ct(normalisation)).
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et al, 2009). Increasing evidence indicates that CEBPA is exerting
its regulatory effects, at least in part, by direct regulation of specific
miRNAs. Fazi et al (2005) first identified miR-223 as a direct
target of CEBPA. The activation of miR-223 by CEBPA triggers
granulocytic differentiation and maturation (Fazi et al, 2005,
2007). Recently, miR-661 was reported to be another direct CEBPA
target miRNA. miR-661 suppresses the metastatic tumour antigen
1, a gene broadly upregulated in human cancer (Reddy et al, 2009).

In this study, we sought to identify the pattern of miRNAs that
are regulated by CEBPA in haematopoietic cells. Using leukaemic
Kasumi-1 cells with conditionally inducible CEBPA function
(Pabst et al, 2001a), we determined the expression changes of
470 human miRNAs. We identified 18 miRNAs, whose expression
levels were changed more than two-fold after restoring CEBPA
function: miR-98, miR-181b, miR-197, miR-210, miR-342, miR-432,

miR-550, and miR-776 were suppressed, whereas miR-29b,
miR-223, miR-370, miR-496, miR-572, miR-575, miR-630,
miR-638, miR-663, and miR-765 were induced compared with
their expression levels before CEBPA induction. As expected, the
previously identified CEBPA target miR-223 was induced more
than two-fold. In contrast, miR-661 levels remained stable in our
system of myeloid leukaemic cells. As miR-661 activation by
CEBPA was reported to be involved in some solid tumours (Reddy
et al, 2009), it may be less important in haematopoietic cells.

So far, two studies described miRNA expression patterns
associated with AML patients with CEBPA mutations (Jongen-
Lavrencic et al, 2008; Marcucci et al, 2008). In accordance with our
observations, miR-181 family members were induced in patients
with CEBPA mutations in both studies. Remarkably, however,
these authors have not reported other miRNAs detected by our
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array approach. Possible explanations might be differences in the
type of arrays used or differences arising from a comparison of
results obtained from CEBPA restoration in a leukaemic cell line
(as in this report) vs differing miRNA patterns seen in patients
with or without CEBPA mutations.

Among the 18 identified miRNAs in our approach, we decided
to dissect the molecular mechanisms involved in CEBPA-
dependent regulation of miR-29b based on its increasingly
recognised importance for normal haematopoiesis and leukaemo-

gensis. Suppressed miR-29 levels have been shown to be associated
with disease progression in chronic lymphoid leukemia patients
(Calin et al, 2005; Stamatopoulos et al, 2009; Visone et al, 2009). In
AML, miR-29 suppression is associated to translocations involving
the MLL oncogene (Li et al, 2008), but it is induced in patients
with NPM1 mutations in the absence of FLT3-ITD alterations
(Garzon et al, 2008). Consistent with these expression data
suggesting tumour-suppressive properties, miR-29 is reported
to trigger differentiation (Wang et al, 2008; Garzon et al, 2009b;
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Li et al, 2009) and apoptosis (Mott et al, 2007; Garzon et al, 2009a;
Park et al, 2009; Xiong et al, 2009) in various tissues as well as
having anti-invasive and anti-proliferative properties in solid
tumours (Muniyappa et al, 2009; Xiong et al, 2009).

Several potential oncogenes have been reported to be silenced by
miR-29, such as Tcl1 (Pekarsky et al, 2006), YY1 (Wang et al,
2008), CXXC6, and CDK6 (Garzon et al, 2009a), the p53 upstream
inhibitors p85a and CDC42 (Park et al, 2009), and the anti-
apoptotic Bcl2 family members Bcl2 and Mcl1 (Mott et al, 2007;
Garzon et al, 2009a; Xiong et al, 2009). Importantly, miR-29 family
members were also reported to have an important role in
preventing epigenetic silencing of tumour suppressors due to
de novo methylation in cancer, as they directly suppress DNMT3A
and B (Fabbri et al, 2007; Garzon et al, 2009b).

Despite the variety of reported miR-29 downstream effects, little
is known so far on how miR-29 expression is regulated itself.
Chang et al (2008) first described the conserved promoter regions
of both miR-29 family clusters on chromosome 1q32.2 (miR-29b2/
c) and chromosome 7q32.3 (miR-29a/b1). They showed that both
clusters were suppressed by the oncogenic transcription factor
Myc in B-cell lymphoma. Wang et al (2008) proposed that the miR-
29b2/c cluster on chromosome 1 is suppressed in rhabdomyosar-
coma through NFkB/YY1 via the same conserved upstream
promoter region.

In this study, we report that the haematopoietic master
transcription factor CEBPA is inducing miR-29b expression. We
observed that miR-29b is suppressed in AML patients with disrupted
CEBPA function. This comprises AML patients with CEBPA
mutations or with suppressed CEBPA function because of t(8,21)
or inv(16) chromosome aberrations (Pabst et al, 2001a, b; Helbling
et al, 2005). We also confirmed recent observations by others
(Garzon et al, 2009a) that miR-29b is suppressed in AML patients
with alterations of chromosome 7 (monosomy 7 or del(7q)).
Interestingly, functional analysis of CEBPA-mediated miR-29b
expression indicated that only the miR-29a/b1 locus on chromo-
some 7q32.3 is activated by CEBPA, whereas miR-29b2/c expression
is not affected by CEBPA. This was surprising as the conserved

promoter region upstream of the miR-29b2/c primary transcript on
chromosome 1q32.2 (Chang et al, 2008) also indicated several
putative CEBPA binding sites in a computational analysis. However,
we found that none of them turned out to be functional. The finding
that CEBPA induces miR-29b expression only from its chromosome
7q32.3 locus (miR-29a/b1 cluster) provides a rationale for miR-29b
suppression observed in patients with alterations of chromosome 7.

In summary, using miRNA microarrays, we found that CEBPA
affects the expression of a defined subset of 18 miRNAs in human
AML cells. Among them, we identified the miR-29a/b1 cluster
encoded on chromosome 7q32.3 to be directly activated by CEBPA.
The findings of our study suggest a rationale for miR-29b
suppression in AML patients with disrupted CEBPA function or
with aberrations on chromosome 7.
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