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Pseudogenes were originally regarded as non-functional components scattered in the
genome during evolution. Recent studies have shown that pseudogenes can be
transcribed into long non-coding RNA and play a key role at multiple functional levels
in different physiological and pathological processes. microRNAs (miRNAs) are a type of
non-coding RNA, which plays important regulatory roles in cells. Numerous studies have
shown that pseudogenes and miRNAs have interactions and form a ceRNA network with
mRNA to regulate biological processes and involve diseases. Exploring the associations of
pseudogenes and miRNAs will facilitate the clinical diagnosis of some diseases. Here, we
propose a prediction model PMGAE (Pseudogene–MiRNA association prediction based
on the Graph Auto-Encoder), which incorporates feature fusion, graph auto-encoder
(GAE), and eXtreme Gradient Boosting (XGBoost). First, we calculated three types of
similarities including Jaccard similarity, cosine similarity, and Pearson similarity between
nodes based on the biological characteristics of pseudogenes and miRNAs.
Subsequently, we fused the above similarities to construct a similarity profile as the
initial representation features for nodes. Then, we aggregated the similarity profiles and
associations of nodes to obtain the low-dimensional representation vector of nodes
through a GAE. In the last step, we fed these representation vectors into an XGBoost
classifier to predict new pseudogene–miRNA associations (PMAs). The results of five-fold
cross validation show that PMGAE achieves a mean AUC of 0.8634 and mean AUPR of
0.8966. Case studies further substantiated the reliability of PMGAE for mining PMAs and
the study of endogenous RNA networks in relation to diseases.
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INTRODUCTION

In mammalian genomes, only about 1–2% of genes encode proteins (Carninci et al., 2005). The
remaining parts involve non-coding RNAs, including pseudogenes, long non-coding RNAs
(lncRNAs), and miRNAs. Pseudogenes usually refer to DNA sequences similar to genes but lack
coding function in the genome. However, there is increasing evidence showing that pseudogenes can
be transcribed into non-coding RNAs and become important regulators in organisms, especially in
human cancer (Ma et al., 2021). Some of them may be potential therapeutic targets (Shi et al., 2015).
The study of pseudogenes may help the diagnosis or clinical treatment of cancer. miRNAs are short
non-coding RNAs between 19 and 25 nucleotides in length, accounting for about 3% of the genome
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(Setoyama et al., 2011). miRNAs regulate gene expression by
acting on mRNAs to affect many developmental processes and
the occurrence of diseases (Plank, 2014; Santulli, 2015; Liu Z.
et al., 2016). On the other hand, miRNAs can be used as
biomarkers for the objective evaluation and diagnosis of
tumors (Ruan et al., 2009; Zhang et al., 2012; Stiegelbauer
et al., 2014).

Pseudogenes and miRNAs are important components of the
competing endogenous RNA (ceRNA) network (Karreth et al.,
2015). ceRNAs can regulate gene expression by competing with
miRNAs to construct a ceRNA network (Salmena et al., 2011;
Rutnam et al., 2014). The ceRNA network can be understood as a
balancing mechanism regulating cell activities at the RNA level.
Exploring molecular associations in the ceRNA network helps in
finding more biological mechanisms at the RNA level. It is
important to study various associations in the ceRNA network
but this process is often time-consuming and it can be laborious
to study the associations by wet experiments. Various
computational methods have been developed accordingly.

Currently, non-coding RNA associations in the ceRNA
network have been predicted by diverse machine learning
methods, which mainly fall into three categories. The first
category is based on matrix factorization (MF). MF extracts
features by decomposing the input matrix into the product of
two or more low-rank matrices. For instance, Zhang et al.
proposed a graph-regularized generalized matrix factorization
model for predicting a variety of biomolecular interactions
(Zhang et al., 2020). Chen et al. and Xu et al. predicted the
miRNA–disease associations based on the probability matrix
decomposition and inductive matrix completion, respectively
(Chen et al., 2018; Xu et al., 2019). Zheng et al. and Liu et al.
respectively introduced methods based on collaborative matrix
factorization and neighborhood-regularized logistic matrix
factorization to predict drug–target interactions (Zheng
et al., 2013; Liu Y. et al., 2016). The second category is
based on graph embedding. The known associations are
learned by the graph embedding method to obtain the
behavior information of nodes, and then the characteristics
are fused with the characteristic information of nodes, and
then the classifiers use node features to predict results. Ji et al.
predicted miRNA–disease associations based on the GraRep
embedding model (Ji et al., 2020). Song et al. predicted
lncRNA–disease associations based on the DeepWalk
embedding model (Song et al., 2020). The third category is
based on deep learning, among which the most representative
method is the graph convolution network (GCN). The GCN is
an end-to-end learning model that can deeply integrate the
feature information and topological relationship of nodes in
the network. Fu et al. proposed a deep learning model based on
the multi-view GCN to predict multiple molecular associations
(Fu et al., 2021). Xuan et al. and Long et al. proposed GCNLDA
and GCNMDA based on the GCN to predict lncRNA–disease
associations and microbe-drug associations, respectively
(Xuan et al., 2019; Long et al., 2020).

Although pseudogenes play an important role in the ceRNA
network, the computational study of associations between
pseudogenes and miRNAs is under-developed. Here, we

presented a method predicting pseudogene–miRNA
associations (PMAs) based on feature fusion and GAE.
Given there are many prediction models that can accurately
predict lncRNA–miRNA associations, we proposed that the
role of pseudogenes is comparable to that of lncRNAs in the
ceRNA network. Thus, the expression level can be used as the
node feature for pseudogenes as the methods focus on
lncRNAs. We fused the node features into the
pseudogene–miRNA network and predicted PMAs by a
computational method. To the best of our knowledge, this
is the first attempt at PMA prediction. The model achieves the
mean area under the ROC curve (AUC) and mean area under
the precision–recall curve (AUPR) of 0.8634 and 0.8966,
respectively. The experimental results confirmed PMGAE-
predicted potential PMAs. We also demonstrated the
performance of PMGAE through a series of comparative
experiments. Together, PMGAE is a powerful and reliable
method for the prediction of PMAs as an important
component of the ceRNA network.

MATERIALS AND EQUIPMENT

Datasets
We downloaded known PMAs from starBase v2.0 (Li et al., 2014),
a large miRNA database that includes the association between
miRNAs and lncRNAs and their associations with mRNAs,
pseudogenes, and proteins. dreamBase (Zheng et al., 2018) is a
database containing massive pseudogene information, including
the associations between pseudogenes and the transcription
factor (TF), the connection with RNA-binding protein (RBP),
and the expression level of pseudogenes in various normal tissues
or cancer tissues. We obtained the expression level of
pseudogenes in various tissues as the characteristic
information of pseudogenes. miRBase (Kozomara et al., 2019)
is a comprehensive miRNA sequence database, which contains
miRNA sequence information. We obtained the
miRNA sequence as the characteristic information of miRNAs
from it.

Data Preprocessing
After quality checking and filtering the obtained data, the
dataset comprises the expression information of 444
pseudogenes, the sequence information of 173 miRNAs, and
1,884 pairs of pseudogene–miRNA associations. In addition,
considering the independence of the testing set used in the case
study, we firstly divided all association pairs into two parts.
One is used for model training, and the other is used for the
case study.

miRNA sequences are composed of four types of nucleotides:
A, adenine; G, guanine; C, cytosine; U, uracil. We set k in k-mer to
3, and each miRNA sequence can be represented as a 64 (4 × 4 ×
4)-dimensional vector, where each dimension can represent the
frequency of each 3-mer sequence in the sequence. For example,
in the miRNA sequence “AGGUUCCAGG,” p (“AGG”) � 2/
(10−3+1). For the pseudogenes, we normalized the expression
level of pseudogenes as their characteristics.
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For the PMAs, we construct a 444 × 173 PMA matrix and put
the known PMAs into the PMA matrix. If the ith pseudogene is
associated with the jth miRNA, then let PMA(i, j) � 1;
otherwise, let PMA(i, j) � 0.

METHODS

PMGAE Overview
PMGAE is composed of three steps, as shown in Figure 1. In step
Ⅰ, we calculated and fused the biological characteristics of
pseudogenes and miRNAs to obtain the similarity profiles as
their features. In step Ⅱ, we obtained the low-dimensional
representation vector of nodes by a GAE based on the feature
information and association information of existing nodes. In
step Ⅲ, we fed the low-dimensional vector into XGBoost to
predict the PMAs.

Feature Fusion
We computed the Jaccard similarity coefficient, cosine similarity
coefficient, and Pearson similarity coefficient based on the
respective characteristics of pseudogenes and miRNAs. We
calculated Gaussian kernel similarity based on PMAs to
replace the zeros in the matrix (Chen, 2015). Eventually, we
generated the pseudogene similarity (PS) profile of 444 × 444 in
dimension and the miRNA similarity (MS) profile of 173 × 173 in
dimension. Jaccard similarity, cosine similarity, and Pearson
similarity can be calculated as follows:

Jaccard(X,Y) � X ∩ Y

X ∪ Y
,

Cos(x, y) � ∑n

k�1xkyk�������∑n

k�1x
2
k

√ �������∑n

k�1y
2
k

√ ,

ρX,Y � cov(X,Y)
σXσY

� E(XY) − E(X)E(Y)�������������
E(X2) − E2(X)√ ������������

E(Y2) − E2(Y)√ .

(1)

Individual similarity measures between pseudogenes and
between miRNAs may contain noise in the data. In order to
reduce the noise, we fused several similarity profiles by feature
fusion. Feature fusion obtains a single output matrix by fusing all
similarity profiles with non-linear methods (Wang et al., 2014).
Firstly, we construct the weight matrix as

P(i, j) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(i, j)
2∑
k≠i

S(i, k), i ≠ j

1/2, i � j

. (2)

The local affinity matrix is defined as

L(i, j) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S(i, j)∑
k∈Ni

S(i, k), j ∈ Ni

0, otherwise

, (3)

FIGURE 1 | Flowchart of PMGAE.
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where S(i, j) represents the similarity matrix and Ni represents
neighbors of the ith node. Then, we iteratively update the
matrix as

P(v)
t+1 � L(v) × (∑k≠vP

k
t

n − 1
) × (L(v))T, v � 1, 2, ..., n. (4)

The final feature matrix (here, we set n to 3 in our model) is
represented as

Pt � p(1)
t + p(2)

t + ... + p(n)
t

n
. (5)

For the fusion similarity profiles PS and MS, we removed the
noise by a stacked auto-encoder (SAE) and obtained the low-
dimensional vector representation of pseudogenes and miRNAs.
By an SAE, we obtained 128-dimensional matrix representations
of PS’ and MS’ for pseudogenes and miRNAs, respectively.
Finally, in order to improve the training speed and prediction
effect of the model, we tried to standardize the obtained 128-
dimensional vectors. Specifically, we carried it out using
StandardScaler and RobustScaler individually. StandardScaler
and RobustScaler can be expressed as

x′ � x − μ

σ
,

y′ � y −median

IQR
,

(6)

where IQR represents the interquartile range of the sample.
StandardScaler improves the rate of learning and prediction

accuracy of the model. RobustScaler reduces the effect of outliers
on results. Both of them are important, so we took the mean
values of the matrix that are treated by each of them separately
and obtained the final feature matrices PS″ andMS″. Finally, the
node feature matrix X is constructed as

X � ( PS″
MS″). (7)

Graph Auto-Encoder
Auto-encoder is a kind of neural network, which can restore the
input using output through certain training. It includes an
encoder and a decoder. The encoder obtains the low-
dimensional representation of the input vector (Baldi, 2012).
The GAE migrates the auto-encoder to a graph (Kipf and
Welling, 2016). We constructed the adjacency matrix and the
feature matrix of the nodes. The goal is to obtain the low-
dimensional representation of the nodes by deeply integrating
the association information between nodes and the feature
information of nodes themselves through the GAE. The GAE
uses a two-layer graph convolution network as an encoder, which
can be described as follows:

GCN(X,A) � ~AReLu( ~AXW0)W1, (8)

where ~A � D−1
2AD−1

2, ReLu(X) � max(X, 0) represents the
activation function, andW0 andW1 are parameters to be learned.

We built the adjacency matrix based on the PMA network as
follows:

A � ( 0 PMA
PMAT 0

), (9)

where PMAT represents the transpose of the matrix PMA.
We used the adjacency matrix A and feature matrix X to

obtain the low-dimensional representation vector of nodes by an
encoder, which can be defined as

Z � GCN(X,A). (10)

The decoder also obtains the low-dimensional vector
recomposition map based on the neural network. The decoder
generates a graph according to the probability of edges between
nodes. It can be defined as

Â � sigmoid(ZZT), (11)

where sigmoid(x) � 1
1+e−x represents the activation function. Â is

the reconstructed network matrix. In this study, in order to make
the model more explanatory, we do not use the decoder layer but
put the low-dimensional representation vector of nodes into the
best classifier we trained to predict the PMAs.

To measure the error between the predicted and the real
association, the loss function is defined as

L � − 1
N

∑y logŷ + (1 − y)log(1 − ŷ), (12)

where y represents the value of an element in the adjacency
matrix A (0 or 1) and ŷ represents the value of the same element
in the reconstructed adjacency matrix Â (0–1). We took multiple
epochs to minimize the loss function to make the reconstituted
data as similar to the original data as possible.

Subsequently, we predicted potential PMAs by XGBoost.
XGBoost is a machine learning algorithm whose core idea is
to integrate multiple decision trees and continuously add trees to
them. Each addition of trees is a process of iteratively adding new
functions. Its purpose is to make the final predicted value as close
as possible to the real value. Its implementation process can be
expressed as

ŷi
(t) � ∑t

k�1fk(xi) � ŷi
(t−1) + ft(xi). (13)

The objective function of XGBoost is defined as follows:

L(φ) � ∑
i

l(yi, ŷi) +∑
k

Ω(fk), (14)

where l(yi, ŷi) is the training error and Ω(fk) is the
regularization term to suppress over-fitting.

Graph Embedding
In contrast to the traditional machine learning algorithm which
may only consider the mapping from input to output without
considering the associations in the network, the graph-based
algorithm can obtain the associations between nodes together
with their own characteristics to improve the accuracy of
prediction. The graph data we obtain from real life are often
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high-dimensional and sparse. Graph embedding is the process of
mapping the input graph data to low-dimensional dense vectors,
which can reinforce the efficiency of machine learning and
improve the accuracy of prediction.

We selected several representative graph embedding methods
including Line (Tang et al., 2015), GraRep (Cao et al., 2015),
Node2vec (Grover and Leskovec, 2016), and DeepWalk (Perozzi
et al., 2014) to predict the PMAs and compared the results of
PMGAE in Results.

RESULTS

Experimental Setup and Performance
Evaluation
For the experiment parameters in the GAE, we set a learning rate
of 0.001 and trained the model for 8,000 epochs. We obtained a
32-dimensional representation for each node. Then, they were
put into XGBoost for prediction. In addition, we used five-fold
cross validation to evaluate the performance of the model. We
take the known PMAs as a positive sample. The remaining
unknown PMAs can be considered potential negatives from
which we randomly selected PMAs with equal size to the
positive samples as negative samples. Subsequently, we
randomly divided the positive and negative samples into five
parts. One in the five parts was taken out in turn as a test set, and
the remaining were used as the training sets.

We used several evaluation metrics including accuracy,
sensitivity, specificity, and precision. In addition, we also
adopted the AUC and AUPR to evaluate the prediction
performance. We took multiple independent experiments of
five-fold cross validation to reduce the error. The mean AUC
and AUPR were shown under the corresponding curve
(Figure 2). The AUC and AUPR of our prediction model
reached 0.8634 and 0.8966, respectively, which
showed that PMGAE has satisfactory performance in PMA
prediction.

Comparison of the Performance of PMGAE
and MF-Based Methods
MF-based methods have shown excellent performance in
predicting the correlation of various biomolecules. To evaluate
the performance of PMGAE, we compared it with MF-based
methods including multiple similarities collaborative matrix
factorization (MSCMF), inductive matrix completion for
miRNA–disease association (IMCMDA), and neighborhood-
regularized logistic matrix factorization (NRLMF). MSCMF is
a collaborative filtering model integrating multiple similarities for
predicting drug–target interactions (Zheng et al., 2013).
IMCMDA is a matrix completion–based model, integrating
miRNA–disease associations, individual miRNA and disease
characteristics, and Gaussian interaction profile kernel
similarity between them to predict miRNA–disease
associations (Chen et al., 2018). NRLMF combined logical
matrix factorization and neighborhood regularization to
predict drug–target interactions (Liu Y. et al., 2016).

As shown in Figure 3, PMGAE showed the best performance
in terms of AUC and AUPR. Relative to the MF-based methods,
the GAE can effectively extract node features, with the best
prediction achieved through XGBoost.

Visualization of Embedding Effect
Because the features are high-dimensional, it is difficult to
visualize the clustering results directly. In order to make the
model more interpretable and validate the embedded effects, we
mapped the features of the nodes before and after embedding
them into the three-dimensional space through t-SNE (Maaten
and Hinton, 2008). t-SNE can reduce the high-dimensional data
to two or three dimensions. Through t-SNE, we can do an
intuitive observation on the embedding method for the node
clustering effect.

As shown in Figure 4, nodes are randomly distributed before
embedding, and our embedding method leads to clustering of the
nodes based on their characteristics. Since similar molecules may

FIGURE 2 | AUC (A) and AUPR (B) of PMGAE using five-fold cross validation. Insets represent the zoom-in view of local regions.
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have similar or related biological functions, effective clustering
can facilitate potential association prediction and improve the
performance of the model. The effective clustering through
embedding validates it as an important component of PMGAE.

Feature Fusion With Various Similarity
Measures
Using the expression information of pseudogenes and the k-mer
sequence information of miRNAs, we calculated the Jaccard

similarity coefficient, cosine similarity coefficient, and Pearson
similarity coefficient of pseudogenes and miRNAs, respectively.
Then, pairwise fusion and full fusion were performed and
compared. Table 1 shows the performance of specific fusions
and no fusion.

Individual similarity has its own limitations. For example, the
cosine similarity coefficient tends to distinguish differences from
directions; thus, it has a good effect on the calculation of different
directions but is not sensitive to the change of values. The Jaccard
similarity coefficient has a good effect on the binary data, but it

FIGURE 3 | Comparison of AUC (A) and AUPR (B) of PMGAE and MF-based models.

FIGURE 4 | Clustering results of nodes before (A) and after (B) embedding.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7812776

Zhou et al. Pseudogene–miRNA Association Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


cannot measure the specific value of the difference. The Pearson
similarity coefficient tends to give better results when the data do not
conform to a certain rule, but the effect on overlapping data is
compromised. Considering these shortcomings, we tried to fuse these
similarity measures in a non-linear way for a better similarity
representation by integrating the advantages. The experimental
results in Table 1 show that our full similarity fusion method can
effectively improve the performance of the model.

Comparison of the Performance of Various
Embedding Methods
For each method, the mean of individual runs is used to measure
its performance. As shown in Figure 5, the PMGAEmodel shows
the best prediction. The performance of GAE is superior to that of
other graph embedding methods. The GAE more effectively
mines the topology structure in the scenario of node
information in the network than other embeddings.

Although the graph embedding models mentioned above have
many advantages, according to our experimental study, we found
that these models still have some drawbacks. Specifically, the Line

model only considers the first-order relationship and second-order
relationship of nodes. It cannot construct the global structure of the
network well, and the embedding of Line for low-level nodes is not
accurate enough. Thus, the prediction outcome of Line is the least
accurate in our data. DeepWalk takes into account each first-order
relationship of the node with all relationships stored in a subspace.
But it cannot distinguish the order of the node’s neighbors during
training. At the same time, DeepWalk is only applicable to
unweighted graphs and has obvious limitations. The Node2vec
model combines some advantages of Line and DeepWalk and
also can control the preference of random walk by adjusting the
hyperparameters. However, when the number of samples is limited as
in the case of PMGAE, the length of random walk is also limited. So,
the learning effect for remote neighbors in the network is far from
optimum. The GraRep model can put each first-order relationship
between nodes in different subspaces, whichwell constructs the global
structure of the network. However, the calculation of each first-order
relationship Ak and the optimization loss function is large, so it
cannot be used for large-scale graph data. Besides, the above-
mentioned graph embedding models often only take into account
the topological information of nodes but do not well incorporate the
characteristic information of nodes themselves. The GAE can achieve
the best predictions, mainly because it uses the graph convolution
neural network to learn the characteristics of nodes in an end-to-end
way. At the same time, the GAE has better robustness and stability,
together with good learning effect for poor datasets.

Comparison of the Performance of Various
Classifiers
Classifiers play a key role in the model. To compare the prediction
performance of our model under different classifiers and select
the best classifier, we seek to check its predictive performances
with five representative classifiers: eXtreme Gradient Boosting

TABLE 1 | Model performance comparison using similarity profile fusions and
using individual similarity profiles.

Methods Evaluation metrics

Acc. Sen. Spec. Prec. AUC AUPR

Jaccard 0.7641 0.6443 0.8838 0.8475 0.8416 0.8676
Pearson 0.7633 0.6555 0.8710 0.8356 0.8381 0.8637
Cosine 0.7901 0.6491 0.9310 0.9040 0.8562 0.8872
Cosine + Jaccard 0.7927 0.6433 0.9421 0.9176 0.8607 0.8912
Cosine + Pearson 0.7964 0.6396 0.9533 0.9320 0.8591 0.8935
Jaccard + Pearson 0.7954 0.6460 0.9448 0.9214 0.8565 0.8913
Full fusion 0.8015 0.6592 0.9437 0.9216 0.8632 0.8966

FIGURE 5 | Model performance using various embedding methods.
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(XGBoost), random forest (RF), K-nearest neighbor (KNN),
bagging, and gradient boosting decision tree (GBDT). The
AUC and AUPR were used to evaluate their performance. As
shown in Figure 6, while all the classifiers have an AUC and
AUPR above 0.8, XGBoost yields the best performance. Thus,
XGBoost is most suitable for our model.

Comparison of GAE With Various Setups of
Hidden Units
The GAE contains two layers of hidden units in the neural
network. We evaluated the impact of different dimensions of
each layer on the performance of the model. We fixed the second
hidden layer with 32 units and then set the first hidden layer with

FIGURE 6 | AUC (A) and AUPR (B) using various classifiers.

FIGURE 7 | AUC and AUPR of various hidden unit setups in the first (A) and second (B) layers of GAE.
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units of 32, 64, 128, 256, and 512, respectively. Figure 7 shows
that when the first hidden unit is 64, the GAE has the best
performance. Then, we set the first hidden layer with units of 64
and set the second hidden layer with units of 16, 32, 64, 128, and
256, respectively. We found that model performance was slightly
improved with the decrease of the unit number. The AUPR is
highest when the unit number is reduced to 32, and the AUC is
highest when the unit number is reduced to 16. High-dimensional
representation may lead to data sparsity, which is not conducive
to classification. While reducing dimension can improve the
training speed of the model, dimensions too low may cause
loss of key information. For the task of PMA prediction, we
chose the first hidden unit to be 64 and the second hidden unit to
be 32.

Effect of Ratio of Positive to Negative
Samples
Unbalanced test sets containing too many negative samples may
affect the performance of the model. To explore the impact of this
data imbalance on PMGAE, we used various setups of positive:
negative sample ratios. In the five-fold cross validation, we
constructed 1:1, 1:2, 1:5, 1:10, and 1:20 test sets by changing
sizes of potentially negative samples. Table 2 shows the
experimental results. The test set with different proportions
has a moderate effect on the results. It suggests that, for the
evaluation of model performance in predicting PMAs, the
influence of different positive: negative sample ratios cannot
be omitted.

Case Studies
Exploring cases of PMAs is of great significance to provide
insights for research of diseases. Seeking support of our
predictions from independent sources can evaluate the
effectivity and robustness of PMGAE. For the case study, we
used all other associations that did not contain three pseudogenes
RPLP0P2, HLA-H, and HLA-J to train the model and then
predicted the probability of all miRNAs associated with each
of these three pseudogenes. The top 15 predicted associations
were used to verify the predictions through starBase.

Three pseudogenes, RPLP0P2, HLA-H, and HLA-J, were used
for case studies. RPLP0P2 is a pseudogene associated with a
variety of cancers including lung adenocarcinoma and colorectal
cancer. Several studies have shown that low expression of

RPLP0P2 can lead to decreased proliferation and adhesion of
tumor cells (Chen et al., 2016; Yuan et al., 2021). Table 3 shows
the top 15 candidate miRNAs associated with RPLP0P2, 11 of
which are supported by starBase.

HLA-H is a kind of transmembrane molecule, and it can
mobilize HLA-E at the cell surface of multiple immune cells
(Jordier et al., 2019). At the same time, HLA-H gene mutations
cause many cases of hereditary hemochromatosis. Table 3 shows
the top 15 candidate miRNAs associated with HLA-H, 12 of
which are proved by starBase.

HLA-J is also a class of HLA gene. HLA-J has an
immunosuppressive effect and is potentially a predictor of
breast cancer (Würfel et al., 2020). Besides, HLA-A has been
shown to be associated with schizophrenia. The presence of HLA-
AM80468 significantly reduces the incidence of schizophrenia,
whereas the presence of HLA-JM80469 increases the incidence of
schizophrenia (Gu et al., 2013). As shown in Table 3, 11 of the top
15 candidate miRNAs associated with HLA-J are proved by
starBase.

DISCUSSION

Genome-wide prediction of PMAs has great significance in both
biology and medicine. It can not only help us understand the
cellular role of pseudogenes but also provide clues and directions
for the clinical treatment of various diseases. In this work, full
potential PMAs are predicted for the first time. Feature fusion and
GAE were used to construct the model, PMGAE. The
performance of PMGAE was evaluated by five-fold cross
validation, with an AUC of 0.8634 and AUPR of 0.8966
obtained. Extensive experiments on feature fusion, model
framework, and setup were conducted.

The good performance of PMGAE may be attributed to the
optimization of each step and flexibility together with the good
interpretability of the model. First, we integrated the attribute
information from different perspectives of nodes by feature
fusion. Subsequently, the GAE was used to integrate the
correlation information and attribute information to obtain
the low-dimensional representation of nodes. Finally, we
selected the most suitable classifier for the model as an
association prediction task. By comparative experiments on
the feature construction, embedding method, and classifiers,
the best integrated model can be selected. The resultant
PMGAE model has the optimal effect in predicting the PMAs.

In the ceRNA network, pseudogene–miRNA is the only pair of
relationships that have not been studied computationally. By
predicting PMAs for the first time, using PMGAE, our work fills
the gap in the ceRNA network, so that all known relational pairs
in the ceRNA network can be predicted by computational
methods. The completed map will facilitate the studies of
ceRNA network architecture and its biological implications.

Based on the successful application of PMGAE, there is space
for further improvement. First, only one type of feature for each
node was used when constructing a similarity feature profile.
Fusing more types of node features may provide more
information for model training. Second, one can also

TABLE 2 | Model performance under various setups of positive: negative sample
ratios.

Evaluation metrics Positive: negative sample ratio

1:1 1:2 1:5 1:10 1:20

AUC 0.8632 0.8548 0.8557 0.8596 0.8626
AUPR 0.8966 0.8388 0.7653 0.7193 0.6693
Acc. 0.8015 0.8523 0.9218 0.9554 0.9753
Sen. 0.6592 0.6008 0.5594 0.5419 0.5196
Spec. 0.9437 0.9782 0.9943 0.9968 0.9981
Prec. 0.9216 0.9323 0.9513 0.9447 0.9323
MCC 0.6292 0.6646 0.6938 0.6965 0.6858
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introduce intermediate layers to incorporate
pseudogene–lncRNA associations and lncRNA–miRNA
associations. Whether adding intermediate layers will improve
the prediction effect of the model is a problem worth further
exploration. Third, when constructing negative samples, we
simply used non-positive samples as potential negative
samples and then randomly extracted them. How to build
negative samples more accurately is also a question worth
exploring. Fourth and more importantly, in PMGAE,
embedding and classifier are sequentially, also separately
trained. For the task of PMA prediction, end-to-end modeling
seeking a global optimal solution is worth further exploration.
Toward a full description and understanding, we will incorporate
all relation pairs to build a complete graph of the ceRNA network,
together with diverse information of all types of nodes.
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