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Dysregulation of joint tissue homeostasis induces articular degenerative changes and
musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause
of motor disability in individuals over 60 years of age, impacting their quality of life and the
costs of health systems. Nowadays, pharmacological treatments for cartilage disease
have failed to achieve full tissue regeneration, resulting in a functional loss of the joint;
therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe
cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which
mitigate pain and inflammation in some degree, but without significant inhibition of disease
progression. In this sense, new therapeutic alternatives based on natural compounds have
been proposed to delay osteoarthritis progression, particularly those agents that regulate
articular homeostasis. Preclinical studies have shown a therapeutic application of honey
and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and
are also used as a biological stimulant by exerting antioxidant and anti-inflammatory
properties. In this article, we reviewed the current medicinal applications of honey with
particular emphasis on its use regulating articular homeostasis by inhibiting inflammation
and oxidative stress.

Keywords: Articular homeostasis, osteoarthritis, inflammation, honey flavonoids, Redox homeostasis, cartilage,
chondroprotective activity

INTRODUCTION

Osteoarthritis (OA) is a disabling condition characterized by joint degeneration; it is related to
different etiological factors such as aging, genetics, metabolic and biomechanical stress. In this
context, inflammation and oxidative stress play a pivotal role in the progressive deterioration of
joint tissues including articular cartilage (AC), subchondral bone, synovial membrane and
meniscus that maintain the functionality of joints until an exacerbated homeostatic
dysfunction occurs (Minguzzi et al., 2018). Despite the clinical relevance of OA, which affects
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more than a quarter of the world population over 18 years of age
(Chen D. et al., 2017), there are limited pharmacological
strategies to prevent OA progression.

The management of OA includes weight control and specific
physical exercises as interventional strategies to support the
pharmacological therapy (Watt and Gulati, 2017). The first-line
of intervention includes non-steroidal anti-inflammatory drugs
and acetaminophen to control chronic pain. Cyclooxygenase-II
inhibitors, intra-articular steroids and viscosupplementation are
also considered when the standard treatment fails; nevertheless,
their clinical efficacy is poor in patients with comorbidities (Jones
et al., 2019). Therefore, the use of pain relief drugs neither
represents a therapeutic strategy to halt or reverse cartilage
damage, nor regulates the AC homeostasis, making AC prone
to further damage (Saccomano, 2018).

Nowadays, beehive products are used to manage different
inflammatory joint diseases as a non-pharmacological therapy.
Under alternative or adjuvant therapeutic schemes, the potential
physiopathological effect of honey, pollen, propolis and bee
venom has been observed in humans (Almuhareb et al., 2019;
Conrad et al., 2019), murine models (Owoyele et al., 2011; Hsieh
et al., 2019) and in vitro (Jeong et al., 2015; Locatelli et al., 2018)
studies. These health benefits are mainly observed when using
honeys from the south hemisphere such as Manuka honey and
stingless bee honey, and their health benefits are attributed to
their pharmacological active constituents (Al-Hatamleh et al.,
2020).

According to published data, different bioactive compounds
commonly seen in honey have an effective role decreasing intra-
articular injuries by inhibiting inflammation, oxidative stress,
synovial hyperplasia and angiogenesis (Wang et al., 2007; Yang
et al., 2018; Li et al., 2019; Orhan and Deniz, 2020; Yuan et al.,
2020). Specifically, cartilage protection and enhancement of
chondrocyte reparative functions induced by honey, involve
several biologically active molecules such as chrysin, apigenin,
quercetin, baicalin, luteolin, fisetin, butein, among other
flavonoids and phenolic compounds. The present narrative
review aims to discuss the emerging medical use of honey
and to highlight the role of its polyphenols as potential
regulators of articular homeostasis in OA. Therefore, we
performed a search of published articles before March
2021 on PubMed database considering the following
criteria: honey-derived flavonoids with biological effect on
chondrocytes and articular homeostasis. From this search, we
found that in vitro data is principally based on pure
compounds, and only a few of them included assays in
preclinical models of OA.

Impact of Inflammation and Oxidative
Stress in Cartilage Homeostasis
This degenerative joint disease is characterized by disruption of
articular homeostasis, with a sustained production of pro-
inflammatory cytokines, degradative enzymes of extracellular
matrix (ECM), free radicals including reactive oxygen species
(ROS) and reactive nitrogen species (RNS) (Surapaneni and
Venkataramana, 2007).

Under normal conditions, chondrocytes exert anabolic
functions that maintain a low-turnover replacement of specific
ECM components including collagens, proteoglycans and non-
collagen proteins (Singh et al., 2019). The rate of ECM protein
deposition is regulated by the hypoxia-inducible factor 1 alpha
(HIF-1α), which in a low oxygen concentration
microenvironment induces the expression of SOX9, a master
transcriptional regulator of chondrogenesis. SOX9 promotes the
expression of chondrocyte-specific genes such as type II collagen
(COL2A1) and Aggrecan (ACAN) which are the main ECM
components in AC (Akiyama et al., 2002; Amarilio et al., 2007)
(Figure 1). However, an altered functionality of the antioxidant
system, unbalanced inflammation signaling, aging of AC and
other adverse microenvironmental insults trigger a metabolic
shift from anabolism to catabolism (Singh et al., 2019). The
highly active metabolic state in AC leads to the synthesis of
inflammatory and degradative proteins that activate cellular
senescence and immune cell function inside the
osteoarthritic joint.

The changes previously mentioned cause a state of sustained
catabolism which perpetuate progressive destruction of cartilage
and deteriorates joint tissues. Since the number of chondrocytes
and their viability are substantially affected in OA, the synthesis
of ECM components decreases. The impaired integrity of AC
attenuates articular homeostasis, adversely affecting the function
of other joint tissues such as synovium, meniscus, and
subchondral bone (Stolberg-Stolberg et al., 2020). Moreover,
due to the molecular stimuli triggered by collagen network
damage and synovitis, the infiltration of mononuclear cells
into synovium increases leading to sustained inflammatory
signaling pathways. Furthermore, the enhanced inflammatory
biomarkers in intraarticular space exert a prominent role in
remodeling ECM including chondrocyte hypertrophic
differentiation (Minguzzi et al., 2018).

The imbalance between anabolism and catabolism generated
during OA progression can be slightly counteracted by the
expression of the transforming growth factor-beta (TFG-β)
which modifies the synthesis-replacement imbalance of
proteoglycans in ECM (Scharstuhl et al., 2002; Jimi et al.,
2019). However, the catabolic activity is also associated with a
lower response to chondrocyte stimulation by insulin-like growth
factor 1 (IGF-1), decreasing the production of ECM proteins and,
consequently, the reparative process (Jimi et al., 2019; Morscheid
et al., 2019).

Implications of Inflammation in Cartilage Degradation
Inflammatory mediators are regarded as critical players for
cartilage destruction and synovitis in OA. However, genetic
factors, aging-related changes and biomechanical stress due to
obesity, surgery or a traumatic injury are the main cause of joint
homeostatic dysregulation in OA (McAlindon et al., 2014).
Additionally, the development, evolution and perpetuation of
OA are characterized by a gradual loss of proteoglycans and
COL2A1, followed by fibrocartilage formation which is linked to
a high production of cytokines including IL-1β, TNF-α, IL-6, IL-
15 and IL-18. The pro-inflammatory cytokine signaling
stimulates a phenotypic shift in AC, apoptosis and aggravate
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synovial fibrosis (Jimi et al., 2019; Zhao et al., 2020). The
exacerbated inflammatory stress in intraarticular space
activates the canonical nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway in
chondrocytes and synoviocytes. The NF-κB signaling is
mediated by a multi-subunit IκB kinase (IKK) complex, which
can respond to cytokine stimulus (Figure 1). Upon activation,
NF-κB undergoes nuclear translocation, then it drives the
expression of different genes including inducible
cyclooxygenase 2 (COX-2), pro-inflammatory cytokines and
chemokines that will uphold joint inflammation (Jimi et al.,
2019). At molecular level, the high concentration of IL-1β and
TNF-α in synovial fluid may activate catabolic processes driving
fibroblast-like synoviocyte pyroptosis (Shen et al., 2014; Zhang L.
et al., 2019). In the synovial membrane the exacerbated release of
pro-inflammatory cytokines will induce an abnormal
proliferation of synoviocytes triggering the infiltration of
immune cells into synovial tissue. Additionally, the
macrophage chemokine protein 1 (MCP-1) stimulates
macrophages and neutrophils migration into the synovial
space, which maintains an exuberant inflammation level
associated with the OA severity (Xu et al., 2015; Haraden
et al., 2019).

High levels of IL-1β inside the joint induce the gene expression
of Matrix Metalloproteinases (MMPs), of disintegrin and
metalloproteinase (ADAM), as well as the gene expression of
disintegrin and metalloproteinase with thrombospondin motif
(ADAMTS) in chondrocytes and synoviocytes, accelerating the
development of OA due to a mayor degradation of ACAN and
collagen fibrils in cartilage (Struglics et al., 2006). Moreover, due
to the high enzymatic activity in AC, the concentration of matrix
degradation products including fragments of COL2A1, ACAN
and fibronectin increases. This phenomenon triggers an

upregulation of MMPs, VEGF and a high production of nitric
oxide (NO) through the activation of TLR2 in chondrocytes that
further promote catabolic function and cartilage destruction (Xie
et al., 1993; Fichter et al., 2006; Hwang et al., 2015; Lees et al.,
2015; Jung et al., 2019).

Oxidative and Nitrosative Stress in Cartilage
Degradation
The repetitive cycles of inflammation and sustained anabolic-
catabolic switch can cause an overproduction of ROS and RNS in
cartilage, disrupting the intracellular redox status (Figure 1) that
play an essential role in the regulation of chondrocyte
hypertrophy, mitochondria dysfunction, as well as a role in
oxidative damage to DNA, proteins and lipids (Ostalowska
et al., 2006; Surapaneni and Venkataramana, 2007; Gavriilidis
et al., 2013). In this context, oxidative stress modifies
cartilaginous matrix proteins found in Golgi apparatus and
endoplasmic reticulum of chondrocytes, decreasing their
synthesis (Yu and Kim, 2013). Furthermore, the excess of ROS
may also orchestrate ECM degradation via two different
mechanisms. Firstly, ROS can exert direct hydrolysis of matrix
components; secondly, it promotes the expression of MMPs that
generates hypertrophic cartilage matrix (Lepetsos and
Papavassiliou, 2016).

Previous studies have shown a decreased activity of
antioxidant enzymes in OA, which impairs the metabolism
and cell proliferation of chondrocytes (Morita et al., 2007;
Surapaneni and Venkataramana, 2007; Goodwin et al., 2010).
The redox balance in AC is affected by a down-regulation of
Heme oxygenase 1 (HO-1) leading oxidative stress and
consecutive senescence and apoptosis (Davidson et al., 2013;
Cai et al., 2015; Takada et al., 2015). The nitric oxide (NO)
concentrations above basal, function as a critical signaling

FIGURE 1 | Dysregulation of joint homeostasis in OA. (A) Anabolic metabolism regulates gene expression and protein synthesis of COL2A1 and ACAN in
chondrocytes, maintaining components of AC in a low-turnover state. (B) This scheme represents the homeostatic disruption of AC promoted by oxidative stress and
pro-inflammatory cytokines. IL-1 and TNF-α signaling trigger the upregulation of MMPs and ADAMTS. Then the exacerbated release of MMP-13 prompts COL2A1 and
ACAN hydrolysis, which are considered key components of AC matrix. The matrix degradation is intensified by the activity of ADAMTS, resulting in the loss of
cartilage integrity and additional loss of joint function. Inflammation, ROS and RNS not only stimulate the expression of ECM degradative enzymes, but they also impair
the chondrocyte ability to repair damaged cartilage by blocking HIF-1α and SOX9 signaling. AC: articular cartilage; ACAN: aggrecan; ADAMTS: a disintegrin and
metalloproteinase with thrombospondin motif; COL2A1: type II collagen; ECM: extracellular matrix; HIF-1α: hypoxia-inducible factor 1 alpha; MMPs: metalloproteinases;
ROS: reactive oxygen species; RNS: reactive nitrogen species.
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molecule in hypertrophic differentiation and apoptosis of
chondrocytes through a marked reduction of HIF-1α signaling
(Bai et al., 2019). Furthermore, the homeostatic pathways related
to chondrogenesis can be turnover due to the inhibition of HIF-
1α (Figure 1).

Due to this complex pathophysiological scenery, apitherapy in
OA has recently emerged as a novel non-pharmacological
strategy to reduce the molecular events that drive structural
and functional damage in joint tissues promoted by
inflammation, nitrosative and oxidative stress in AC disorders.

Anti-Inflammatory and Antioxidant Effects
of Honey
Honey is a natural viscous sweet and flavorful solution consumed
for its high nutritive value and its positive effects on human
health. There are approximately 200 distinct chemical
compounds in honey including a wide range of phenolic
compounds that have antioxidant, bacteriostatic, antimicrobial
and anti-inflammatory properties (Alvarez-Suarez et al., 2013).
The biological effects produced by honey are attributed to its high
concentration of polyphenolic compounds (flavonoids), which
determine its antioxidant and anti-inflammatory properties
(Shen et al., 2019; Goslinski et al., 2020). Honey contains
different bioactive molecules including p-coumaric acid,
eugenol, ferulic acid, caffeic acid, pinobanksin, pinocembrin,
chrysin, quercetin, apigenin, galangin, isorhamnetin, gallic
acid, kaempferol, syringic acid, luteolin and naringin;
nevertheless, their concentrations vary depending on the type
of honey (Ciulu et al., 2016; da Silva et al., 2016; Shen et al., 2019).
In addition, a novel study has recently identified vesicle-like
nanoparticles (VLNs) as a new bioactive agent in honey (Chen
et al., 2021).

Honey has been used since ancient times as a therapeutic agent
for a wide variety of clinical conditions. Its most remarkable
effectiveness lies in wound healing (Frydman et al., 2020;
Smaropoulos and Cremers, 2020) and treating gastrointestinal
tract diseases (Bilsel et al., 2002; Miguel et al., 2017). Additionally,
several studies have evaluated the effects of honey on cancer
(Afrin et al., 2018b; Mohammed et al., 2020), diabetes (Sahlan
et al., 2020) and dyslipidemias (Ramli et al., 2019), showing
significant ameliorative effects. Likewise, antimicrobial effects
have been reported when using honey (Rosli et al., 2020).

The role of honey in the inflammation process was reported by
Al-Waili and Boni (2003); they demonstrated that by consuming
diluted natural honey the concentration of prostaglandin E2,
prostaglandin F2α and thromboxane B2 decreased in plasma of
healthy individuals (Al-Waili and Boni, 2003). Another recent
study has shown the biological role of honey-derived VLNs which
exert a potent anti-inflammatory activity by suppressing NLRP3
inflammasome activation and NF-κB signaling. Furthermore,
small-sized RNAs were identified as the molecules that
remarkably ameliorated NLRP3 inflammasome activity,
specifically, miR-4057 protected mice from acute inflammatory
conditions in the liver (Chen et al., 2021). On other hand,
different studies have explored the effects of honey intake on
malondialdehyde and ROS levels in athletes and murine models,

where individuals were subjected to high-impact exercise
regimens. The authors concluded that honey consumption
leads to a marked reduction of oxidative damage biomarkers
generated by high physical activity (Ahmad et al., 2017; Jurcău
and Jurcău, 2017; Hills et al., 2019).

Based on the results observed in preclinical studies, honey is a
novel promise for the management of OA progression by
targeting catabolism in joint tissues and recovering articular
homeostasis.

Potential Use of Honey for Articular
Homeostasis Regulation
The protective activity of honey in OA has been evaluated in
different animal models and in vitro studies. Prior research aimed
to identify the anti-inflammatory effects of Manuka honey on
macrophages stimulated with LPS. The results indicated that
Manuka honey increases cell viability by decreasing apoptosis,
inhibiting the production of free radicals and attenuating
inflammation. These effects were regulated by decreasing
caspase-3, p-p38 and p-Erk1/2 proteins at molecular level.
Moreover, an increase of mitochondrial respiration and
glycolytic activity were also demonstrated, which led to the
expression and stimulation of p-AMPK, SIRT1 and
PGC1alpha (Afrin et al., 2018a; Gasparrini et al., 2018). The
biological potential of Manuka honey is attributed to the
quercetin and gallic acid compounds, which are also present
in other worldwide types of honey at high concentrations
(Tomás-Barberán et al., 1993; Samarghandian et al., 2017).

On the other hand, an in vivo study noted the emerging anti-
inflammatory and antioxidant capacity of Nigerian honey in
formaldehyde-induced arthritis in Wistar rats. This study
revealed that honey intake significantly reduced inflammation
similarly to the treatment with indomethacin during a ten-day
intervention (Owoyele et al., 2011). Furthermore, the beneficial
effect exerted by honey and its derived bioactive compounds has
also been described on bone health (Kamaruzzaman et al., 2019).

The flavonoids found in honey scavenge free oxygen radicals,
reducing inflammation and minimizing tissue damage
(Candiracci et al., 2012). A previous work by Alvarez-Suarez
et al. analyzed the phenolic content of Manuka honey via HPLC-
MS, and it was theorized that these components improve the
intracellular antioxidant and anti-inflammatory response
(Alvarez-Suarez et al., 2016). The efficacy of honey
components has been recently explored in chondrocyte
viability, inflammation and oxidative stress signaling.

Honey Compounds Exert a
Chondroprotective Effect
The chondrogenic potential of bioactive honey compounds has
been observed in different in vitro and in vivo studies (Figure 2),
suggesting promising applications of honey as an adjuvant
therapy for repairing cartilage homeostasis specially by
inhibiting inflammation and oxidative stress commonly seen
in OA. Although information related to the mechanisms of
action concerning articular homeostasis of each flavonoid
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found in honey is still limited, some of the biological processes
underlying articular inflammation, oxidative stress,
chondroprotection and metabolism in cartilage have already
been investigated.

Effect of Honey Compounds on Articular Inflammation
Chrysin, a natural flavonoid extracted from honey was
confirmed to attenuate NLRP3 inflammasome signaling,
reducing synovitis and reducing the release of IL-1β, IL-18,
substance p, and calcitonin gene-related peptide in
monosodium iodoacetate (MIA)-induced knee OA model in
rats (Liao et al., 2020). A second study has shown that chrysin
dramatically blocked IL-1β-stimulated IκB-α degradation and
NF-κB activation in vitro using IL-1β-injured human
chondrocytes (Zheng et al., 2017b).

The biological activity of luteolin, another natural flavonoid,
on signaling inflammation in chondrocytes has been recently
documented. An in vitro study proved that a pretreatment with
luteolin exerted an essential role targeting inflammation in rat
chondrocytes via the inhibition of IL-1β induced NO, PGE2 and
TNF-alpha production. In addition, luteolin reduced the
phosphorylation of NF-kB that promotes the regulation of
chondrocyte catabolic activity by decreasing the protein
expression of iNOS, COX-2, MMP-1, MMP-3, and MMP-13
(Fei et al., 2019). Moreover, studies on animals have shown that
gavage-administration (10 mg/kg/day for 45 days) in a MIA-
induced model of OA has a protective effect attenuating AC
destruction and OA progression (Fei et al., 2019). Another study
evaluated luteolin biological activity modulating the catabolic
activity in chondrocytes derived from a guinea pig model of OA;

reporting that luteolin induced a downregulation of JNK, p38 and
MMP-13, and a low production of inflammatory biomarkers
including NO, TNF-α and IL-6 (Xue et al., 2019).

The efficacy of quercetin as an anti-inflammatory molecule
was recently documented. Hu et al. demonstrated that quercetin
suppresses inflammation by modulating synovial macrophages
polarization to the M2 phenotype and inducing the expression of
growth factors such as TGF-β and IGF, which promote
chondrogenesis. The chondroprotective effect was also
observed in vivo, using intraarticular administration of
quercetin (Hu et al., 2019).

Effect of Honey Compounds on ECM Degrading
Enzymes
The role of different flavonoids maintaining the synthesis of ECM
components has also been described. The use of chrysin in an
in vitro study showed favorable effects, suggesting that this
flavonoid regulates the expression of MMP-1, MMP-3, MMP-
13, ADAMTS-4 and ADAMTS-5, as well as the degradation of
ACAN and COL2A1 on IL-1β-injured human chondrocytes
(Zheng et al., 2017b). These findings are supported by a recent
research where a protective effect was exerted by chrysin on
human OA chrondrocytes via the suppression of the high-
mobility group box chromosomal protein (HMGB1). It was
demonstrated that chrysin increased the expression of
COL2A1, while cell apoptosis, MMP-13 and IL-6 were
inhibited (Zhang C. et al., 2019). Thus, chrysin may be a
potential agent in the treatment of OA. Baicalin is another
promising flavonoid found in honey with chondroprotective
effects. Huang and colleagues recently reported that baicalin

FIGURE 2 | Chondroprotective effect of bioactive compounds found in honey. (A) Structure of honey bioactive molecules with potential application in targeting
dysregulation of articular homeostasis. (B) Mechanisms exerted by honey-derived flavonoids in osteoarthritic joint. Different flavonoids found in honey can modulate
catabolism in joint tissues via several signaling pathways promoting chondrogenesis-related genes expression such as SOX9, ACAN and COL2A1. ACAN: aggrecan;
AGEs: advanced glycation end-products; ECM: extracellular matrix; GAG: glycosaminoglycans; HIF-2α: hypoxia-inducible factor 2 alpha; MMPs:
metalloproteinases; NO: nitric oxide; PGE2: prostaglandin E2; SOD: superoxide dismutase. ↑ � up-regulate/stimulate/increase; ∅ � down-regulate/inhibit/suppress/
reduce.
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decreases IL-1β levels and suppresses the expression of collagen I,
attenuating cartilage degeneration and promoting the
proliferation of rabbit articular chondrocytes, as well as ECM
restoration through COL2A1 and ACAN secretion via the
upregulation of SOX9 gene (Huang et al., 2017).

The biological potential of fisetin and butein has also been
studied. These compounds exert an anti-inflammatory and
antioxidant effect by restoring the expression of COL2A1,
ACAN and proteoglycans in monolayer cultures of
chondrocytes. Fisetin and butein could also regulate the pro-
inflammatory damage triggered by IL-1β through the induction
of low NO and PGE2 production, as well as a significant
inhibition of metalloproteinases and aggrecanases expression
(Zheng et al., 2017a; Zheng et al., 2017c). Additionally, in vivo
models of OA have shown less cartilage destruction and
subchondral bone damage when mice are treated with butein
and fisetin via intraperitoneal and oral gavage, respectively
(Zheng et al., 2017a; Zheng et al., 2017c).

Luteolin has shown a potential role as a chondroprotective
molecule. In vivo and in vitro studies have documented that
luteolin inhibits gene expression and protein synthesis ofMMP-1,
MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 in cultured
articular chondrocytes stimulated with IL-1β; furthermore, to
analyze the direct effect of luteolin in rat joints, these animals
received an intraarticular injection of luteolin, showing an
inhibition of MMP-3 production prior stimulation with IL-1β
(20 ng/30 μL) (Kang et al., 2014).

Apigenin is another honey compound that can play an
essential role in AC homeostasis. A study demonstrated that
apigenin decreases the expression of MMP-13 on IL-1β-
treated human chondrocyte cell line SW1353 via signaling
inhibition of c-FOS/AP-1 and JAK/STAT (Lim et al., 2011).
Moreover, it has been reported that apigenin can inhibit the
expression of HIF-2α, which is a master regulator of catabolic
factors such as MMP-3, MMP-13, ADAMTS-4, IL-6 and COX
(Cho et al., 2019). Recently, an anti-degenerative effect of
apigenin was described by Park JS et al., who reported that
this molecule regulates the gene expression of matrix-
degrading enzymes such as MMP1, MMP-3, MMP-13,
ADAMTS-4 and ADAMTS-5 in rabbit chondrocytes.
Additionally, it was observed that the MMP-3 production
was inhibited in rats treated with apigenin plus IL-1β (Park
et al., 2016).

Effect of Honey Compounds on Oxidative Stress and
Antioxidant Mechanisms
In this context, a dysregulation of the nadase CD38 can impair
articular chondrocyte homeostasis by promoting an excessive
oxidative stress coupled with a significant decreased expression of
Sirtuin-1 (SIRT-1). Nevertheless, some flavonoids as apigenin
and quercetin can act as inhibitors of CD38 attenuating the
release of NO and mitochondrial superoxide generation via
maintaining function of SIRT-1 and SIRT-3, and regulating
NAD+ decline on IL-1β-stimulated human chondrocytes
(Kellenberger et al., 2011; Ansari et al., 2020).

Research using in vitro IL-1β-injured human chondrocytes
also supports the biological role of chrysin inhibiting oxidative

stress. Zheng et al. observed that chrysin significantly inhibits
IL-1β-induced NO and PGE2 production on human
chondrocytes that were pretreated and subsequently
stimulated with the pro-inflammatory agent. Additionally,
this flavonoid down-regulated the expression of COX-2 and
iNOS (Zheng et al., 2017b).

Recently, a study reported that the role of quercetin is not
limited to inhibit inflammation, for quercetin also promotes an
anabolic activity on IL-1β-stimulated rat chondrocytes as well
as an anti-apoptotic effect, via targeting ROS and inhibiting ER
stress through the activation of SIRT1/AMPK signaling
pathway (Feng et al., 2019; Hu et al., 2019). Furthermore, a
second report showed that quercetin gavage-administered at
25 mg kg-1 in a rabbit model of knee OA up-regulates
superoxide dismutase (SOD) and tissue inhibitor of
metalloproteinases-1 (TIMP-1), promoting a downregulation
of MMP-13 in synovial tissue (Wei et al., 2019). Thus, quercetin
reduces tissue degeneration in OA by weakening oxidative
stress responses and inhibiting the degradation of
cartilage ECM.

There are different potential properties of apigenin. For
instance, Crasci et al. reported that apigenin can be a free
radical scavenger and a potent advanced glycation end-
product inhibitor. They also showed that apigenin restored the
glycosaminoglycans (GAGs) production when it was used for
treating human articular chondrocytes previously stimulated
with IL-1β (Crasci et al., 2018).

Effect of Honey Compounds on Chondroprotection
The biological activity of baicalin has been consistent in different
studies, showing that baicalin protects chondrocytes from
apoptosis and ECM degradation (Chen C. et al., 2017; Yang
et al., 2018; Li et al., 2020). In this sense, Chen et al. identified
baicalin as a potential candidate for OA treatment, as it prevented
cartilage destruction and synovitis relief in OA in vivo models
(Chen C. et al., 2017). Moreover, baicalin suppresses the
expression of apoptosis-related genes induced by H2O2 (Pan
et al., 2017; Cao et al., 2018), while induces COL2A1, ACAN
and SOX9 expression in H2O2-treated chondrocytes (Cao et al.,
2018).

It is well known that maintenance of autophagy is essential for
preserving cartilage integrity. In this sense, a novel study
documented that baicalin exerts an anti-apoptotic role through
the up-regulation of Bcl-2 expression and through autophagy
activation via miR-766–3p/apoptosis-inducing factor
mitochondria-associated 1 (AIFM1) axis, which enhances
ECM synthesis on human OA chondrocytes (Li et al., 2020).
Similarly, Ansari et al. found that another flavonoid, butein, can
activate autophagy in IL-1β-stimulated human chondrocytes by
inhibiting the mechanistic target of rapamycin (mTOR) signaling
(Ansari et al., 2018).

Considering the several health benefits and general well-being
that have been associated with honey and its components, the
emerging use of these products as a complementary strategy to
regulate molecular mechanism underlying articular homeostasis
is leading to further investigation in tissue engineering
application for cartilage repair.
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Honey in Cartilage Tissue Engineering
The cartilage ability to self-regeneration is low, even when it is
substituted with tissue-engineered constructs. However, many
promising strategies are still attempting the promotion of AC
repair and regeneration. In this regard, recent studies have
focused on the development of honey-biomaterial based
scaffolds such as hydrogels in order to prompt cartilage repair,
due to the honey intrinsic antibacterial properties and its unique
viscosity enhance the mechanical features of hydrogels (Abd El-
Malek et al., 2017; Hixon et al., 2019; Bonifacio et al., 2020b). The
innovative inclusion of Manuka honey into hydrogel promotes
in vitro human mesenchymal stem cell chondrogenesis via
increasing the expression of COL2A1 as well as the synthesis
of GAGs and proteoglycans; additionally, no cytotoxic effect has
been observed (Bonifacio et al., 2018; Bonifacio et al., 2020a). To
date, in vivo studies of honey-contained hydrogels activity have
shown significant results inhibiting infections and non-severe
immunological reactions (Bonifacio et al., 2020a), which
represent a promising tool for the regeneration of cartilage.

Honey Biosafety for Clinical Applications
The increased interest in honey for medical use is leading to a
strict regulation of its quality and safety. Honey can also contain
toxic compounds including pesticides (Chiesa et al., 2018; El
Agrebi et al., 2020), heavy metals (Bartha et al., 2020; Bosancic
et al., 2020) and antibiotics (Barrasso et al., 2018) due to
environmental pollution in honey harvesting areas. Bacterial
contamination is another relevant factor that must be taken
into consideration to ensure that honey is suitable for
therapeutic purposes; for instance, the presence of Clostridium
botulinum spores have been previously identified in honey
samples (Nevas et al., 2002; Rosli et al., 2020). In this context,
the use of medical-grade honey (MGH) guarantees its safety for
clinical application (Hermanns et al., 2019). It has been proved
that honey bioactivities as antimicrobial, wound healing,
antioxidant and anti-inflammatory properties are still present
after gamma radiation sterilization and the storage conditions are
extended (Postmes et al., 1995; Molan and Allen, 1996; Hussein
et al., 2014).

AlthoughManukaMGH is widely investigated as a novel non-
pharmacological therapeutic strategy worldwide, other honey
types are emerging with similar biological activity. In early
reports, honey from stingless bees including Melipona spp.,
Trigona spp., Tetragonisca spp., and Scaptotrigona spp have
exhibited therapeutic properties for treating inflammation
(Ranneh et al., 2019; Biluca et al., 2020), wound healing (Abd
Jalil et al., 2017; Abdul Malik et al., 2020) and oxidative stress
(Abid et al., 2017; Ranneh et al., 2018; Biluca et al., 2020).
Furthermore, the bioavailability of the most promising
compounds such as apigenin, chrysin and quercetin has been
previously reported in honey from stingless bees (Zulkhairi Amin
et al., 2018). Therefore, they have the biological potential for
modern medicinal applications in other pathologies related to
dysregulated articular homeostasis.

CONCLUSION AND FUTURE
PERSPECTIVES

Since ancestral times, the therapeutic effects of honey have been
described and widely observed in ameliorating the clinical course
of wounds, coughs, skin infections and inflammation. Nowadays,
the effectiveness of honey on counteracting articular damage to
improve the quality of life of individuals with OA is being
explored. We know that the bioactive compounds of honey
exert chondroprotective activity by counteracting the
homeostatic dysregulation of the joint. Therefore, its use as a
therapeutic tool in the management of OA is widely supported, as
it can shift major OA-related signaling pathways. This adjuvant
non-pharmacological strategy might relieve pain, regulate joint
homeostasis and repair AC, slowing down the OA progression;
thus, reducing physical limitations, disabilities, mental stress and
the socioeconomic burden commonly seen in individuals with
this chronic disease.

There is a clear evidence that natural products represent an
excellent source of bioactive molecules with potential medical
applications. We introduced seven natural compounds derived
from honey as possible candidates for treating OA due to their
chondroprotective activity. However, there is a limited number of
in vitro and in vivo reports showing the molecular pathways
underlying the biological effect of honey-derived flavonoids.
Articular homeostasis is quite complex, and its total restoration
by a single molecule after either a biomechanical, inflammatory, or
oxidative stress stimulus can be complex. Nevertheless, maximal
therapeutic potential can be achieved by the combination of these
molecules. However, suitable dosage and outcome represent a
challenging issue. In this context, further preclinical studies are
required to validate the honey emerging applications as a rational
therapeutic strategy for OA, considering that most current reports
have shown the effect of biologically active flavonoids on articular
homeostasis regulation on in vitro research. Finally, it is highly
relevant to develop clinical trials to verify the safety and efficacy of
honey-derived bioactive compounds to better understand their
activity at the cellular and molecular level for future therapeutic
approaches.
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Content in PolyfloralHoney and Potential Health Risk. A Case Study of Copşa
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