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Abstract: Cognitive function is affected by low pressure and hypoxia in high-altitude environments,
and is regulated by altitude and exposure time. With the economic development in the Qinghai-Tibet
Plateau, the increase in work and study activities, as well as the development of plateau tourism,
mountaineering, and other activities, the number of plateau immigrants is increasing daily. Long-
term hypoxia challenges human physical and mental health, restricts work efficiency, and thus
affects plateau economic development and human wellbeing. Therefore, it is of scientific and social
significance to study how long-term exposure to the hypoxic plateau environment affects the physical
and mental health of lowlanders as part of the ongoing development of the current plateau region. In
this paper, we reviewed the research progress and mechanism of the effects of long-term (≥1 year)
high-altitude (>2500 m) hypoxia exposure on the cognitive function of lowlanders, and suggested that
the scope and sample size of the research should be expanded in the future, and that follow-up studies
should be carried out to explore the time threshold of cognitive impairment and its compensatory or
repair mechanism.
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1. Introduction

The Qinghai diagnostic criteria for Chronic Mountain Sickness (CMS) defines the area
above 2500 m as a plateau environment [1]. Many factors, such as low oxygen, low pressure,
low temperature, low humidity, and high solar radiation, directly and persistently affect
human health in plateau environments [2]. With the development of economic construction
and the increase in activities such as plateau tourism and mountaineering, increasing
numbers of people work and live in high-altitude areas, and the physical and mental health
challenges posed by the plateau environment are becoming increasingly prominent [3].
Therefore, it is increasingly important to study the impact of the hypoxia environment on
lowlanders’ cognitive function.

The effect of plateau environments on physical and mental state change dynamically
with altitude and residence time. Zubieta-Calleja divides the physiological adaptation
process into three stages, acute adaptation, subacute adaptation, and chronic adaptation,
according to the changes of human hematocrit. The formula of altitude adaptation with time
and space was proposed as “high-altitude adaptation factor = exposure time (day)/altitude
(km)” [4]. When the altitude is 3600 m, the adaptation to the plateau changes with the time
spent residing there. The first stage is the acute adaptation period (within 3 days of entering
the plateau), the second stage is the subacute adaptation period (3 days after entering the
plateau), and the third stage is the chronic adaptation period (1 month after entering the
plateau) [4]. Accordingly, cognitive function changes with the change of physiological
adaptation to the altitude. The decline of cognitive function was most obvious upon the
subjects first entering the plateau. With prolonged exposure time, high altitude hypoxic
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acclimation occurred, and cognitive function recovered somewhat, but it was still difficult
to reach the cognitive level of subjects in the plain control group [2,5]. As the altitude rises,
the adaptation time to the plateau also extends correspondingly, and the higher the altitude,
the more serious the impact of hypoxia on physiology, and the more obvious the decline in
working ability [6]. Previous studies revealed that cognitive function decreased first, then
increased, and finally decreased with the increase of altitude exposure time, and cognitive
function decreased with the increase of altitude [3,7].

Early studies on the effects of high-altitude environments on cognitive function fo-
cused on the effects of acute hypoxia exposure on cognitive function, using hypobaric
oxygen chambers to simulate high altitude environments, or in activities such as high-
altitude mountaineering [8,9]. In terms of research subjects, attention was primarily given
to special groups such as soldiers and mountaineers on the plateau, and less to the lowlan-
ders living in the plateau area [10,11]. In terms of research methods, early studies mainly
recorded responses to various psychological tasks, or adopted traditional psychophysical
methods and neuropsychological tests [12]. With the development of cognitive neuro-
science research techniques such as event related potentials (ERP) and functional magnetic
resonance imaging (fMRI), researchers have begun to explore the brain mechanisms under-
lying the effects of long-term high-altitude hypoxia exposure on cognitive function [13–18].
Previous studies on long-term plateau environmental hypoxia mainly focused on the fol-
lowing two groups of people [19,20]. The first type is the lowlanders who grew up in
the plain and went to work and live in the plateau when they grew up. The other is the
highlanders who have lived on the plateau for generations, mainly Tibetans. After a long
period of natural selection, highlanders have a different gene expression, physiological
structure, and psychological function to people in plain areas, and are more adaptable to
the plateau environment [15]. The research results of highlanders cannot be extended to
lowlanders. This review focuses on the effects of long-term high-altitude exposure on the
cognitive function of lowlanders.

This paper reviewed studies on the effects of long-term exposure to high-altitude
environments on cognitive function of lowlanders and the underlying physiological mech-
anisms, in order to provide a new direction for the effects of long-term exposure to high-
altitude environment on cognitive function, and to provide a scientific basis for the assess-
ment and protection of the cognitive function of lowlanders.

2. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function
2.1. Brain Structure and Brain Function Basis of Long-Term High-Altitude Exposure Affecting
Cognitive Function

In previous neuroimaging studies, magnetic resonance imaging (MRI) was mostly
used to explore the effects of long-term hypoxic exposure on brain structure and function.

In terms of brain structure, MRI-T1 sequence was used to collect image data, and
voxel-based morphometry (VBM) analysis and measurement were performed, so as to infer
the effects of long-term hypoxic exposure on gray matter, white matter, and cerebrospinal
fluid in brain tissue. Adaptive changes in brain structure have been found after long-term
hypoxic exposure. After two years of migration to the plateau, the thickness of the right
posterior central gyrus and right superior frontal gyrus decreased significantly, while the
thickness of the right middle frontal gyrus, parahippocampal gyrus, right anterior middle
temporal lobe, bilateral anterior ventral pons, and right cerebellar cortex increased [21].
The thickness of bilateral insula, right anterior cingulate gyrus, bilateral prefrontal cortex,
left anterior central cortex, and right lingual cortex was significantly reduced in long-term
migrants [22]. The above studies suggest that when hypoxic exposure time is longer,
adaptive changes occur in brain tissues, such as local cerebral vascular hyperplasia and
increase in cortical thickness in local brain areas, to compensate for inadequate blood
oxygen levels. With the prolonged hypoxic exposure time, the whole brain gray matter
showed a tendency of atrophy, showing the characteristics of non-specific injury [21,22].
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In addition, diffusion tensor imaging (DTI) was used in previous studies to analyze
the change of fractional anisotropy (FA) in white matter in patients with long-term hypoxic
exposure [22,23]. The results are similar to gray matter, and FA changes appear in the whole
brain white matter. The FA of the corpus callosum, radiative corona, anterior longitudinal
tract, and bilateral hippocampus decreased in people who migrated to the plateau for two
years, while the FA of the upper and lower longitudinal tract, corpus callosum, corticospinal
tract, and cortical brainstem tract increased [22]. In comparison, FA increased in the bilateral
upper and lower longitudinal tracts, corpus callosum, radiative corona, posterior cingulate
gyrus, and corticospinal tract in the highland immigrants of 3–4 generations. FA decreased
in optic tract and upper longitudinal tract [22]. The study also analyzed the correlation
between the changes of gray matter volume, white matter FA, and other parameters in
the plateau population with physiological parameters and neuropsychological test results.
The study found that the reduction of gray matter volume in the parahippocampus and
middle frontal gyrus of the plateau population was positively correlated with the change
in vital capacity, the change in the gray matter volume of the superior frontal gyrus was
correlated with the outcome of the mental rotation task, and the change in the thickness of
the postcentral gyrus cortex was correlated with the working memory reaction time [23].
These results suggest that long-term high altitude hypoxia exposure leads to structural
changes in the whole brain, and such changes may be the structural basis of cognitive
function changes.

Functional magnetic resonance imaging (fMRI) and event related potentials (ERP) were
used to investigate the effects of long-term hypoxia exposure on brain function. Regional
homoho (ReHo) analysis of resting state brain function of migrants shows that there is a
significant increase of ReHo in the right lower sensorimotor cortex, which is correlated
with the response time of memory search task. Voxel-mirrored homotopic connectivity
(VMHC) analysis showed that bilateral visual cortex signals were significantly enhanced
and correlated with subjects’ hemoglobin concentration, suggesting that long-term hypoxia
exposure may affect the synchronization and connectivity of spontaneous brain neural
activity. This may be the brain function basis for cognitive function changes [24]. ERP
studies have found that long-term hypoxia affects ERP components in the parietal occipital
lobe, anterior cingulate cortex, prefrontal lobe, temporal lobe, and other brain regions in
the lowlanders at high-altitude areas, showing impairment of attention function, inhibitory
control function, working memory function, and other cognitive functions [13–15,19].

2.2. Attention

Attention refers to the orientation and concentration of psychological activities or
consciousness on certain objects [25]. It uses limited cognitive resources to process target-
related information [26], and is an important psychological attribute for the generation and
carrying out of all psychological processes.

Long-term hypoxia damages attention function and produces adaptive compensation
in the brain. Early behavioral studies found that long-term post (15 months) had more
severe damage to attention span than short-term post (3 months) [27]. Long-term high-
altitude exposure lengthens the visual spatial attention response time of migrants [13,15],
decreased alertness and executive control ability in attention network test (ANT) [28]. An
fMRI study found that decreased gray matter volume in attention-related brain regions,
such as bilateral prefrontal lobe and right cingulate gyrus, may be the neural basis of
attentional impairment in Han Chinese living in high-altitude areas [18].

Event-related potentials (ERPs) are special brain-evoked potentials that use brain
potentials evoked by multiple or diverse stimuli by intentionally giving stimuli special
psychological meanings [29]. It reflects changes in the neuroelectrophysiology of the brain
during cognitive processes, also known as cognitive potentials [30].

Using ERP technology, Wang et al. found that the P3 component amplitude of un-
dergraduates who grew up in low-altitude areas and moved to high-altitude areas of
3650 m altitude for 3 years under high perceptual load decreased, indicating that their
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spatial attention function decreased [13]. In electrophysiological research, the P3 com-
ponent of the parietal lobe is a typical indicator of attention maintenance, and it is also
one of the important components of ERP experiments in hypoxic environments. At the
same time, its N1 component (the N1 potential is located in the occipital region and is a
unique component of spatial attention evoked potentials) was activated in bilateral occipital
lobes, and the lateralization effect of spatial attention processing disappeared, reflecting
adaptive compensation in a long-term hypoxic environment [13]. In the visual search
task, Zhang et al. (2018) found that when the target appears in the right visual field, the
amplitude of N2pc (N2-posterior-contralateral) components in the plateau migration group
is smaller than that in the plain control group. In visual search tasks, the N2pc component
is an effective electrophysiological indicator for the assignment of visuospatial attention
to targets. The amplitude of the N2cc (N2-central-contralateral) component in the plateau
migration group was greater than that in the plain control group. The N2cc component in
the visual search task reflects blocking of cross-talk between attentional orientation and
response selection [15]. In addition, the peak value of MP (Motor Potential, MP appears in
the contralateral motor cortex and represent a specific response to the muscle movement
state) and the latency of RAP (Reafferent Potential, RAP reflects sensorimotor integra-
tion processes) in the plateau migration group was larger than those in the plain control
group [15]. The results showed that long-term hypoxia not only reduced the function of
attentional resource allocation to target, but also decreased the function of target selection
and response preparation.

2.3. Executive Function

Executive function refers to the advanced cognitive process that controls and adjusts
other cognitive processes when completing complex cognitive tasks, and its fundamental
role is to produce coordinated, orderly, and goal-oriented behaviors [31]. Executive function
includes working memory, inhibitory control, and task switching [32]. Previous studies on
the effect of high-altitude on executive control mainly focused on working memory and
response inhibition.

Working memory is a mechanism for temporary processing and storage of informa-
tion [33]. A behavioral study using n-back task found that, compared with the plain control
group, the plateau migration group with long-term hypoxia had lower accuracy, longer
response time, and slower working memory processing speed in the 2-back condition [19].
Some fMRI studies have shown that long-term hypoxia may lead to functional changes
in brain regions associated with working memory [16–18]. The results showed that the
activation of the left pyramidal and left superior temporal gyrus was greater, while the
activation of left middle occipital gyrus was lesser [16–18]. The activation intensity of brain
regions related to speech working memory, such as inferior frontal gyrus, middle frontal
gyrus, occipital middle lobe, and cerebellum decreased significantly. The P2 component
belongs to the early component of working memory, which reflects the allocation of atten-
tion resources of working memory in the coding stage [34]. The LPP component belongs to
the late component of working memory, reflecting the allocation of attentional resources
in the matching stage of working memory [35]. Compared with the plain control group,
the P2 amplitude was more positive and the late positive potential (LPP) amplitude was
more negative in the plateau migration group under 2-back condition [19]. The early delta
band (1–4 Hz, 160–300 ms) has higher energy values, while the late Delta band (1–4 Hz,
450–650 ms) and Theta band (4–8 Hz, 450–650 ms) have lower energy values [19]. The re-
sults showed that the attentional resources input of the plateau migration group decreased
in the late matching stage of working memory processing, resulting in impaired response in-
hibition ability and information maintenance ability, and impaired spatial working memory
ability [19].

Response inhibition refers to the ability to inhibit inappropriate behaviors that do
not meet current needs, which is crucial for people to make flexible and goal-directed
behaviors based on environmental changes [36]. Neuroimaging studies have found that
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long-term exposure to high altitude results in decreased gray matter volume and white
matter quality in the bilateral prefrontal lobe, bilateral anterior insula, right cingulate
gyrus, left anterior central gyrus, right lingual gyrus, and occipital cortex. The number
of neurons decreased [17,18], and these brain regions are important regions involved in
the response inhibition function. Using ERP technology, scholars studied the inhibition
and control ability of college students residing at high-altitude areas for more than two
years. In the Flanker task, compared with the plain control group, P3 amplitude (the
P3 is an index of conflict resolution) in the plateau migration group was lesser under
inconsistent conditions, indicating that the plateau migration group needed to invest more
cognitive resources to resolve conflict with the same task difficulty [14]. In the Go/No-Go
task, compared with the plain control group, the latency of NoGo-N2 component (the
NoGo-N2 component embodies the conflict monitoring process during the early processing
stage of response inhibition, and its latency reflects the processing speed of this process)
was prolonged in the plateau migration group, indicating that prolonged residence at
the plateau affected the individual’s conflict processing speed, and the plateau migration
group showed excessive activation of neural activity in the response examination and
response monitoring stage [37,38]. However, none of the above studies found the effect
of long-term high-altitude exposure on response inhibition at the behavioral level. The
researchers believe that because the experimental paradigm is too simple, future studies
using relatively complex inhibition tasks may reveal the effect of long-term high-altitude
exposure at the behavioral level.

3. Physiological Mechanism of Long-Term High-Altitude Hypoxia Environment
Affecting Cognitive Function

The effect of high altitude and low-oxygen environment on cognitive function is due to
the change of physiological mechanism. The researchers explored the relationship between
high-altitude hypoxia environment and physical and mental function from the three levels
of stress mechanism, cellular mechanism, and molecular mechanism.

3.1. Stress Mechanism

Stress is a series of physiological and psychological reactions produced by the body
to maintain homeostasis balance when homeostasis is threatened [39]. Hypoxia, as the
primary plateau stress source, leads to high-altitude hypoxia stress, and physiological
compensation mechanisms such as dilation of blood vessels, increase of red blood cells,
and increase of cerebral blood flow. When oxygen supply is insufficient, cell mitochondria
produce reactive oxygen species (ROS), reactive nitrogen species (RNS), and other free
radicals, which lead to oxidative stress and change DNA structure. This leads to cell
damage and apoptosis [40–43]. The accumulation of free radicals in the body causes the
disorder of the oxidation system or antioxidant system, leading to oxidative damage [44],
which destroys the balance of the oxidation and antioxidant systems in the brain, resulting
in brain damage [45,46], thus affecting cognitive processing.

Studies on animal models of chronic hypobaric hypoxia (HH) found that the degree of
cognitive impairment was closely related to oxidative stress, and depended on the speed
of elevation rise, altitude, and duration of residence. Hypoxia differentially affects the
antioxidant status of cortex, hippocampus, and striatum [42]. Human studies have also
found that high-altitude exposure is often associated with oxidative stress and is closely
related to the degree of brain damage. Long-term living at high-altitude areas results
in long-term imbalance between oxygen free radical formation and antioxidant defense,
leading to systemic oxidative nitrification inflammatory stress and accelerating cognitive
impairment in patients with chronic altitude sickness [47]. High-altitude exposure can also
cause mitochondrial dysfunction in the brain, enhance oxidative stress, and increase the
risk of suicide, depression, and bipolar disorder [48].
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3.2. Cellular Mechanism

Long-term hypoxia leads to high altitude polycythemia (HAPC), manifested as hyper-
plasia of red blood cells, increased blood viscosity, and clinical symptoms such as dizziness,
headache, and shortness of breath [49]. High altitude polycythemia affects individual’s
cognitive functioning. Using the VBM (voxel-based morphometry) technique, it was found
that the gray matter volume of right lingual gyrus, posterior cingulate gyrus, bilateral
parahippocampus gyrus, and left inferior temporal gyrus increased in patients with high al-
titude polycythemia compared with subjects who do not have the disease [50]. The volume
of the left anterior cingulate gyrus decreased compared to normal, which may cause some
impaired visual acuity, memory, or cognitive function in patients [50]. Similarly, resting
oxygen-level-dependent functional magnetic resonance imaging (BOLD-fMRI) was used to
observe the brain tissue structure and function of patients with high erythrocytosis. It was
found that the ReHo values of left parahippocampal gyrus and left posterior central gyrus
increased, indicating that the local neuron activity in these two brain regions increased
compared with normal people. However, the ReHo values of bilateral inferior temporal
gyrus, right fusiform gyrus, and left middle frontal gyrus showed a downward trend,
which was related to reduced cognitive functions such as amnesia [51].

High altitude polycytophysia can also affect sleep quality, manifested as difficulty in
falling asleep, easy or early awakening at night, subsequently affecting cognitive function,
resulting in the decline of attention span and attention transfer ability, short-term memory,
attention, thinking flexibility, and other cognitive functions [52–54], and the lower the sleep
quality, the worse the cognitive level.

In conclusion, long-term exposure to a high altitude and low-oxygen environment
leads to hyperplasia of red blood cells, which leads to cumulative changes in brain structure
and local fine tissue structure and function, thus negatively affecting cognitive function
and reducing cognitive level.

3.3. Molecular Mechanism

The most fundamental cause of HAPC is chronic hypobaric hypoxia at high altitude. In
order to obtain more oxygen, the human body will promote the liver and kidney to secrete
a large amount of erythropoietin (EPO) through the HIF-EPO (hypoxia inducible factor-
erythropoietin) pathway [55]. The EPO-EPOR (erythropoietin-erythropoietin receptor)
system functions to promote red blood cell production in order to improve oxygen supply.
High-altitude, low-pressure hypoxic environments can induce hypoxia-inducible factor
(HIF), erythropoietin (EPO), vascular endothelial growth factor (VEGF), iron metabolism
and hypoxia-induced inflammatory factors to affect erythropoiesis and then lead to HAPC,
resulting in cumulative changes in brain structure and brain function, and ultimately affect
cognitive function [51,55–57]. For example, HIF-1α may cause brain damage by promoting
neuronal autophagy activation, leading to hypoxia and ischemia [58].

4. Retrospect and Outlook
4.1. Research Content

Previous studies on the effects of long-term altitude hypoxia on cognitive function
have focused on basic cognitive abilities such as perception, memory, and attention, but
lack of discussions on higher cognitive functions such as thinking and language. Acute
exposure to altitude hypoxic environment has negative effects on thinking and language,
mainly manifested as slow thinking and impaired language fluency [59,60]. Whether long-
term exposure to high altitude hypoxia has a similar effect on higher cognitive function
to acute hypoxia, or is different due to functional compensation, or leads to more severe
impairment is unknown at present, and requires attention in future studies.

4.2. Research Subjects

In the past, long-term high-altitude hypoxia studies mostly took young people as
the research object, and there was a sample particularity, in that most of the studies used



Brain Sci. 2022, 12, 808 7 of 10

college students as their test population. Thus, it was difficult to reflect the real situation of
ordinary participants. In addition, there is a lack of research on middle-aged and elderly
groups in high-altitude hypoxia environments. There is a phenomenon of premature aging
among plateau residents. According to the statistics of the fourth population census of
Tibet, the average life expectancy of residents on the Tibetan plateau is 58.37 years, which
is about 10 years lower than that of the plains people, with the average life expectancy
decreasing with the increase of altitude, and the average life expectancy decreasing by
about 0.2 years for every 100 m of elevation increase. Long-term hypoxia causes damage to
vital organs and accelerates aging while triggering body compensation [61]. The cognitive
function of the elderly declines during the normal aging process, and whether the plateau
environment accelerates the cognitive function decline of the elderly needs to be confirmed
by further research.

4.3. Research Methodology

Existing studies mainly use cross-sectional research methods, with few longitudinal
tracking reports, and few field reports on plateaus with large sample sizes [62]. Longitudi-
nal studies can systematically and thoroughly understand the continuous process and the
regularity of quantitative and qualitative changes in the action of the plateau hypoxic envi-
ronment, which is helpful to determine the causal relationship. A large sample survey is
conducive to the overall understanding of the impact of exposure to high-altitude hypoxic
environments on the cognitive function of long-term lowlanders.

4.4. Research Prospects

There is still a lack of systematic on-site tracking research on the impact of the plateau
environment on cognitive function. Future research needs to be careful in selecting sites in
terms of the time dimension and controlling the altitude in the spatial dimension. In this
way, changes of cognitive function at different altitudes and exposure times, as well as the
corresponding relationship between cognition and physiological adaptation, can be more
accurately revealed.

In terms of cognitive protection of the plateau environment, there are still few studies.
In response to altitude hypoxia, hyperbaric oxygen interventions play an important role in
the prevention and treatment of altitude sickness and acute altitude sickness. It improves
sleep quality among highland migrants by effectively regulating sympathetic and vagus
nerve balance [63,64]. It can also effectively improve brain injury and cognitive functions
such as spatial memory and learning [65,66]. Another study has shown that hyperbaric
oxygen intervention can regenerate telomere length by more than 20% and reduce senescent
cells by 10% to 37%, thereby delaying aging [67]. However, there is still a lack of oxygen
intervention studies for the hypoxic plateau environment, and future studies on hyperbaric
oxygen intervention, diffuse oxygen, nasal oxygen intervention, etc., will help determine
the altitude oxygen dosage standard, effectively solve the problem of plateau hypoxia, and
provide an empirical basis for plateau residents to nourish and protect their brains.

In addition, altitude cognitive impairment can be improved by modulating gut mi-
crobiota. The gut–brain axis is a system composed of the brain and the gut in the human
body. The gut and the brain communicate through hormones and neural information to
jointly regulate emotional responses, metabolism, immune system, brain development and
health [68,69]. The gut microbiota is closely related to cognitive function, and probiotic
intervention can modulate the gut microbiota, thereby improving cognitive function [70].
High altitude hypobaric and hypoxic environments have a significant impact on the body’s
cognitive function and intestinal flora [71,72], and microbiological techniques can be used
to regulate intestinal flora and affect physiological and cognitive functions of the patients,
making them more adaptable to the high-altitude hypoxic environment.

In the future, a set of effective guidelines for healthy lifestyles for people at high
altitudes can be explored in combination with high-altitude oxygen use and special
diet research.
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5. Conclusions

Long-term exposure to a high altitude hypoxic environment affects cognitive function,
which is manifested in features such as attention, memory ability, and inhibitory control.
In this paper, the underlying mechanism is summarized, and the neural, stress, cellular,
and molecular mechanisms by which long-term high-altitude hypoxia exposure affects
cognitive function are discussed. Future research needs to continue to expand the scope
of cognitive function research, and large-scale follow-up studies need to be conducted. It
is also necessary to strengthen the research on brain nourishing and brain protection at
high altitudes, and explore the adaptation methods for high-altitude hypoxic environments.
Finally, for those interested in entering high altitudes for tourism, work, or to live, it remains
necessary to be cautious and possibly prepare by means of preconditioning or medication.
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