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Abstract
The knowledge of the tertiary structure of RNA loops is important for understanding their

functions. In this work we develop an efficient approach named RNApps, specifically

designed for predicting the tertiary structure of RNA loops, including hairpin loops, internal

loops, and multi-way junction loops. It includes a probabilistic coarse-grained RNAmodel,

an all-atom statistical energy function, a sequential Monte Carlo growth algorithm, and a

simulated annealing procedure. The approach is tested with a dataset including nine RNA

loops, a 23S ribosomal RNA, and a large dataset containing 876 RNAs. The performance is

evaluated and compared with a homology modeling based predictor and an ab initio predic-

tor. It is found that RNApps has comparable performance with the former one and outdoes

the latter in terms of structure predictions. The approach holds great promise for accurate

and efficient RNA tertiary structure prediction.

Author Summary

RNA is an important and versatile macromolecule participating in a variety of biological
processes. In addition to experimental approaches, computational prediction of 3D struc-
ture of RNAs and loops is an alternative and important source of gaining structure infor-
mation and insights into their functions. The prediction of RNA loop structures is of
particular interest since RNA functions often reside in the loop regions and about 46% of
nucleotides in an RNA chain remain unpaired. For this purpose, we develop an approach
RNApps based on a probabilistic coarse-grained RNA model. The probabilistic nature of
the model, together with a sequential Monte Carlo (SMC) growth algorithm, allows a nat-
ural and continuous sampling of structures in 3D space, making the approach unique. The
coarse-graining nature of the model further increases the efficiency. Here we test this new
approach with various types of loops, including hairpin loops, internal loops, and multi-
way junction loops, and make comparisons with other structure predictors.
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Introduction
RNAs are a type of macromolecule of crucial and versatile biological importance. In addition
to their long-discovered functions of carrying genetic information and acting as a part of trans-
lation machinery, recently they were found to be able to participate in the regulation of gene
expressions and protein synthesis, and to act as scaffolds for higher-order complexes and trans-
mit signals between cells, etc [1–4]. To fully understand the function of RNAs, knowledge of
their three-dimensional (3D) structure is often required. Although the most reliable sources of
RNA structural information are experimental measurements from X-ray crystallography,
nuclear magnetic resonance (NMR) spectroscopy, and cryoelectron microscopy, such experi-
ments are costly or technically challenging due to the physical chemical nature of RNAs. As a
result, computational prediction of RNA structures provides a valuable alternative source of
gaining structural information. Many programs have been developed to assist RNA 3D struc-
ture prediction, including YAMMP [5], NAB [6], ERNA-3D [7], MANIP [8], S2S [9], FARNA
[10], MC-Fold/MC-Sym [11], RNA2D3D [12], iFoldRNA [13, 14], NAST [15], Assemble [16],
HiRE-RNA [17], FARFAR [18], RNABuilder [19], ModeRNA [20], OxRNA [21], 3dRNA [22],
a coarse-grained model that includes salt effect [23], our pk3D [24], etc. However, this is not a
complete list due to the rapid development in the field.

The prediction of the tertiary structures of RNA loops, as part of the effort of structure pre-
diction, merits specific attention. First, this is because RNA functions often reside in loop
regions and about 46% of nucleotides in an RNA chain remain unpaired, according to Dima
and her colleagues’ research [25]. Some people mistake loop regions as unstructured. Some
people mistake loop regions as structured. There are stacking interactions between neighboring
bases, and other non-canonical contacts. These enthalpies sometimes dominate the entropic
components so that order dominates. Other times entropy dominates. Second, the prediction
accuracy of the loop regions is usually lower than that of the helical regions, mostly due to the
high flexibility of loops and the difficulty in calculating the energy of non-canonical base pairs
and base triples frequently observed in loops. Previously, several methods have been developed
for loop structure predictions. For example, Das and co-workers developed a deterministic
stepwise assembly (SWA) method, and with the Rosetta statistical potential this brute-force
method either reaches atomic accuracy or exposes flaws in the energy function for a testing set
of 15 RNA loops [26]. Liu and Chen designed a set of dinucleotide-based statistical potentials
for RNA loops and junctions and combined them with their Vfold model, then they made pre-
dictions for the coarse-grained (CG) 3D structures of both RNA loops and junctions [27]. One
unique advantage of their approach is its ability to go beyond the native structures by account-
ing for the full free energy landscape, including all the non-native folds. Frellsen and colleagues
developed a program BARNACLE (BAyesian network model of RNA using Circular distribu-
tions and maximum Likelihood Estimation) to remove some important limitations associated
with the discrete nature of fragment assembly methods [28]. BARNACLE is a probabilistic
RNA model based on dynamic Bayesian network and is able to efficiently sample conforma-
tions in a natural, continuous 3D space. It is shown that it captures several key features of RNA
structure, and readily generates native-like conformations for 9 out of 10 test structures, solely
using coarse-grained base-pairing information.

In this work we develop an approach that is specifically designed for predicting the tertiary
structures of RNA loops or missing fragments which can be part in helical regions and part in
loop regions. The loops can be hairpin loops, internal loops, or multi-way junction loops. The
approach includes a probabilistic CG RNA model, a sequential Monte Carlo growth method, a
simulated annealing strategy, and a statistical potential used for scoring the generated struc-
tural candidates. The probabilistic model is inspired by BARNACLE. However, the original
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BARNACLE model considers all the seven torsional angles in the RNA chain, as is not always
necessary since some dihedral angles are relatively rigid. The advantage of the new model
developed here is multifold. First, the probabilistic nature of the model allows a continuous
sampling in the conformational space and therefore is able to cover all the relevant conforma-
tions, as is difficult for fragment assembly methods or our previous one based on a discrete-
state model [24, 29]. Second, by adjusting the probabilistic functions in the model, we are able
to deliberately enhance the sampling in a specific phase space. Third, the coarse-grained model
further increases the efficiency, making it possible to deal with large RNAs. We name this new
approach as RNApps, short for RNA structure Prediction with a Probabilistic Sampling strat-
egy. We test this approach with a benchmark set including nine loops, a 23S ribosomal RNA,
and a non-redundant RNA 3D structure dataset containing 876 RNAs [30]. We also compare
the performance of our approach with other predictors.

Methods

The coarse-grained RNAmodel
The atomistic structure of an RNA is defined by seven torsional angles, as illustrated in Fig 1A.
However, the usage of such an all-atom model is expensive for structure modeling, particularly
when high-throughput structure prediction is needed. In our approach, an RNA molecule is
described by a CG model that includes a virtual bond model for the backbone and a reduced
model for the nucleobases. The virtual bond model can be traced back to Olson [31], where the
RNA backbone includes only two types of atoms, i.e., P and C4’. The model has been used in
much work [32–35] and is also used here to describe the RNA backbone. For the representation
of the RNA bases, three beads are used, including the atoms N1 and C2 in the purine (or
pyrimidine) ring, and a virtual bead Bc (short for base center) at the geometric center of the
six-membered ring containing atoms N1, C2, N3, C4, C5, and C6. In total there are five beads
for each nucleotide in the CG model.

In the current model all the bond lengths and bond angles are fixed. Five torsional angles
are defined based on the CG model, including θ, η, μ, ϕ, and ω, as illustrated in Fig 1B. Note
that in the implementation there are actually two sets of such angles used for the purpose of
growing RNA chains. The first set is defined in a “forward” way, i.e., from the 5’-end of the
RNA to its 3’-end; and the other is defined in a “reverse” way, i.e., from the 3’-end to the 5’-
end. These two sets are denoted by the subscript “+” and “−”, respectively. More specifically,
from the 5’-end to the 3’-end, θ+ is calculated as the torsional angle formed by Pi-C4’i-Pi+1-C4’i
+1, η+ by C4’i-Pi+1-C4’i+1-Pi+2, μ+ by C4’i-Pi+1-C4’i+1-Bci+1, ϕ+ by Pi+1-C4’i+1-Bci+1-N1i+1, and
ω+ by C4’i+1-Bci+1-N1i+1-C2i+1; from the 3’-end to the 5’-end, θ- is calculated as the torsional
angle formed by C4’i+1-Pi+1-C4’i-Pi, η- by Pi+2-C4’i+1-Pi+1-C4’i, μ- by C4’i+1-Pi+1-C4’i-Bci, ϕ- by
Pi+1-C4’i-Bci-N1i, and ω- by C4’i-Bci-N1i-C2i.

Once all the torsional angles along the RNA chain are known, the tertiary structure of the
RNA molecule can be built in a “growing” way by calculating the coordinates of the to-be-
grown nucleotide based on the values of the torsional angles and the previously grown nucleo-
tides. The growing process is realized in both the “forward” way and the “reverse” way, to take
advantage of the position constraints as much as possible.

The probabilistic way of generating torsional angles
In the five torsional angles defined above, only three are independent, i.e., θ, η, and ϕ. This is
because μ is linearly dependent on η (if grown in a forward direction) or θ (if grown reversely),
and ω is approximately linearly dependent on ϕ, as supported by the statistics given in Fig 2
and S1 Table. The statistics are based on the RNA09 database compiled by Murray and co-
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workers by applying quality-filtering techniques (using resolution, crystallographic B factor,
and all-atom steric clashes) to the backbone torsional angle distributions from a large RNA
database [36]. Based on the above results the task of growing an RNA structure is reduced to
determining the three torsional angles θ, η, and ϕ, and it is done in an iterative and probabilistic
way, as illustrated in Fig 3. For example, if we are growing a loop from the 5’-end to the 3’-end,

for a given yiþ, the value of Z
i
þ can be obtained probabilistically from the conditional probability

pðZþjyþ ¼ yiþÞ. Similarly, the value of �i
þ can be calculated from the just obtained Ziþ and the

conditional probability pð�þjZþ ¼ ZiþÞ. The value of yiþ1

þ of the next nucleotide can be obtained
from Ziþ and pðyþjZþ ¼ Zi

þÞ, so on and so forth. The loop may also be grown in a reverse direc-
tion, i.e., from the 3’-end to the 5’-end, and the procedure is similar but with a different set of
conditional probabilities defined in a reverse way.

The conditional probabilities are calculated from the loop structures in the RNA09 database.
Before the calculation, we first strip the helices in the structures. If two consecutive base pairs
are formed, they are determined to be a helix. Three types of base pairs are considered, includ-
ing A-U, G-C, and G-U. Take p(η+|θ+) as an example. We first calculate all the (θ+,η+) pairs in

Fig 1. Schematic representation of all-atom and CGmodel for RNA. (A) Seven torsional angles of an
RNAmolecule. (B) Five torsional angles defined in the coarse-grained model in this work. The relevant four
beads for each torsional angle are shown on the top left.

doi:10.1371/journal.pcbi.1005032.g001
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the loops in the database and plot the data points in a two-dimensional surface, as shown in
Fig 4A. We then equally divide both torsional angles into K bins and calculate the conditional
probability numerically as follows

pðZþðjÞjyþðiÞÞ ¼
nij

Ni

ði; j ¼ 1; 2; . . . ;KÞ; ð1Þ

where θ+(i) and η+(j) are the center of the i-th and j-th bins, respectively, Ni is the number of
data points with their θ+ values falling into the i-th bin, and nij is the number of data points

Fig 2. Linear relationship y = kx + b between (A) η+ and μ+, (B) θ- and μ-, (C) ϕ+ andω+, (D) ϕ- andω- for
four types of nucleotides. The unit is degree. Different regions in (C) and (D) show different linear
correlations, indicated by the thick lines. The coefficients k and b are given in the parentheses and also listed
in S1 Table for clarity. Notice: in some cases the dihedral angles are deliberately extended beyond 360° to
facilitate the linear fitting process. They will be mapped back to the range [0°, 360°) during their actual usage.

doi:10.1371/journal.pcbi.1005032.g002

Fig 3. Flowchart showing how the torsional angles are determined probabilistically in a “forward”
way, i.e., from the 5’-end to the 3’-end.

doi:10.1371/journal.pcbi.1005032.g003
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with their θ+ values falling into the i-th bin and η+ falling into the j-th bin simultaneously. K is
set to 72, and thus the bin width is Δ = 360°/K = 5°. The other conditional probabilities are sim-
ilarly calculated. The conditional probabilities between η+ and θ+ and between ϕ+ and η+ are
shown in Fig 4B and 4C, respectively. The latter are classified into four types according to the
nucleotide to which ϕ+ belongs, while the former are not. This is because one (θ, η) pair
involves two nucleotides and thus there are 16 types of dinucleotides; to classify the data into
16 types will lower the statistical quality since the number of data is limited.

Structure growth with a sequential Monte Carlo method
Based on the probabilistically generated torsional angles, we build the CG structure of RNA
loops/fragments by adding nucleotides one by one on the previously grown nucleotides with a

Fig 4. Conditional probabilities between different pairs of torsional angles. (A) Distribution of the raw
data of the consecutive θ+ and η+ torsional angles in loops obtained from RNA09 database. (B) The
conditional probability distribution of p(η+|θ+) and p(θ+|η+). (C) The conditional probability distribution of p(ϕ+|
η+). Note that the distributions are dependent on the type of the nucleotides, while in p(η+|θ+) and p(θ+|η+)
such dependence is ignored approximately. See the discussion in the text.

doi:10.1371/journal.pcbi.1005032.g004
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sequential Monte Carlo (SMC) method [37], which is employed to prune the growing tree and
bias the conformations to those having low energies and satisfying specific constraints. The
constraints may include the excluded volume effect, the requirement of chain connectivity,
experimental information, etc. The specific algorithm is similar to that used in our previous
works [24, 29, 32, 38–41], but is improved here by growing the chain in two directions
alternatively.

Specifically, for a loop sequence X1 X2� � �Xn whose structure is to be predicted, we grow it
alternatively in two directions in 3D space from two anchor nucleotides to which this loop is
attached. The algorithm also works if there is only one anchor, which happens when the loop is
at one end of the RNA. To be more specific, for the i-th nucleotide to be grown, we randomly
determine D = 10 possible positions of attaching it to the (i − 1)-th nucleotide (if grown in a
forward way) by probabilistically generating the corresponding θ, η, and ϕ values based on the
algorithm described in Fig 3 and the conditional probabilities exemplified in Fig 4. In order to
increase the success rate of connecting the growing loop to the anchor nucleotide, we exclude
the newly grown nucleotide whose P atom is farther from the P atom in the target anchor than
a threshold, which is related to the number of nucleotides between these two nucleotides. This
early pruning of the unlikely partial chain will also save a lot of computational time. After
appending the D random configurations, we obtain a total of N = L × D partial chains, where L
is the number of chains before the growth of the i-th nucleotide. If N is greater than a threshold
M, we do a resampling procedure by randomly choosingM partial chains out of N with the
probability of choosing them-th one proportional to exp(−Em/RT1), otherwise we keep all the
N chains. Here Em is the statistical energy of them-th partial chain that will be described later.
The temperature T1 is used to control the relative probabilities between the candidates and RT1
is set to 300 RASP energy unit.

The above procedure works for a single chain. For internal loops or multi-way junction
loops with more than one chain, the procedure is similar. Take three-way junction loop as an
example. We first buildM conformations for the first chain using the SMC method described
above. Next for each inM conformations, we grow D conformations for the first nucleotide in
the second chain and perform resampling to selectM conformations out of N =M × D ones.
We repeat these steps for the rest nucleotides in the second chain and then for the third chain.
Finally we getM chains after the whole three-way junction loop is built.

The parametersM and D are chosen as a compromise between the accuracy and efficiency
of the SMC algorithm. A large value increases the accuracy while deteriorates the efficiency,
whereas a small value does the opposite. We useM = 80 and D = 20 for reasonable run time.
These values are the default in this work unless otherwise stated.

Further optimization with FRESS and simulated annealing
The growth procedure based on sequential Monte Carlo givesM structural candidates with low
energies. These structures are further optimized with simulated annealing (SA) [42, 43]. Dur-
ing the SA procedure, we adopt the FRESS method (fragment regrowth via energy-guided
sequential sampling) developed by Zhang et al. [44] to update the structures. In detail, for each
amongM structural candidates,

1. for a loop of length n, we randomly generate a positive integer l within lmax = min{6, n} with
Poisson distribution λle-λ/l! where λ = 3;

2. with a uniform probability we randomly choose a nucleotide-i between the first and the
(n − l + 1)-th nucleotide, and then delete the fragment of length l starting from nucleotide-i;
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3. this fragment is regrown following the sequential Monte Carlo procedure described above,
and the new fragment with the lowest energy is selected out ofM ones as a candidate to
replace the deleted one;

4. a Metropolis criterion is then used to determine whether the new fragment is accepted or
not; specifically, the probability is calculated as min{1, exp[(Eold − Enew)/RT2]}, where Eold
and Enew are the energies of the deleted and regrown fragments, respectively; T2 = l � T3 is
the controlling temperature proportional to the regrown loop length l, since the strength of
interactions needed to break to escape from local minima increases with loop length; if the
newly grown fragment is accepted, the new conformation of the whole loop is recorded for
following cluster analysis;

5. the above procedures (i) to (iv) are repeated 50 times at each temperature T3 while RT3 is
lowered linearly with cooling rate 0.8 from 100 to the lower bound 10 RASP energy unit;

6. the recorded structures during SA process are clustered using g_cluster command in soft-
ware Gromacs with gromos cluster method [45] and cutoff 2.5 Å; the structure at the center
of the largest cluster is used to evaluate the performance of the approach and make compari-
sons with the other methods.

The statistical energy function
In both the SMC and SA procedures, we adopt the Ribonucleic Acids Statistical Potential
(RASP) developed by Capriotti et al. [46]. In brief, RASP is an all-atom knowledge-based or
statistical potential derived from a non-redundant set of 85 RNA structures. The statistical
energy is calculated as a function of atom types, distance and sequence separation. It also
includes a representation for local and non-local interactions in RNA structures. The threshold
of sequence separation used to differentiate these two interactions is optimized with informa-
tion theory. The base pairing and base stacking interactions are implicitly incorporated in the
potential. More details of the RASP potential can be found in the reference [46]. The reason for
choosing RASP over the other all-atom energy functions such as AMBER force field is multi-
fold. First, it is a statistical potential and therefore more consistent with the statistical model
developed here. Second, according to the authors RASP performs better than ROSETTA FAR-
FAR force field in the selection of accurate models. Third, it is easier to be incorporated into
our C++ code.

Since RASP is an all-atom statistical potential, the corresponding all-atom structures of the
CG conformations generated by our approach need to be reconstructed. The procedure is as
follows. Based on the atoms of the nucleobases, namely N1, C2, and Bc, the coordinates of the
heavy atoms in the nucleobases are calculated with the pre-built templates taken from the
RNA09 database. There are four such templates, built for A, U, G, and C, respectively. The
coordinates of atoms in the backbone are calculated based on the coordinates of the atoms P,
C4’, and N1 (in the bases of U and C) or N9 (in the bases of A and G) with a pre-built template.
After the reconstruction we check if there are steric clashes between atoms. If any clash is
found, the structure is discarded.

Results

Testing performance with a nine-RNA dataset
Here we test our approach and compare it with two other RNA tertiary structure predictors,
i.e., RLooM [47] and iFoldRNA [13, 14], and also with RNAnbds [29], which was developed
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previously in our lab. RLooM is based on homology modeling and utilizes template structures
extracted from a PDB database. iFoldRNA represents an ab initio way of prediction based on
physical interactions and discrete molecular dynamics (MD) simulation. These two are selected
to represent two very different strategies of structure prediction in the field. The testing set that
appears in the original RLooM paper [47] is used for the comparison. This set contains 9 RNA
loops with their length ranging from 6 to 17-nt. For RLooM, the RMSD values of the predicted
loops with respect to the experimental ones were directly taken from the RLooM paper [47].
For iFoldRNA, they were obtained by feeding to the iFoldRNA-v2 server the whole sequences
plus the corresponding base pairing information as constraints [14]. For RNApps, the input
includes the whole sequence and the structure other than the loops. The output is the center of
the largest cluster calculated from the trajectory of the SA simulation, as described in the Meth-
ods section. For a fair comparison, the RMSDs of the reduced backbones (P, O5’, C5’, C4’, C3’,
and O3’ atoms) given optimal superposition with the experimental ones are calculated, follow-
ing the same methodology as in RLooM and iFoldRNA. For the comparison with our previous
RNAnbds, the RMSDs of all heavy atoms are used. The results are summarized in Table 1.

In the first part of the table, RNApps is compared with RLooM and iFoldRNA. It can be
seen that for this specific testing set, RNApps performs comparably with RLooM or slightly
worse in a few cases. This is normal since the homology modeling based predictors usually per-
form better than those based on energy rules. However, such predictors are sensitive to the test-
ing set. For example, we tested RLooM with 28 fragments of length of 8-nt taken from the
RNA pseudoknot 1E95 and found that RLooM failed for all of them. The reason is that there
are no homological partners of this RNA in the RLooM database. In contrast, our method
guarantees to give a reasonable prediction (data shown in S1B Fig). The comparison with
iFoldRNA shows that RNApps gives smaller RMSDs in seven out of nine RNAs, and slightly
larger RMSDs in two cases. Therefore, for this testing set taken from the third party (the
RLooM paper), our method shows a better performance than iFoldRNA. However, it is also
worth mentioning that iFoldRNA is not only a structure predictor, but also can be used for
studying folding dynamics as a result of the employed molecular dynamics simulation.

We then compare RNApps with our previous RNAnbds. It can be seen that the new
approach has a considerably better performance, giving smaller RMSDs for seven out of nine
loops and two larger RMSDs. The improvement is mostly attributed to the feature that
RNApps is able to sample the structural space in a continuous way, while RNAnbds is based on
a discrete-state RNA model and thus unable to reach some structural regions. The different
energy functions employed may also contribute. In Table 1 we also give the RMSDs of heavy

Table 1. Compare the performance of four methods with nine RNA loops.

PDB ID 1EVV 1EVV 1EVV 1L2X 1Q8N 1Q9A 1RMN 2CKY 2F88

loop 13–22 30–40 53–61 7–14 14–19 6–22 16–21 26–36 23–27

RLooMa 0.98 0.69 0.90 0.75 2.05 1.05 1.71 0.38 1.34

iFoldRNAa 3.7 3.95 4.58 4.1 1.72 6.04 1.66 4.01 1.83

RNAppsa 3.01 0.89 1.74 2.46 0.84 7.73 1.00 6.50 1.54

RNAnbdsb 5.6 3.5 4.8 3.7 2.0 7.6 1.7 5.6 3.0

RNAppsb 4.69 1.27 3.30 4.51 1.54 7.33 1.32 7.92 2.26

RNAppsc 5.28 1.84 3.80 4.67 1.92 8.63 1.39 10.68 2.37

a RMSD of reduced backbone trace after optimal superposition with the experimental RNA loop.
b RMSD of heavy atoms after optimal superposition with the experimental loop.
c RMSD of heavy atoms after optimal superposition of the anchors. The unit is angstrom.

doi:10.1371/journal.pcbi.1005032.t001
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atoms calculated after optimal superposition of the anchors—the predicted and the experimen-
tal loops themselves are not superimposed. These RMSDs characterize how well the relative
positions of the loops with respect to their environment are reproduced. It can be seen that the
RMSDs are only slightly larger than those calculated after optimal superposition of the loops,
indicating that this performance is good.

In Fig 5 we superimpose the predicted structures with the experimental ones for the nine
RNAs to make a visual comparison. Since the approach actually predicts a structural ensemble,
for each sequence we also show the largest cluster to which the predicted structure belongs. It
can be seen that for seven out of nine loops, the predicted structures are similar to their corre-
sponding experimental ones. As for the structural feature of the cluster, the trends of the back-
bones correlate well with each other, while the bases are somehow dynamic if they do not form
base pairs.

The loops in 1Q9A and 2CKY (Fig 5F and 5H) are exceptional. In 1Q9A the concerned
loop is known as the bulged-G motif, which is a ubiquitous loop and provides specific recogni-
tion sites for proteins and RNAs [48]. More specifically, it is an essential part of the binding
site for elongation factors in Escherichia coli 23S ribosomal RNA. In this motif, one strand
forms a kink so that the bulged-G can form a base triple by non-canonical interactions, permit-
ting interstrand, but disrupting intrastrand stacking. The kink in one strand, together with the
S-turn in the opposite strand, appears to make the motif amphipathic, with one surface more
polar and ready for interacting with positive patches on proteins or a divalent metal ion, and

Fig 5. Superposition of the predicted and the experimental structures of nine loops, shown in the
same order as in Table 1. The red cartoons represent the experimental conformations. For each loop, the
light-blue and semi-transparent cartoons are the first 20 structures in the largest cluster, whose central
structure is shown by the green cartoon. The magenta cartoons mark the anchor nucleotides.

doi:10.1371/journal.pcbi.1005032.g005
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the other surface less polar and suitable for making RNA-RNA contacts [48]. The above fea-
tures indicate that this motif is highly optimized for binding its partners, which should be con-
sidered when making structure predictions. The RNA 2CKY, which is a riboswitch specifically
recognizing the thiamine pyrophosphate, has a similar situation [49]. The loop shown in Fig
5H is in a highly distorted region that binds its ligand. These results suggest that, the consider-
ation of the binding partners, if they have, is necessary for a correct prediction of the tertiary
structures of RNAs.

Testing performance with a ribosomal RNA
Our approach can also be used for reconstructing a missing RNA fragment, in addition to a
single loop. The fragment can be a mixing of helical and loop regions. Here we show its perfor-
mance with a 23S ribosomal RNA (PDB ID 1FFK) [50] consisting of about 3,000 nucleotides.
In total we make 105 tests, and in each test we delete one fragment of length N and then recon-
struct its tertiary structure, pretending that the fragment is missing in the RNA structure. The
fragments are chosen every S nucleotides along the sequence, where S is set to 25 so that the
fragments are uniformly distributed in the whole RNA. The length N can be 5, 8, and 10, and
the percentage of nucleotides in the helical region in the 105 fragments is 36%, 39%, and 39%,
respectively. According to Fig 6, the percentage of RMSDs smaller than 4 Å is 76.2%, 71.4%,
and 56.2% for the fragments of length 5, 8, and 10, respectively. The average RMSDs in the
three cases are 2.55 Å, 3.23 Å, and 3.97 Å, respectively.

Further testing with a large dataset
We further test our approach with a much larger dataset—RNA 3D Hub [30]. It contains 876
non-redundant RNAs (release ID 1.89), including all types of base-pairing, base-stacking, and

Fig 6. Distribution of RMSDs of 105 fragments in 1FFK of different length (5-, 8-, and 10-nt). For each
fragment, the central structure of the largest cluster was taken as the predicted structure. The RMSDs are
calculated based on heavy atoms after optimal superposition of the predicted structures with the
experimental ones. The pie charts show the proportions of RMSDs within certain ranges indicated by the
labels; from top down they correspond to the fragments of length 5, 8, and 10, respectively.

doi:10.1371/journal.pcbi.1005032.g006
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base-backbone interactions. Out of this dataset we select 1768 hairpin loops, 1649 internal
loops, 230 three-way junction loops and 113 four-way junction loops. We then delete these
loops from the molecules and reconstruct them following the procedure described in the Meth-
ods section. For each loop, the structure at the center of the largest cluster is taken as the pre-
dicted structure.

In Fig 7 we show the RMSDs of the predicted structures with respect to the experimental
ones as a function of loop length. Overall, for hairpin loops, internal loops, and three-way junc-
tion loops, the RMSDs increase gradually as the loop length increases. The average RMSDs are
around 4 Å for hairpin loops of length smaller than 10-nt and increase from 5 to 9 Å for loops
of length from 10- to 20-nt. For even longer loops, the average RMSDs are around 11 Å. For
internal and three-way junction loops, the performance is better than that for hairpin loops, as
may be attributed to the increased number of anchor nucleotides in these cases. For four-way
junction loops, the average RMSDs undergo large fluctuations, due to the relatively smaller
number of such loops in the dataset. The average RMSDs generally range from 3 Å to 6 Å for
loops of length smaller than 20-nt.

In Fig 8 we show two examples for each one of four cases for visual comparison—one exam-
ple has a medium loop length (9-nt) and one has a long loop length (17-nt). The loops with
their RMSDs close to the average (marked by the red dots near the red lines in Fig 7) are
selected, so that they are most representative. For the eight cases shown here, six loops are pre-
dicted with a reasonable accuracy, with RMSDs around 4 Å. Visual inspection of the figures
shows that, the backbones of the predicted structures match those of the experimental ones,
while the bases are somehow dynamic (e.g., Fig 8A and 8C).

Two loops are less well predicted. The loop shown in Fig 8B is an essential part of the bind-
ing site for elongation factors in rat 28S rRNA. The RMSD between the predicted structure and
the experimental one is 6.46 Å. This relatively large value is due to the failure of reconstructing
the bulge-G motif, similar to the case discussed in Fig 5F.

The loop of length 17-nt shown in Fig 8H belongs to a four-way junction, locating at the
surface of a large ribosomal RNA. The loop is formed by four sub-loops of length 2-, 3-, 3-, and
9-nt, respectively. The RMSD between the predicted structure and the experimental one is 5.17

Fig 7. Violin plot of the RMSDs as a function of loop length for four types of loops in the dataset RNA
3D Hub. The red lines denote the mean RMSDs between predicted structures and experimental structures.
The green body of each violin represents a kernel density estimation of the RMSD distribution. The histogram
on the top of each figure gives the loop length distribution in the dataset. Figures (A), (B), (C), and (D)
correspond to 1768 hairpin loops, 1649 internal loops, 230 three-way and 113 four-way junction loops,
respectively. RMSDs are calculated based on heavy atoms after optimal superposition of the predicted
structures with the experimental ones. The loops exemplified in Fig 8 are drawn as red dots and labeled from
A to H.

doi:10.1371/journal.pcbi.1005032.g007
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Å. In the experimental structure, the longest sub-loop forms little interaction with the other
three ones and extends out into the solvent. The prediction well reproduced a conformation
with this kind of characteristics. The largest deviation between prediction and experiment is in
the 2-nt sub-loop G612-A613 and 3-nt sub-loop G647-A648-G649, where A613 and A648 are
both in a sharp turn and form a stacking interaction with A668 and A638, respectively.

Discussion
In this work we develop an approach named RNApps specifically designed for loop structure
prediction. The approach includes a probabilistic coarse-grained RNA model, a sequential
Monte Carlo growth algorithm, a simulated annealing procedure and an all-atom statistical
energy function.

We tested the approach with a set of nine RNA loops, a 23S ribosomal RNA, and a large
RNA dataset containing 876 RNAs (RNA 3D Hub, release ID 1.89). For the testing set includ-
ing nine RNA loops, six loops can be predicted with good accuracy (RMSD< 2.5 Å), one loop
has an RMSD of 3.01 Å and two have RMSDs around 6-7 Å. We compared the results with a
homology modeling based predictor RLooM and an ab initio predictor iFoldRNA. It was
found that RNApps performs comparably with RLooM while considerably better than

Fig 8. Superposition of the predicted and the experimental structures for four types of loops. The
experimental structures are colored red, the predicted loops are green, and the first 20 structures in the
largest cluster are colored light-blue and semi-transparent. The anchor nucleotides are colored magenta. (A)
to (H) correspond to the data points of the same labels shown in Fig 7. (A)(B) are hairpin loops, (C)(D) internal
loops, (E)(F) three-way junction loops, (G)(H) four-way junction loops. The loop length and RMSD are as
follows: (A) 9 nt and 4.21 Å, (B) 17 nt and 6.46 Å, (C) 9 nt and 3.81 Å, (D) 17 nt and 3.76 Å, (E) 9 nt and 4.51
Å, (F) 17 nt and 4.34 Å, (G) 9 nt and 3.96 Å, (H) 17 nt and 5.17 Å.

doi:10.1371/journal.pcbi.1005032.g008
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iFoldRNA. However, we also noted that RLooM cannot guarantee a return of valid structures
for some targets, due to the lack of their homology information in the database. In contrast,
RNApps and iFoldRNA guarantee a result, and iFoldRNA can also be used for studying the
folding dynamics. The tests with a ribosomal RNA showed that the average RMSD is 2.55 Å,
3.23 Å, and 3.97 Å for the rebuilt fragments of length 5-, 8-, and 10-nt, respectively. The tests
with RNA 3D Hub showed that the average RMSDs for hairpin loops are around 4 Å and
increase slightly with the loop length. The performance for internal loops, three-way and four-
way junction loops is even better than that for hairpin loops, mostly due to the increased num-
ber of anchor nucleotides. Further analysis showed that although most RNA loops are pre-
dicted with good accuracy, some ones with non-canonical base pairs, base triples, or rare
torsional angles are reproduced with a lower quality.

We note that our approach in it current form does not perform considerably better than
the other predictors and even slightly worse than the homology modeling based one. How-
ever, our approach has many unique and promising features. First, it is not only designed for
predicting structures of hairpin loops, but also for internal loops, three-way and four-way
junction loops and even complex cases. One motivation is that many predictors have been
designed to predict the relative position and orientation of the helices of an RNA molecule,
however, less attention was paid to the construction of the loops connecting the helices. This
makes our work necessary. Second, the efficiency of our approach is high. With the parame-
ters used in this work, a prediction of loop with medium length takes several minutes without
SA optimization or several tens of minutes with SA optimization. For example, the computa-
tional time for the longest loop (26-nt) in three- and four-way junctions is approximately one
hour. This efficiency is much higher than that of most MD based algorithms and the
approach is free from the problems associated with homology modeling based methods. The
efficiency will be further improved by optimizing the SMC and SA algorithms. Third, the
probabilistic and continuous nature of the approach guarantees the sampling of all the rele-
vant phase space in principle, and allows a dynamic adjustment between accuracy and effi-
ciency, which can be determined by users based on their own computational capacity. Fourth,
the SMC framework of the approach makes the incorporation of constraints very easy. The
constraints may be the experimental information of atomic distance, base pairs or base stack-
ing, or information from users’ experience. With the introducing of such information, the
sampling space can be greatly reduced and both accuracy and efficiency will be significantly
improved. The way of incorporation of constraints into the SMC framework can be found in
previous work [41]. We believe our approach is useful for predicting the tertiary structure of
RNA loops.

We also noticed that there are two recent works in protein loop predictions that are similar
to ours. In the first one, Tang et al. developed an approach named DiSGro based on sequential
Monte Carlo method [51], which is the same as ours. With this approach, they are able to effi-
ciently generate high quality protein loop conformations. The average minimum global back-
bone RMSD for 1,000 conformations of 12-residue loops is 1.53 Å, with a lowest energy RMSD
of 2.99 Å, and an average ensemble RMSD of 5.23 Å. In the second work, the same authors
upgraded their approach for the prediction of conformations of multiple interacting loops in
proteins [52]. For the most challenging target proteins with four loops, the average RMSD of
the lowest energy conformations is 2.3 Å. One novel feature of the approach is the simulta-
neous construction of multiple loops, making it less likely to over-sample conformations in cer-
tain local energy minima. This idea is naturally compatible with the framework of our
approach and can be easily incorporated into it. We believe their approaches and ours can bor-
row ideas from each other and then improve the performance of both.
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Supporting Information
S1 Fig. Tertiary structure prediction for fragments in the RNA pseudoknot 1E95. (A) Sec-
ondary structure of pseudoknot 1E95. (B) shows the RMSDs of predicted structures for all frag-
ments of length 5, 8, and 10 in 1E95. The x-axis stands for the index of the first nucleotide of
the tested fragment.
(EPS)

S2 Fig. To estimate as to what percentage of genomic loop regions have no sequence homo-
logs to structural templates, we calculated a quantity termed similarity probability for
loops in the nine-loop testing set. For each loop (denotes as p) in the nine-loop testing set, the
quantity termed similarity probability is defined as the number of (θ,η) pairs in the loops of the
same sequence as p in the templates over the total number of (θ,η) pairs in all the loops in the
templates. As shown in the figure, the similarity probabilities are all less than 0.5%. Therefore,
the presence of homologs has minimal effect on the conditional probability and hence the final
prediction results.
(EPS)

S1 Table. Values of coefficients k and b in Fig 2, the corresponding RMSE (root mean
squared error) and domains.
(PDF)
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