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Abstract

Considering a preferential selection mechanism of load destination, we introduce a new
method to quantify initial load distribution and subsequently construct a simple cascading
model. By attacking the node with the highest load, we investigate the cascading dynamics
in some synthetic networks. Surprisingly, we observe that for several networks of different
structural patterns, a counterintuitive phenomenon emerges if the highest load attack is
applied to the system, i.e., investing more resources to protect every node in a network
inversely makes the whole network more vulnerable. We explain this ability paradox by ana-
lyzing the micro-structural components of the underlying network and therefore reveals how
specific structural patterns may influence the cascading dynamics. We discover that the
robustness of the network oscillates as the capacity of each node increases. The conclusion
of the paper may shed lights on future investigations to avoid the demonstrated ability para-
dox and subsequent cascading failures in real-world networks.

Introduction

The investigation of the network robustness is a vital part of many fields in the academia, and
especially more and more researchers are concerned about the the vulnerability of natural and
man-made complex systems under cascading failures caused by attacking some key nodes or
edges. Cascading failures occur in many infrastructure networks, for example, large-scale
blackouts of power grids [1-5], severe traffic jams in traffic networks [6], and the Internet col-
lapse caused by congestion [7]. In these networks, the loads exist in forms of the electric charge,
traffic flows, or data flows. In general, the network system is in the maintenance of normal and
efficient operations. However, once some key nodes or edges fail, it triggers the redistribution
of the load of the failed nodes or edges, which may further lead to the successive failures of
many other parts of the entire network. This step-by-step process is what we call the cascading
failure.

To minimize the impact of cascading failures at the global system level and better protect
many infrastructure networks, by analyzing the dynamic mechanism of cascading failures, a
number of important aspects of cascading failures have been discussed and many valuable
results have been obtained, including the models for describing the cascade phenomena [8-
14], the cascade on the epidemic spreading [15-18], the cascading mitigation strategies
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[19-26], the percolation in multiplex networks [27, 28], the cascading phenomenon in game
dynamics [29], the efficiency of random or intentional attacks [30-34], the percolation in inter-
dependent networks [35-43], and so on. In all cited studies above, the initial distribution of
load on nodes or edges and the definition of redistribution rules of the load from invalid nodes
or edges are of vital importance. In previous works, the initial load on a node or an edge is gen-
erally estimated by its global betweenness, and the load will be recalculated according to
betweenness centrality if some nodes or edges are removed. Although the betweenness method
can be widely applied to the cascading model, it is still a debatable issue whether this method
can better quantify the flow of physical quantities in networks, since it fails to consider the het-
erogeneous degree distributions of most real-world networks.

To this end, by analyzing the dynamic characteristics of cascading failure, we summarize
two deficiencies of the traditional betweenness method in modeling cascading failures: 1. It
ignores the information of the node weight; 2. It fails to consider the fact that the load gener-
ated from a node or an edge may preferentially select destinations in realistic networks. In this
paper, We propose a new method to quantify initial load distributions by integrating the infor-
mation of node degree and the mechanism of preferential destination selection. To the best of
our knowledge, this is the first study to consider the revised betweenness method from the per-
spectives of the load characteristics. Moreover, different from previous studies, we pose a key
question: is there an inevitable positive correlation between the total capacity of all nodes and
the network robustness? To address this problem, by removing the single node with the highest
load, we focus on the correlation between the capacity parameter and the network robustness
in some synthetic networks. We surprisingly observe a counterintuitive phenomenon which is
termed as “ability paradox” in this research, i.e., in some networks with specific micro-struc-
tural patterns, stronger capacity inhibits the emergence of the largest connected component
and thus decreases the network robustness against cascading failures. By carefully analyzing
redistribution of the load during the cascading process, as the total capacity of a network
increases, the abnormal oscillation of several quantitative indexes reflecting the network
robustness can be explained by the ring structure in the remaining network after removing a
node. When the capacity parameter increases, paradoxically, the revivals of some nodes may
trigger the failures of more nodes. This explains why investing more police forces in traffic net-
works inversely makes more jams in traffic flows. Our findings have profound implications for
preventing and mitigating various cascading-failure-induced disasters in the real world.

The model

In previous works on cascading failures, for a given network, many researchers suppose that at
each time step one unit of the relevant quantity, which can be information, energy, etc., is
exchanged between every pair of nodes and transmitted along the shortest path connecting
them. If there is more than one shortest path connecting two given nodes, the packet is divided
evenly at each branching point. Therefore, in many previous cascading models based on the
betweenness, the initial load is naturally assigned to the total number of shortest paths passing
through the node (see Fig 1). Although the classic betweenness method is widely applied to the
cascading modeling, it ignores the heterogeneous impact of the degree-based node weight on
the load generated from the given node. (see Fig 2). In Fig 2, owing to the effect of the node
degree, at each time step, the load F _. generated by node 0 should be not equal to the load F;s
_, generated by node 0.

In real networks, in general, the bigger the degree of a node, the higher the load generated
from it. To better quantify the effect of the degree on the initial load, we revise the classic
betweenness measurement. Firstly, we assume the weight of node i in a network to be w, = kZ,
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Fig 1. The calculation of the load transported by a node in previous work. In the betweenness method, assume that the load was transmitted along the
shortest path between every pair of nodes. If calculating the initial load on a node, we need to count the effect of the load transmitted between all pairs of
nodes on this node. For example, we calculate the load on node 3. We use F; _, jand B,,, ; _. to denote the load transported from node i to j and the load
passing through node min all load generated by node i, respectively. By calculating the load passing through node 3 and generated by every node, we get
Bso .=15,B31_.=15,B35 .=15B33 .=0,B34 .=15,B35 _.=1.5,B36_.=1.5,and B3z _. = 1.5. Therefore, we can obtain B3 = 9, which represents
the total load transported by node 3.

doi:10.1371/journal.pone.0139941.g001
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Fig 2. Node degree influences the number of the load generated by this node. In the Internet, traffic networks, and the power grid, in general, the bigger
the degree of a node, the higher the load generated by it. We define F; _, to represent the total load generated by node i, which is transported to other nodes in
a network. Owing to the effect of the node degree, F _. should be not equalto F5 ..

doi:10.1371/journal.pone.0139941.g002

where o is a tunable weight parameter, governing the strength of the node weight. We use F; _,
to denote the load generated by node i at each time step. In our model, we simply assume F; _,
= w;. Next a natural question arises: how much load in F; _, is transported to node j? In real
networks, nodes with higher weight usually receives more load from others. Therefore, we pro-
pose a preferential destination selection principle by assuming that the loads transmitted from
node i to node j is proportional to the weight of node j, i.e.,

.

Fi*»' = Fi** ! ) 1
! Y omey T — i v

where Vis the set of nodes. Similarly, the loads transmitted from node j to node i is

w;

F .=F —————.
IS S=—— (2)

Here, in general, F; _, ; # F; _, ;. Loads F; _. j are transmitted along the shortest paths con-
necting i and j. If there are more than one shortest path connecting the two given nodes, the
loads transported are divided evenly at each branching point. Let p\"” denote the contribution
of one unit of a physical quantity transmitted between the ordered pair (i, j) to the load on k.
Then, the overall contribution of the load transmitted between the ordered pair (4, j) to the load

onkis LV = (F_; +F_) p\?. The initial load L on node k is then
L=Y1, -
ij

where the sum is over all pairs (7, j) of nodes in a network (see Fig 3). When a = 0, the initial
load on a node is equal to the total number of shortest paths passing through the node, in
agreement with previous classic betweenness method [21, 34].

Each node i is assigned to have a finite capacity C;, i.e., the maximum load that node can
handle. In man-made networks, the capacity is severely limited by cost. Thus, it is natural to
assume that the capacity C; of node i is proportional to its initial load L;,

Cz:(1+ﬁ)Lz7 l: 1>2>>N7 (4)
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Fig 3. The scheme illustrates the calculating process of the initial load on a node in our new method. Compared with Fig 1, we here calculate the initial
=2,F4=2,Fs=4,Fs=1,and

load on node 3. When a =1, We can get that the loads generated by nodes 0, 1,2, 3,4,5,6,and7are Fo=1,F1=1,F,=4,F3=2,F,4
F- =1, respectively. According to the preferential principle of the destination selection of the load transported, we can calculate the load exchanged between

any two nodes. We can further get the loads passing through node 3 in the loads generated by every node are B3 . =3/15,B31 . =3/15,B35 . =1,B33 _,
=0,B34_.=0,B35 .=1,B36 . =3/15,and B3 7 _, = 3/15, respectively. Therefore, we can obtain that the total load B3 transported by node 3 is 2.8, i.e., the

initial load L3 on node 3 is 2.8.

doi:10.1371/journal.pone.0139941.9003

5/12
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where the constant 8 > 0 is the tolerance parameter. Node i maintains its normal and efficient
function if its load is less than or equal to its capacity; otherwise it fails and is removed from
the network. The removal of nodes, in general, leads to a global redistribution of shortest paths.
The loads on some particular nodes can then change and may become larger than their capaci-
ties. All the overloaded nodes are removed simultaneously from the network, which leads to a
new redistribution of loads and subsequent overloads may occur. The cascading propagation
will stop when the loads on all remaining nodes do not exceed their capacities.

The analysis of the cascading model

Here we focus on global cascades triggered by attacking one node with the highest initial load.
The damage is quantified by two measures, i.e., the number Gy of nodes in the largest con-
nected component and the avalanche size S. Two fundamental questions are, how the parame-
ter « affect the network robustness against cascading failure and whether there exists a positive
relationship between the parameter beta and the robustness of the network. To answer these
questions, we investigate the cascading dynamics in five synthetic networks.

In Fig 4, We plot Gyyand S as functions of the parameter . (a) It is natural that, the bigger
the value S, the more the number Gy of nodes in the largest connected component, and the
smaller the number S of the failed nodes induced by removing the node with the highest load,
in scale-free networks constructed by BA model [44]. (b) In a ring network, surprisingly, we
see an unexpected behavior: as § increases, all curves show an obvious and wide fluctuation,
which means that sometimes the network robustness decreases against cascading failures. For
example, Gy is 685 when 8 = 0.02, however, Gy becomes 454 when = 0.98, in the case of & =
2. (c) We difficultly obtain the correlation between the WS network robustness and the capac-
ity parameter f. Similar to (b), the capacity enhancement of every node may not be able to
improve the robustness of the whole network. And the range of the wave curves is larger than
that of (b). When investing more resources to protecting the network, the uncertainty of the
network robustness causes a lot of trouble to managers. (d) When the rewiring probability
p = 0.1, we also observe that, as § increases, both Gy and S bounces up and down in the smaller
range of 5 (0.25 < < 0.3). (e) When p = 1, the generated networks are same as the ER net-
works. As 8 increases, the oscillation is almost smaller. In addition, we also find that the param-
eter o has almost no effect on the network robustness against cascading failure.

The ability paradox observed in the variety of structures is sufficient to determine the uni-
versal oscillation characteristics in cascading dynamics. For better explaining the ability para-
dox in cascading model, in Fig 5 we also explore the cascading dynamics in a lattice network
with the simple topological structure, which have 900 nodes (30 x 30) and 1740 edges. In Fig 5,
as value f increases from 0.004 to 0.05, we clearly observe that the number Gy of nodes in the
largest connected component decreases sharply, then slowly increases. For example, when =
0.004, the values of Gy in five cases of @ =0, & = 0.5, ¢ = 1.0, @ = 1.5, and @ = 2.0, are 149, 176,
176, 168, and 164, respectively. However, when 3 = 0.006, the values of Gy in five cases of ¢,
are 30, 32, 32, 32, and 153, respectively. As value f increases from 0.004 to 0.05, the avalanche
size S increases sharply, then slowly decreases. Although this ability paradox can be observed
in some networks, it is very difficult to understand this counterintuitive phenomenon, i.e.,
increasing protection investment leads to reduced network robustness.

Why does the enhancement of the capacities inversely reduce the network robustness
against cascading failures? To help answer this question we apply a lattice network with the
smaller size (5 x 5) to step by step simulate the cascading process and examine a series of steps
in it. In Fig 6, (a) At the initial stage, by setting a = 1, we calculate the initial load on each node
and remove the node 12 with the highest load, where the numbers inside and outside the blue
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Fig 4. Dynamics of cascading failures in five synthetic networks, N = 1000, (k) = 4. (a) The scale-free networks were constructed by BA model [44] and
data is averaged over 20 independent runs of node removal. (b) Ring-coupled network. (c) The WS small world network [45] created by a ring-coupled
network with the rewiring p = 0.01. (d) Synthetic network constructed by a ring-coupled network with the rewiring p = 0.1. (¢) Random network created by a
ring-coupled network with the rewiring p = 1. (b-e) Data is from a single run. (a-e) We plot G and S as functions of the parameter § for five cases of a=0, a =
0.5,a=1,a=1.5,anda=2.

doi:10.1371/journal.pone.0139941.g004

solid line circle denote the labels of nodes and the initial load on each node. (b) After node 12
is removed (four edges connected to node 12 also are removed), we recalculate the load (the
numbers outside the blue solid line circle) on each node in the remaining network and label the
fluctuation of the load on each remaining node by arrows, of which the yellow arrow up
denotes that the load on a node increases than its initial load, and the green arrow down
denotes that the load on a node decreases than its initial load. We observe that four nodes
linked to node 12 (i.e.,nodes 7, 11, 13, and 17) had the lower load than its initial load, while the
load on the other nodes inversely increase. Next, according to the different ranges of the values
of B, we examine step by step the cascading propagation. (c) We use the red solid line circle
and the grey dotted line circle to represent the surviving and failed nodes, respectively. And the
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Fig 5. Demonstration of cascading failures in a lattice network with 900 nodes and 1740 edges.

doi:10.1371/journal.pone.0139941.g005

dotted straight line between two nodes denotes the failed edges. When 0 < 3 < (4.88 — 4.73)/
4.73, consequently, only four nodes (7, 11, 13, and 17) survive because the loads on them are
smaller than their capacities after node 12 fails. But the number Gy in the largest connected
component is 0 because all four nodes are isolated. (d) By increasing the value of § gradually,
we observe the change of the number Gy. Since the fluctuation of the load on nodes 2, 10, 14
and 22 is smallest, when the value of #is in the range of (4.88 — 4.73)/4.73 < 8 < (0.72 - 0.58)/
0.58, these four nodes revive and the value of Gy is 2. (¢) When (0.72 - 0.58)/0.58 < § < (4.21
- 3.33)/3.33, although nodes 0, 4, 20, and 24 revive, the value of Gy is still 2 for the reason that
these nodes are isolated as well. (f) When (4.21 - 3.33)/3.33 < < (15.34 - 11.22)/11.22, nodes
1,3,5,9, 15,19, 21, and 23 revive and form quickly a ring structure all together the nodes rep-
resented by the red and the green solid line in (e). (g) We recalculate the load on the remaining
nodes again. The results indicate that the load on these nodes exceeds their endurance capaci-
ties except 7,11,13 and 17. Thus, these nodes will fail and are removed from the network. But,
the value of Gy is 0, owing to nodes 7, 11, 13, and 17 are isolated. (h) Eventually, when the
value of § increases to (15.34 — 11.2)/11.2, all nodes revive and the number Gy of the largest
connect component is 24.

As the value of § increases from 0 to (15.34 - 11.2)/11.2, we observe a step by step process of
the cascading propagation. We also find the counterintuitive phenomenon of the ability para-
dox at the critical point of 8 = (4.21 - 3.33)/3.33. What structure can lead to this phenomenon?
To answer this question, in Fig 7, we carefully analyze the reason of the emergence of the oscil-
lation of cascading dynamics. (a) The red nodes in the dotted line ellipse revive at this time
(represented by the black dotted arrow). However, the revivals of these nodes immediately
cause the failures of nine nodes connected with them (represented by the blue solid arrow). (b)
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Fig 7. The scheme illustrates the reasonable explanation of the ability paradox in the cascading propagation by a simple illustration.
doi:10.1371/journal.pone.0139941.9007

Thus, the revivals of nodes inversely lead to a more catastrophic cascade which destroys the
entire network. Therefore, we can summarize that the revivals of nodes in a network with the

ring structure after removing nodes is the reason of the ability paradox in the cascading
propagation.

Conclusion

Considering the node weight and the preferential principle of the destination selection of the
load transported, we introduce a new method to initialized loads distribution on nodes and
propose a cascading load model. We focus on the cascading dynamics induced by removing
the node with the highest initial load. In five synthetic networks, as the capacities of all nodes
increase, we observe the oscillation of cascading dynamics. This finding is surprising, i.e.,
investing more resources to enhance nodes’ capacity inversely makes the whole network more
vulnerable. To explain this ability paradox, we analyze step by step how cascading failures
occur and how it propagates in a lattice network with 25 nodes and 40 edges. We find that this
interesting phenomenon should be caused by the revivals of some nodes. By a simple illustra-
tion, we further summarize the underlying network structure that induces the observed turbu-
lence, i.e., the revivals of nodes in a network with ring structures after removing nodes is the
chief culprit of the ability paradox in the abnormal cascading propagation. Our findings should
be useful in furthering studies in the control of cascade failures in real-world networks.

This work is only the first step towards understanding the behavior of cascading failures
under the revised betweenness method. There are numerous aspects that require further inves-
tigation: which factors in the cascading modeling can affect the distribution of the initial load?
Are there any effective methods to improve the robustness of a network? How should we solve
the problem of the ability paradox in the cascading propagation? From the perspective of the
betweenness method, how to construct the cascading model in the interdependent networks?
We are planning to address these issues in our future work.
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