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Abstract: The ubiquitin–proteasome system has become a promising molecular target in cancer 

therapy due to its critical role in cellular protein degradation, interaction with cell cycle and 

apoptosis regulation, and unique mechanism of action. Bortezomib (PS-341) is a potent and 

specific reversible proteasome inhibitor, which has shown strong in vitro antitumor activity as 

single agent and in combination with other cytotoxic drugs in a broad spectrum of hematologi-

cal and solid malignancies. In preclinical studies, bortezomib induced apoptosis of malignant 

cells through the inhibition of NF-κB and stabilization of pro-apoptotic proteins. Bortezomib 

also promotes chemo- and radiosensitization of malignant cells in vitro and inhibits tumor 

growth in murine xenograft models. The proteasome has been established as a relevant target 

in hematologic malignancies and bortezomib has been approved for the treatment of multiple 

myeloma. This review summarizes recent data from clinical trials in solid tumors.
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Introduction
Proteasome inhibitors represent a class of drugs that have anticancer activity through 

a variety of cellular mechanisms including induction of apoptosis, interference 

with cell cycle progression, inhibition of angiogenesis, and suppression of nuclear 

transcription factor kappa B (NF-κB).1 The proteasome is a multicatalytic enzyme 

complex that degrades several intracellular proteins by a targeted and controlled 

mechanism.2–4 The activity of proteasome in degradation of tumor-suppressing and 

proapoptotic protein targets known to be dysregulated in many human malignancies 

provides the rationale for its selection as a target for cancer therapy. The first-in-class 

proteasome inhibitor, bortezomib (PS-341; Velcade®; Millennium Pharmaceuticals), 

a boronic acid dipeptide derivative, received approval in the United States (2003) 

and Europe (2004) for relapsed and refractory multiple myeloma.5–7 In the APEX 

phase III study, comparing bortezomib and dexamethasone in patients with multiple 

myeloma, the median time to progression was significantly increased from 106 days 

with dexamethasone to 189 days with bortezomib and the 1-year overall survival 

was also higher in the bortezomib arm (80% vs 66%).7 Recently, the FDA approved 

bortezomib in relapsed mantle cell lymphoma.8

Bortezomib has also shown activity in preclinical studies of a variety of 

solid tumors, and this has paved the way for several phase I/II clinical studies of 

bortezomib either as single agent or in combination with cytotoxic and biologic 

agents.
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This review aims to highlight current knowledge of the 

anticancer effects of bortezomib with emphasis on recent 

clinical studies.

Mechanism of action of proteasome
The ubiquitin-mediated proteasome pathway regulates 

a group of intracellular proteins that govern cell cycle, 

tumor growth, and survival. Proteasome participates 

in the turnover and degradation of several pathways, 

or short-lived cellular regulatory proteins, including 

p53, cyclins and the cyclin-dependent kinase (CDK) 

inhibitors p21 and p27, the estrogen receptor, and the 

inhibitor (IκB) of NF-κ.9–13 26S proteasome consists 

of a multisubunit, cylindrical complex including a 20S 

core catalytic component and 19S regulatory particles 

that contain polyubiquitin-binding sites and isopeptidase 

activity for the cleavage and release of ubiquitin from the 

protein substrate.14 The proteasome requires adenosine 

triphosphate (ATP) hydrolysis and regulates multicata-

lytic protease that selectively degrades polyubiquinated 

proteins. These proteins get marked for degradation by a 

multistep process. Prior to degradation, polyubiquitinated 

moieties are covalently attached to the target proteins in 

a multistep process involving three distinct enzymes: 

the ubiquitin-activating enzyme E1 binds ubiquitin and 

transfers it to the ubiquitin-conjugating enzyme E2. In the 

following step the ubiquitin ligase E3 catalyzes the transfer 

of the polyubiquitinated tails from E2 to lysine residues 

of the target protein, specifically marking them for prote-

olysis protein into small fragments in an ATP-dependent 

manner.4,15 Activated p53 arrests cells in the G1-phase 

and promotes apoptosis to allow elimination of damaged 

cells through induction of the proapoptotic protein Bax, 

which, in turn, is also a proteasomal substrate. The final 

outcome of this process is proteasome inhibitor-induced 

stabilization of p53, p21Cip1, p27Kip1, and Bax, dysregulation 

of cell-cycle progression and, finally, apoptosis.16

The proteasome modulates also the activity of the 

transcription factor nuclear NF-κB. The NF-κB pathway 

is activated by a variety of cellular stress signals, and 

chemo- and radiotherapy, which lead to phosphorylation of 

a serine residue on IκB, which targets it for ubiquitination 

and proteasomal degradation. This process allows activated 

the NF-κB subunit to translocate into the nucleus, where 

it induces expression of a variety of genes encoding 

cell adhesion molecules and antiapoptotic factors 

(Figure 1).17–19 More details have been provided in our 

previous review.20

Preclinical studies of proteasome 
inhibitors
Proteasome inhibitors have been shown to be cytotoxic against 

a variety of cancer cell lines in vitro and in in vivo models. 

The activity of bortezomib in solid tumors in vivo has been 

evaluated in a variety of xenograft models.21,22

Bortezomib also increases the sensitivity of tumor cells 

to chemotherapy and radiation and reverses chemoresistance. 

Bortezomib was two times more potent in inhibiting the growth 

of chemoresistant multiple myeloma cells compared with che-

mosensitive cells, in direct correlation with NF-κB activity.23 

In colon carcinoma cells, bortezomib inhibited the radiation-

induced increase in NF-κB and enhanced radiosensitivity.24

Many chemotherapeutics induce NF-κB and thereby 

activate an antiapoptotic program that, if inhibited, can 

enhance the antitumor activity of the chemotherapeutic.25 Inhi-

bition of the proteasome was shown initially to increase the 

efficacy of CPT-11 (irinotecan) through blockade of NF-κB 

in a model of colon cancer.26 In another study, gemcitabine 

caused a 59% reduction of pancreatic cancer volume 

compared with control, while the combination of gemcitabine 

and bortezomib increased growth inhibition to 75%.27

Taken together, results from preclinical studies show that 

bortezomib can induce apoptosis in a number of otherwise 

resistant tumor cells and can sensitize cancer cells to other 

cytotoxic agents and radiation therapy.

Clinical studies
The clinical feasibility of using bortezomib for treating solid 

malignancies has been explored in a number of phase I and II 

studies, the main of which are summarized below.

Phase i studies
A number of phase I trials have been carried out with different 

schedules of bortezomib.

A phase I clinical study evaluated the dose-limiting 

toxicity (DLT) and maximum-tolerated dose (MTD) of 

bortezomib as single agent administered as an intravenous 

bolus once-weekly for 4 out of 5 weeks in 53 patients, 

48 of whom had advanced androgen-independent prostate 

cancer. The DLT was seen in 2 of 5 patients treated with 

a dose of 2.0 mg/m2, and it included grade 3 diarrhea in 

both patients and grade 3 syncope and hypotension in one 

patient; so, the recommended phase II dose of bortezomib 

was 1.6 mg/m2. Two patients with prostate cancer had 

prostate-specific antigen response, whereas 2 patients had 

partial response in lymph nodes. The biologic activity, 

such as inhibition of NF-κB related markers, was seen 
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at tolerated doses of bortezomib. The maximum level of 

20S inhibition was 70% to 75%, which suggests that the 

inhibition of proteasome is saturable.28 Another phase I 

study tested two different schedules (schedule 1: twice 

weekly for 4 out 6 weeks; schedule 2: twice weekly for 2 out 

of 3 weeks) of bortezomib in 44 patients with advanced 

cancers. The most common toxicity was thrombocytopenia, 

which was dose limiting at 1.7 mg/m2 (schedule 1) and 

1.6 mg/m2 (schedule 2), whereas the MTD was 1.5 mg/m2 

for both schedules. A patient with multiple myeloma had a 

partial response.29 Another schedule of bortezomib (starting 

dose: 1.0 mg/m2 on days 1, 4, 8, 11, every 3 weeks) was 

tested in a phase I/II study in 18 patients with unresectable 

hepatocellular carcinoma. Grade 2/3 toxicities included 

thrombocytopenia, fatigue, and neuropathy. MTD was con-

sidered to be 1.3 mg/m2. In 7/15 evaluable patients, stable 

disease was observed.30 The phase I single-agent studies 

with bortezomib are summarized in Table 1.

• Anti cancer agents
• ROS
• Ischemia

• DNA damage

IKK complex

p65
p50

NF-κB
NF-κB

NF-κB
NF-κB
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Figure 1 Several intra- and extracellular factors induce the intracellular increase of the iKK complex which phosphorylates the iKB protein. Phosphorylation of iKB causes its 
ubiquitination and degradation by 26S proteasome. NF-κB complex is then able to interact with its DNA ligand site, stimulating transcription of several genes which prompt 
apoptosis inhibition, growth factor increases, and cell survival. Bortezomib acts by inhibiting 26S proteasome.
Abbreviation: rOS, reactive oxygen species.

Table 1 Phase i single agent studies of bortezomib

Patient population Prostate cancer Advanced others solid tumors Hepatocarcinoma

Number of patients 53 46 14

Schedule Starting dose of 0.13 mg/m2 
iv once weekly for 4 weeks 
q5 weeks

Arm 1: starting dose of 0.13 mg/m2 
iv twice weekly for 4 weeks q6 weeks 
Arm 2: starting dose of 0.13 mg/m2  
iv twice weekly for 2 weeks q3 weeks

Starting dose of 1.0 mg/m2 
iv on days 1, 4, 8, 11 q3 weeks

Best response obtained 2 Pr 2 SD 1 Pr 7 SD

Toxicity observed Diarrhea and hypotension Neurotoxicity and fatigue Thrombocytopenia, 
neurotoxicity and fatigue

MTD 1.6 mg/m2 Arm 1: 1.7 mg/m2 Arm 2: 1,6 mg/m2 1.3 mg/m2

Abbreviations: Pr, partial response; SD, stable disease; MTD, maximum-tolerated dose.
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Following preclinical studies which highlighted the 

synergy between bortezomib and taxanes,31,32 a phase I 

trial of twice-weekly bortezomib and weekly docetaxel 

was carried out; the recommended doses were 0.8 mg/m2 

and 25 mg/m2, respectively, every 21 days. The DLT were 

thrombocytopenia and febrile neutropenia. Clinical activ-

ity was low in this pretreated patient population, since only 

4 patients had stable disease as best observed response.33 

In another phase I study, the combination of paclitaxel and 

bortezomib revealed no response rates.34 Another phase I 

study was carried out to evaluate the combination between 

5-fluorouracil (5-FU) 500 mg/m2 and leucovorin (LV) 

20 mg/m2 with starting dose of bortezomib 0.5 mg/ m2 twice 

weekly for 4 weeks, with 2 weeks rest. One partial response, 

8 stable disease, and 10 progressive disease were achieved 

in 19 patients.35 Another phase I clinical trial evaluated the 

safety and biologic effects of bortezomib and irinotecan 

coadministered in 51 patients. The MTD for the combina-

tion regimen was bortezomib 1.3 mg/m2 twice a week and 

irinotecan 125 mg/m2 on days 1, 8, followed by a 1-week 

rest.36 In another study, escalating doses of bortezomib 

were administered along with standard FOLFOX-4 doses, 

in order to evaluate the DLT, toxicity profile, and activity 

of the combination. Among 13 evaluable patients, 5 had 

a partial response, 5 had stable disease, and 3 progressed. 

Two patients are long-term survivors after a combined 

chemosurgical approach.37

Findings from preclinical studies38 prompted a phase I 

trial to determine the MTD of escalating doses of gemcitabine 

(1000 mg/m2 given once a week for 2 weeks) with bortezomib 

(1.0 mg/m2 given twice a week) every 21 days, in 31 patients 

with advanced solid tumors. This combination was well 

tolerated and a partial response was observed in a patient 

with advanced nonsmall-cell lung cancer (NSCLC), who 

had been pretreated with gemcitabine.39 In another phase I 

study, a combination of bortezomib, gemcitabine, and car-

boplatin induced 4 partial responses and 5 stable diseases in 

16 patients with advanced NSCLC.40

In addition to these studies, the administration of gem-

citabine via fixed-dose rate (FDR) infusion at 10 mg/m2/min 

has been shown to increase accumulation of the active 

phosphorylated metabolite of the drug. Recently, a phase I 

trial was set out to determine the safety, toxicity, and MTD 

of FDR gemcitabine with bortezomib in advanced solid 

tumors refractory to standard therapy. One partial response 

lasting 12 months was observed in breast cancer, and 6 stable 

disease were observed in 29 patients. The combination of 

FDR gemcitabine with bortezomib may warrant further 

studies in advanced breast, lung, ovarianm, and pancreatic 

cancer patients.41

A marked effect of escalating dose of bortezomib 

administered twice weekly for 2 weeks every 21 days in 

combination with a fixed dose of carboplatin (AUC = 5) 

was assessed in 15 patients with advanced ovarian cancer 

who had received upfront chemotherapy and up to 2 prior 

chemotherapy regimens for recurrent disease. The overall 

response rate to this combination was 47%, with 2 complete 

responses and 5 partial responses, including 1 complete 

response in a patient with platinum-resistant disease.42 

A Gynecologic Oncology Group phase II trial of single-

agent bortezomib in recurrent ovarian cancer is currently 

ongoing. Kubicek and co-workers have recently presented 

the preliminary results of a phase I trial of bortezomib, 

cisplatin, and radiotherapy for advanced head and neck 

cancer. The combination proved feasible; main toxicity was 

trombocytopenia; no clinical relevant peripheral neuropathy 

occurred; and most of the other observed toxicities were 

clearly attributable to cisplatin and radiation therapy.43 

The final paper is awaited with full details on safety and 

activity.

Phase I combination studies with bortezomib are sum-

marized in Tables 2 and 3.

Phase ii studies
A large number of phase II studies of single-agent 

bortezomib have been carried out or are currently underway. 

Phase II trials of bortezomib as single agents in patients 

with melanoma,44 recurrent or metastatic sarcomas,45 

neuroendocrine tumors,46 colorectal cancer,47 advanced 

renal cancer,48,49 and advanced breast cancer50,51 revealed 

no significant response rates.

Bortezomib was safe, the most significant clinical adverse 

event being a peripheral sensory neuropathy. Phase II studies 

of single agent bortezomib are summarized in Table 4.

A randomized phase II study was conducted in 87 patients 

with metastatic pancreatic cancer, who were randomized 

to receive bortezomib alone (1.5 mg/m2 twice weekly for 

2 weeks every 3 weeks) or a combination of bortezomib 

(1.0 mg/m2 twice weekly for 2 weeks every 3 weeks) plus 

gemcitabine (1000 mg/m2 on days 1, 8 every 3 weeks). The 

response rate was 0% in the arm with bortezomib alone, 

with median survival of 2.5 months and median time to 

progression of 1.2 months. Four patients achieved a partial 

response in the combination arm, but the benefit obtained 

with bortezomib alone or in combination with gemcitabine 

was low.52
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Fanucchi et al investigated the safety and efficacy of 

bortezomib monotherapy (arm A) compared with the com-

bination of bortezomib and docetaxel (arm B) as second-line 

therapy in 155 patients with locally advanced and metastatic 

NSCLC. Overall response rate was 8% in arm A and 9% 

in arm B. Time to response was 36 to 83 days in arm A, 

5 of 6 patients responding within 40 days, and 38 to 99 days in 

arm B, 2 of 7 patients responding within 41 days.53 Bortezomib 

plus docetaxel seemed to demonstrate modest benefit com-

pared with bortezomib monotherapy. Phase II combination 

studies of bortezomib are summarized in Table 5.

Conclusion and future perspectives
The 26S proteasome acts as a housekeeper to eliminate 

damaged or misfolded proteins. In addition, many 

regulatory proteins governing the cell cycle, transcription 

factor activation, apoptosis, and cell trafficking are the 

substrates for proteasome-mediated degradation. Five 

years after entering clinical trials, bortezomib has demon-

strated efficacy for the treatment of patients with recurrent 

and refractory multiple myeloma. The clinical results in 

multiple myeloma provide proof of concept for proteasome 

inhibition as an anticancer therapy, and the role of bort-

ezomib in other types of cancer therapy is undergoing 

active investigation. In contrast to the results of myeloma, 

the treatment of solid tumors with either single-agent 

bortezomib or bortezomib in combination with conven-

tional chemotherapy agents has not yet yielded significant 

improvements in treatment response. Probably, a more 

extensive investigation of the survival signals induced by 

proteasome inhibition may offer further insight into the 

poor responses of solid malignancies.

The dysregulation of a variety of pathways, such 

as NF-κB, epidermal growth factor receptor (EGFR), 

Table 3 Phase I disease specific combination studies of bortezomib

Patient 
population

Advanced NSCLC Advanced 
ovarian tumors

Advanced head and 
neck cancer

Advanced colorectal 
cancer

Number of 
patients

16 15 17 13

Schedule Starting dose of 1.0 mg/m2 
iv on days 1, 4, 8, 11 + 
gemcitabine 800 mg/m2 
on days 1, 8 + CBDCA AUC 
5 on day 1 q3 weeks

Starting dose of 
0.75 mg/m2 iv on 
days 1, 4, 8, 11 + 
CBDCA AUC 5 on 
day 1 q3 weeks

Starting dose of 
0.7 mg/m2 iv on days 1, 4, 
8, 11 + CDDP 30 mg/m2 
on day 1 q3 weeks

Starting dose of 
1.03 mg/m2 iv on days 1, 8, 
15 + FOLFOX-4 q2 weeks

Best response 
obtained

4 Pr  
5 SD

2 Cr  
5 Pr

Nr 5 Pr  
5 SD

Toxicity 
observed

Myelosuppression Diarrhea Thrombocytopenia Myelosuppression  
and diarrhea

Abbreviations: NSLC, nonsmall-cell lung cancer; Pr, partial response; SD, stable disease; Nr, not reported; CBDCA, carboplatin; CDDP, cisplatin.

Table 2 Phase i combination studies of bortezomib in advanced solid tumors

Number 
of patients

21 14 25 51 31 29

Schedule Starting dose 
of 0.5 mg/m2 iv 
twice weekly + 
5-FU 500 mg/m2 
+ leucovorin 
20 mg/m2 on 
day 1 q2 weeks

Starting dose 
of 0.8 mg/m2 iv 
on days 2, 5, 9, 
12 + docetaxel 
25 mg/m2 
on days 1, 8 
q3 weeks

Starting dose 
of 0.6 mg/m2 iv 
on days 2, 5, 9, 
12 + paclitaxel 
80 mg/m2 
on days 1, 8 
q3 weeks

Starting dose 
of 1.3 mg/m2 iv 
twice a week 
+ irinotecan 
125 mg/m2 
on days 1, 8 
q3 weeks

Starting dose 
of 1.0 mg/m2 iv 
twice a week 
+ gemcitabine 
1000 mg/m2 on 
days 1, 8 q3 weeks

Starting dose of 
1.0 mg/m2 iv on 
days 1, 4, 8, 11 + 
FDr gemcitabine 
750, 1000, 
1250 mg/m2 on 
days 1, 8 q3 weeks

Best response 
obtained

1 Pr  
8 SD

4 SD 1 Pr 10 SD 1 Pr  
7 SD

1 Pr  
6 SD

Toxicity observed Abdominal pain 
and diarrhea

Hematologic Neurotoxicity 
and fatigue

Diarrhea, 
nausea and 
vomiting

Abdominal pain and 
hematologic

Neutropenia and 
thrombocytopenia

Abbreviations: FDR, fixed dose rate; PR, partial response; SD, stable disease; 5FU, 5-fluorouracil.
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and Ras/PI3K/Akt, is very common in solid tumors. 

It is known that bortezomib also interferes with the p44/42 

mitogen-activated protein kinase (MAPK), a downstream 

effector of EGFR pathway that communicates proliferative 

signals, and induces accumulation of cyclin-dependent kinase 

inhibitors p21Cip1 and p27Kip1.54 Signaling by the EGFR fam-

ily occurs through several downstream pathways to promote 

cell proliferation and inhibit apoptosis,55,56 suggesting that 

EGFR itself might be subjected to ubiquitination and sub-

sequent proteolityc breakdown, and that this process might 

be affected by proteasome inhibition. On the basis of this 

assumption, a preclinical study was carried out to evaluate 

the effect of proteasome inhibitor on EGFR survival signal-

ing in pancreatic cancer cells.57 Intriguingly, the addition 

of EGFR inhibition only enhanced proteasome inhibi-

tor effects in vivo but not in vitro, suggesting that some 

other paracrine response may be involved in the effects of 

EGFR inhibition in vivo. An and Rettig have described the 

importance of the sequence of drug administration when 

bortezomib is used in combination with an EGFR tyrosine 

kinase inhibitor in renal carcinoma cells.58 They concluded 

that pre-treatment of renal carcinoma cells with the EGFR 

tyrosine kinase inhibitor prior to bortezomib was cytotoxic, 

whereas an antagonist interaction resulted with the reverse 

schedule. The authors also postulated that the diminished 

AKT and NF-κB, inhibition observed when renal carcinoma 

cells were pretreated with bortezomib, might result from 

decreased degradation of signaling proteins that function 

to converge on the EGFR/PI3K/AKT/NF-κB pathway, 

although direct evidence to support or refute this hypothesis 

does not yet exist.

In summary, these findings show that proteasome 

inhibitor treatment activates several mitogenic signaling 

pathways that blunt the full potential of the apoptotic 

response to proteasome inhibitor treatment. As an alternative 

or addition to EGFR inhibition, selective inhibition of these 

downstream mitogenic signaling pathways may increase 

the apoptotic response to proteasome inhibition and further 

overcome the drug resistance mechanisms in solid tumors. 

These preclinical studies might identify new drug combina-

tions to enter clinical trials.

Disclosures
The authors disclose no conflicts of interest.

Table 5 Phase ii combination studies of bortezomib

Patient 
population

Metastatic colorectal 
cancer

Metastatic pancreatic 
carcinoma

Pretreated NSCLC

Number of 
patients

68 87 155

Schedule Arm 1: 1.5 mg/m2 on 
days 1, 4, 8, 11 q21 days 
Arm 2: 1.3 mg/m2 on days 1, 
4, 8, 11 + CPT 11 125 mg/m2 
on day 1 q21 days

Arm 1: 1.5 mg/m2 
on days 1, 4, 8, 11 
q21 days Arm 2: 1.3 mg/m2 on 
days 1, 4, 8, 11 + gemcitabine 
1000 mg/m2 on day 1 q21 days

Arm 1: 1.5 mg/m2 on days 1, 4, 8, 
11 q21 days Arm 2: 1.3 mg/m2 on 
days 1,4,8,11 + docetaxel 75 mg/m2 
on day 1 q21

response rates % NA 10% rr 42% rr

Toxicity observed Hematologic, neurotoxicity 
and fatigue

Abdominal pain, fatigue and 
thrombocytopenia

Neutropenia, neurotoxicity and 
fatigue

Abbreviations: rr, response rate; CPT, irinotecan.

Table 4 Phase ii single agent studies of bortezomib

Patient 
population

Metastatic 
melanoma

Recurrent/metastatic 
soft tissue sarcoma

Metastatic 
neuroendocrine 
tumors

Metastatic 
colorectal 
cancer

Advanced 
renal tumors

Metastatic 
breast cancer

Number of 
patients

27 25 16 19 60 24

Best response 
obtained

6 SD 1 Pr 11 SD 3 SD 5 Pr 14 SD 1 SD

Toxicity 
observed

Neurotoxicity, 
fatigue and 
thrombocytopenia

Neurotoxicity, myalgia 
and fatigue

Neurotoxicity, 
diarrea and vomiting

Neurotoxicity 
and myalgia

Neurotoxicity Thrombocytopenia 
and fatigue

Abbreviations: Pr, partial response; SD, stable disease.
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