ORIGINAL ARTICLE

Genetic testing and clinical relevance of patients with thoracic aortic aneurysm and dissection in northwestern China

Jinjie Li¹ | Liu Yang¹ | Yanjun Diao¹ | Lei Zhou¹ | Yijuan Xin¹ | Liqing Jiang² | Rui Li¹ | Juan Wang¹ | Weixun Duan² | Jiayun Liu¹

¹Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China

²Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China

Correspondence

Liu Jiayun, Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

Email: jiayun@fmmu.edu.cn

Duan Weixun, Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China. Email: duanweixun@126.com

Abstract

Background: Thoracic aortic aneurysm and dissection (TAAD) is a lifethreatening pathology that remains a challenge worldwide. Up to 40% of TAAD cases are hereditary with complex heterogeneous genetic backgrounds. The purposes of this study were to determine the diagnostic rate of patients with TAAD, investigate the molecular pathologic spectrum of TAAD by next-generation sequencing (NGS), and explore the future preclinical prospects of genetic diagnosis in patients at high -risk of study.

Methods: NGS was used to screen 15 genes associated with genetic TAAD in 212 patients from northwestern China. Clinical data of patients were gathered by electrocardiography, transthoracic echocardiography, and computed tomography.

Results: Of the 212 patients, 67 (31.60%) tested positive for a (likely) pathogenic variant, 42 (19.81%) had a variant of uncertain significance (VUS), and 103 (48.58%) had no variant (likely benign/benign/negative). A total of 135 reportable variants were detected in our test, among which 77 (57.04%) are first reported in this paper. A genotype-phenotype correlation of FBN1 was assessed, and the data showed that the patients with truncating and splicing mutations are more prone to developing severe aortic dissection than those with missense mutations, especially frameshift mutations (82.76% vs. 42.86%). In this study, 43 (20.28%) patients had a family history of sudden death or TAAD, whereas 132 (62.26%) did not (the remaining 37 were not available), and the positive rate of genetic testing was higher in TAAD patients with family history than in those without (76.74% vs. 18.94%).

Conclusion: Our study concludes that genetic variation is an important consideration in the risk stratification of individualized prediction and disease diagnosis.

KEYWORDS

ACTA2, FBN1, genetic testing, Marfan syndrome, TAAD

Jinjie Li and Liu Yang contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2021 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.

1 | INTRODUCTION

Thoracic aortic aneurysm and dissection (TAAD) is one of the most common causes of sudden death today (Meszaros et al., 2000). According to data from the US Centers for Disease Control and Prevention, aortic rupture/dissection is the 19th leading cause of death among residents (43,000-47,000 deaths/year) (Hoyert et al., 2001). Patients with aortic aneurysms usually do not have any symptoms until they are diagnosed with aortic rupture/dissection, which makes the early diagnosis of aortic aneurysms difficult (Kuzmik et al., 2012; Nienaber & Clough, 2015). If high-risk patients are detected, and interventions are carried out in a timely manner, mortality can be greatly reduced (Huynh & Starr, 2013). Genetic variants can lead to the occurrence of aortic disease, thus providing feasibility for the early diagnosis and family screening of patients with aortic aneurysms (Jondeau et al., 2016; Regalado et al., 2015). If the individual is known to have a genetic predisposition to TAAD, treatment can be initiated as early as possible to prevent the risk of death from an aortic aneurysm or dissection. Studies have found that approximately 20%-40% of patients with TAAD syndrome have a family history, suggesting that a large portion of the disease is caused by genetic factors (Albornoz et al., 2006; Biddinger et al., 1997). A previous analysis of families with TAADaffected individuals found that the disease mainly follows the autosomal dominant inheritance pattern, with incomplete penetrance, suggesting that single-gene variants are very likely to be the genetic causes of the disease. The clinical phenotype of TAAD is highly variable, not only in the age of onset and aortic lesions but also in other cardiovascular diseases, such as congenital heart disease (congenital aortic stenosis and patent ductus arteriosus), and other vascular diseases (intracranial aneurysms, coronary heart disease, and cerebrovascular obstructive diseases) (Erbel et al., 2014; Moll et al., 2011). The diversity of clinical manifestations of TAAD suggests that there may be multiple causative genes, and this view has been confirmed through the identification of various pathogenic gene variants in TAAD patients (Renard et al., 2018). Although some other genotypephenotype studies have been performed in TAAD, the full spectrum of gene variants and the exact correlations to phenotype are still subject to debate (Gago-Diaz et al., 2017). A deeper understanding of the relation between genotype and phenotype can aid in clinical diagnosis. The objective of our study was, therefore, to summarize the different genetic variants and establish a genotypephenotype correlation in a broad population of TAAD patients, with a particular focus on FBN1 (OMIM 134797) and aortic events.

2 | METHODS

2.1 | Participants

The current study was approved by the ethics committee of Xijing Hospital and adhered to the Declaration of Helsinki. All experimental protocols were approved by the ethics committee of Xijing Hospital and were carried out in accordance with the approved guidelines. Each individual undergoing the genetic test was adequately informed regarding the benefits and risks of the test and signed the consent form.

Between August 2017 and September 2019, we tested a total of 212 patients with various aortic phenotypes, such as early onset aortopathy patients with no apparent secondary causes and patients suspected of having Marfan syndrome. Electrocardiography, transthoracic echocardiography, and computed tomography were the main methods used to examine the aorta and heart. The follow-up study was carried out in subsequent clinic visits to the outpatient department and by telephone interviews.

2.2 | Next-generation sequencing

The gene panel we used contains 15 genes known to be associated with Marfan syndrome and its related aortic diseases and has been described previously described (Yang et al., 2016). The 15 genes are FBN1, TGFBR1 (OMIM 190181), TGFBR 2 (OMIM 190182), SMAD3 (OMIM 603109), SMAD4 (OMIM 600993), TGFB2 (OMIM 190220), COL3A1 (OMIM 120180), SLC2A10 (OMIM 606145), MYH11 (OMIM 160745), ACTA2 (OMIM 102620), NOTCH1 (OMIM 190198), MYLK (OMIM 600922), PRKG1 (OMIM 176894), FBN2 (OMIM 612570), and SKI (OMIM 164780). Genomic DNA was extracted from ethylene diamine tetraacetic acid (EDTA)-anticoagulated whole blood and checked to ensure DNA quality and quantity before processing. Library preparation was performed according to the manufacturer's instructions (Ion AmpliSeqTM library kit 2.0, Life Technologies, Inc.). Pooled libraries (up to 12-15 samples per chip) were sequenced on an Ion 318TM Chip on a Life PGMTM Instrument. Suspected pathogenic variants and VUSs were confirmed using Sanger sequencing. Exons in FBN1 with low (<20X) or no coverage were also subjected to Sanger sequencing to obtain 100% coverage.

2.3 | Familial screening

If findings showed a pathogenic genetic variant, firstdegree relatives began a screening process consisting of

		(Likely) Pathogenic mutation (n = 67)	No suspicious mutation (n = 103)	р
Female sex, n (%)		19 (28.36%)	20 (19.41%)	0.175
Average age, n (%)		31.60 ± 9.74 (y)	39.03 ± 10.35 (y)	<0.001
Average height (Ma	ale/Female)	$180.42 \pm 14.85/173.40 \pm 8.72$ (cm)	$\begin{array}{c} 176.15 \pm 6.68 / 164.87 \pm 6.03 \\ (\text{cm}) \end{array}$	<0.001/0.005
Hypertension, n (%)	9 (13.43%)	42 (40.78%)	<0.001
Aortic dissection, n	n (%)	46 (68.66%)	72 (69.90%)	0.863
Aortic aneurysm	Aortic root, n (%)	48 (71.64%)	48 (46.60%)	0.001
	Ascending aortic, n (%)	34 (50.75%)	55 (53.40%)	0.735
Co-occurrence of a dissections	neurysms and	42 (62.69%)	47 (45.63%)	0.030
Valvular disease, n	(%)	33 (49.25%)	41 (39.80%)	0.225
Family history, n (9	%)	33 (49.25%)	3 (2.91%)	<0.001
Ectopia lentis, n (%)	14 (20.90%)	4 (3.88%)	0.001

TABLE 1 Comparison of clinical characteristics in patients with (likely) pathogenic mutation and with no suspicious mutation

an exhaustive physical examination, transthoracic echocardiography, and genetic testing to screen for the same variant that was found in the index case.

2.4 | Variant filter criteria

Nonsynonymous variants with a rare allele frequency <0.1% with the absence of variant alleles either in the 1000 Genomes Project database, the NCBI dbSNP database, the 5000 Exomes database, or in our reference samples (GRCh37/HG19) were taken for further analysis. Variants were categorized according to the American College of Medical Genetics (ACMG) (Richards et al., 2015). Specifically, the analysis was based on the following criteria: (a) whether they were previously reported in a functional study or in a family segregation study, (b) the nature of the variant (e.g., nonsense, frameshift indel, or splicing mutation [intron ± 1 or ± 2]), (c) variant frequency in the 1000 Genomes Project database or in the Exome Sequencing Project (ESP6500) and ExAC03, (d) conservation of the altered residue, (e) in silico-based computational prediction (SIFT, PolyPhen-2, or Mutation-Taster), (f) de novo occurrence, and (g) family segregation studies. Based on this information, a variant was classified into one of the five following categories: benign, likely benign, unknown significance, likely pathogenic, or pathogenic.

2.5 | Statistical analysis

Qualitative variables are expressed as percentages and relationship contrasts were analyzed using the χ^2 test or, failing that, the Fischer test. Quantitative variables

expressed as mean \pm standard deviation was analyzed using Student's *t*-test for variables that followed a normal distribution and the Mann–Whitney *U* test for those that did not. All statistical analyses were conducted using SPSS v21.

3 | RESULTS

3.1 | Clinical characteristics

A total of 212 patients with suspected genetic TAAD were enrolled in our cohort. The age of the patients ranged from 3.5 to 69 years, and their age at diagnosis was 38.14 ± 11.33 years. Among them, 166 patients were male (78.30%), and 46 patients were female (21.70%). The mean age of men and women was 38.11 ± 11.62 years and 38.22 \pm 10.56 years. Forty-three (20.28%) patients had a family history of sudden death or TAAD. The mean age of them was 36.48 ± 9.32 years old. Furthermore, the mean age of 132 (62.26%) individuals with negative family history was 39.52 ± 12.44 years. The family history of the remaining 37 patients was not available. Of the 43 patients with a family history, 33 (76.74%) were identified with (likely) pathogenic variants. However, only 25 (18.93%) among 132 individuals had a negative family history.

Of the 212 patients, 67 (31.60%) tested positive for a (likely) pathogenic variant, 42 (19.81%) had a VUS, and 103 (48.58%) had no variant (likely benign/benign/ negative) according to the 15-gene panel (mentioned in METHODS). Since a VUS should not be considered disease-causing, the clinical characteristics of patients with (likely) pathogenic variants were compared with WILFY_Molecular Genetics & Genomic Medicine

those of patients with no variant (summarized in Table 1). Patients carrying causative variant with an average age of 31.60 ± 9.74 years were younger than those carrying no significant variant, with an average age of 39.03 ± 10.35 years (p < 0.001). The average height of the patients with (likely) pathogenic variants was higher than that of the patients with no variant, both for males $(180.42 \pm 14.85/173.40 \pm 8.72 \text{ cm}, p < 0.05)$ and females $(176.15 \pm 6.65/164.87 \pm 6.03 \text{ cm}, p < 0.05)$. A family history was more frequent in patients with (likely) pathogenic variant (49.25% vs. 2.91%, *p* < 0.05). In our cohort, 19 individuals had ectopia lentis, and one had lost his sight. Of these 19 individuals, 14 carried likely pathogenic/pathogenic variants, 1 had a detected VUS, and 4 had no variant. Regarding cardiovascular issues, hypertension was more commonly found in patients with no variant (40.78% vs. 13.43%, p < 0.05), and the incidence of aortic root aneurysms was higher in patients with (likely) pathogenic variants than in patients with no variant (71.64% vs. 46.60%, p < 0.05). However, the differences in aortic dissection, ascending aortic aneurysm, and valvular disease were not significant between the two groups (68.66% vs. 69.90%, p = 0.863; 50.75% vs. 53.40%, *p* = 0.735; and 49.25% vs. 39.80%, *p* = 0.225, respectively). According to these data, there is a cooccurrence of an aortic aneurysm and dissection in both groups; these events occurred 42 times in patients with (likely) pathogenic variant and 47 times in patients with no variant, and the differences were significant (62.69% vs. 45.63%, *p* < 0.05).

3.2 | Genetic characteristics

The gene panel sequencing of 212 TAAD patients revealed 135 reportable variants in 109 patients. According to ACMG/AMP guidelines for variant classification, 67 (49.63%) were classified as (likely) pathogenic variants (Table 2), and 68 (50.37%) were classified as VUSs (Table S1). Several patients carried more than one pathogenic variant (PV), likely pathogenic variants (LPV), and/or VUS, which explains the difference between the number of variants and the number of patients with reportable variants. Twenty-three individuals with more than one PV, LPV, or VUS are listed in Table S2. (Likely) PV were identified in FBN1, ACTA2, MYH11, TGFBR1, TGFB2, and COL3A1, and VUSs were identified in 14 genes in the panel (all except for SKI) (Figure 1). Most (58/67) of the (Likely) PV occurred in the FBN1 gene because the cysteine residues in this gene are evolutionarily conserved and have essential functions. Thus, disruption or production of a cysteine residue indicates that the variant is probably pathogenic.

Fifty-two of the 135 reportable variants (38.52%) have been reported in the ClinVar, HGMD, or UMD (http:// www.umd.be/FBN1/) database, and 77 (57.04%) were first reported in our paper. At least 47 of the 109 patients' parents accepted genetic testing by Sanger sequencing for the variant identified in their child. Twenty-nine (61.70%) individuals inherited the variants from their parents, and the other 18 (38.30%) individuals had de novo variants, indicating that neither parent carried the same variant as the proband.

3.3 | Genotype-phenotype correlation of *FBN1*

Of all the 212 probands, 58 tested positive for a (likely) pathogenic FBN1 variant. We investigated the correlation between the FBN1 variant type and aortic events, and the results are shown in Table 3. Most patients showed more than one cardiovascular manifestation. Thirty-seven patients had a life-threatening aortic dissection, 46 had an aortic aneurysm, and 32 had severe valvular disease (including bicuspid aortic valve and mitral valve prolapse), and these patients underwent an appropriate vascular surgery. In addition, five patients had mild aortic dilation or only skeletal manifestations at a very young age (13.50 years); therefore, attention to aortic progression should be paid in future. The truncating and splicing mutations tended to result in more serious aortic dissection than missense mutations according to the data (82.76% [24/29] vs. 42.86% [12/28]). Moreover, patients with FBN1 frameshift mutations experienced aortic dissection at an earlier age than those with missense mutations (32.0 years vs. 35.1 years). In addition, one unique deletion in FBN1 (c.5796_5798delTCA, p. Ser1933del) was detected in a young male who had undergone surgery due to lifethreatening aortic dissection when he was only 19 years old.

3.4 | Family analysis and variant reclassification

Family segregation studies can provide strong evidence for variation classification; hence, they should be performed when available. Eleven variants were reclassified through family segregation. The variants were downgraded to likely benign because their healthy family members also carried the variant, the variant details are shown in Table 4.

Notably, a novel variant *ACTA2* (c.583delC, p. Leu195Term) was found on our screen. The variant was first detected in the proband (II1) of a family affected by TAAD (Figure 2). The patient's two younger sisters and

LIE	ΓAL.												Molec	ular Ge	netics &	& Geno	omic Me	edicine	\mathcal{N}	ILE	Y 50	of 13
	ACMG Criteria	PVS1+PM2+PS4_ Supporting	PVS1+PM2+PP4	PVS1+PM2+PS4_ Supporting	PS4+PM1+PM2+PP3	PVS1+PM2+ PP4	PVS1+PM2+PM6	PVS1+PM2+ PP4	PS1+PM1+PM2+PP3	PVS1+PS2+PM2	PVS1+PM2+PS4_ Supporting	PS1+PM1+PM2+PP3	PVS1+PM2+PP4	PVS1+PM2+PS4_ Supporting	PVS1+PM2+PS4_ Supporting	PS2+PM2+PM4	PVS1+PM2+	PVS1+PM2+PP1	PVS1+PM2+PP4	PS3+PS4Moderate +PM2+PP3+PP1	PS3+PS4Moderate +PM2+PP3+PP1	(Continues)
	Report Ref (PMID)	19012347	This paper	8406497	17994018	This paper	11826022	This paper	This paper	12068374	25652356	17657824	This paper	12938084	This paper	This paper	This paper	This paper	This paper	17994018	21248741	
	Pathogenicity	Pathogenic	Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Pathogenic	Pathogenic	Likely Pathogenic	Likely Pathogenic	Pathogenic	Pathogenic	Pathogenic	Pathogenic	
	De novo	NA	NA	NA	NA	NA	NA	NA	Inherited from father	De novo	NA	NA	Inherited from mother	NA	NA	De novo	NA	Inherited from mother	NA	NA	NA	
	Mutation type	Frameshift	Splicing	Splicing	Missense	Splicing	Frameshift	Frameshift	Missense	Stop gain	Frameshift	Missense	Frameshift	Stop gain	Frameshift	Deletion	Frameshift	Frameshift	Frameshift	Missense	Missense	
	Protein change	p. Leu459fs	splicing	splicing	p. Arg149Cys	splicing	p. Met2347fs	p. Leu943fs	p. Cys1812Phe	p. Arg1644Ter	p. Thr549fs	p. Cys365Arg	p. Gln2497fs	p. Arg364Ter	p. Val2687fs	p.1932_1933del	p. Thr1001fs	p. Gly1659fs	p. Glu2252fs	p. Arg149Cys	p. Arg39Cys	
	Nucleotide change	c.1377_1378del	c.6380-1G>A	c.247+1G>A	c.445C>T	c.5918-3G>T	c.7039_7040del	c.2827_2828del	c.5435G>T	c.4930C>T	c.1646_1647del	c.1093T>C	c.7489delC	c.1090C>T	c.8059_8060del	c.5796_5798del	c.3001dupA	c.4977delT	c.6755_6756del	c.445C>T	c.115C>T	
ns in our cohort	Exon/Intron	exon12	intron52	intron3	exon5	intron47	exon58	exon24	exon45	exon40	exon14	exon10	exon61	exon10	exon65	exon48	exon25	exon41	exon56	exon5	exon2	
athogenic mutatio	Transcript	NM_000138	NM_000138	NM_000138	NM_001141945	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_001141945	NM_001141945	
2 (Likely) P	Gene	FBNI	FBN1	FBNI	ACTA2	FBNI	FBNI	FBNI	FBN1	FBNI	FBNI	FBNI	FBN1	FBN1	FBNI	FBNI	FBNI	FBNI	FBNI	ACTA2	ACTA2	
TABLE	Sample ID	AD1	AD5	AD6	AD13	AD20	AD21	AD32	AD38	AD41	AD42	AD43	AD45	AD46	AD47	AD48	AD49	AD50	AD54	AD63	AD70	

EJ	ſAL.								<u>Molecular</u>	Genetics 8	Genor	nic Medicir Open Acce	e–W	'ILE	Y 7	of 13
	ACMG Criteria	PM2+PS4_ Moderate+PP3+PP4	PM1+PM2+PM5+PP3	PVS1+PM2	PM2+PM5+PP1+PP3	PM1+PM2+PP3+PS4_ Supporting	PS3+PM2+PP1	PVS1+PM2+PM6	PM1+PM2+PP3+PS4_ Supporting	PVS1+PM2+PP1	PM2+PM5+PM6+PP3	PVS1+PM2+PS4_ Supporting	PS3+PM2+PP3	PM1+PM2+PM6	PS1+PM2+PP3	(Continues)
	Report Ref (PMID)	11748851	This paper	This paper	This paper	Case record	Case record	This paper	16476890	This paper	This paper	10464652	26153420	24793577	22262941	
	Pathogenicity	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	
	De novo	Inherited from mother	NA	Inherited from mother	Inherited from mother	Inherited from mother	Inherited from father	De novo	Inherited from mother	Inherited from father	De novo	Inherited from father	NA	De novo	NA	
	Mutation type	Missense	Missense	Splicing	Missense	Missense	Missense	Stop gain	Missense	Frameshift	Missense	Splicing	Missense	Missense	Missense	
	Protein change	p. Gly2536Arg	p. Cys769Gly	Splicing	p. Gly333Val	p. Cys2571Tyr	p. Asp1446Asn	p. Glu1605Ter	p. Cys1502Tyr	p. Ala869fs	p. Met176Lys	Splicing	p. Arg258Cys	p. Cys2210Arg	p. Gly214Ser	
	Nucleotide change	c.7606G>A	c.2305T>G	c.3838+2T>C	c.998G>T	c.7712G>A	c.4336G>A	c.4813G>T	c.4505G>A	c.2607delC	c.527T>A	c.1468+5G>A	c.772C>T	c.6628T>C	c.640G>A	
	Exon/Intron	exon62	exon20	exon32	exon15	exon63	exon35	exon39	exon37	exon22	exon3	intron12	exon7	exon55	exon7	
	Transcript	NM_000138	NM_000138	NM_000138	060000 ⁻ MN	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_001130916	NM_000138	NM_001613	NM_000138	NM_000138	
	Gene	FBNI	FBNI	FBNI	COL3AI	FBN1	FBNI	FBNI	FBN1	FBNI	TGFBR1	FBNI	ACTA2	FBNI	FBNI	
	Sample ID	AD124	AD126	AD129	AD130	AD131	AD133	AD136	AD138	AD139	AD141	AD142	AD143	AD148	AD149	

TABLE 2 (Continued)

MG Criteria	S1+PM2+PM6	S1+PM2+PM6	S1+PM2+PP1	1+PM2+PM5+PP3	I1+PM2+PM5	II+PM2+PM5+PP1+PP3	2+PM2+PP3	1+PM2+PP1+PP3	S1+PM2+PS4_ Supporting	S1+PM2+PM6+PS4_ Supporting	2+PM2+PP3	L+PM1+PM2+PP3+PP4	(1+PM2+PM5+PP3	S1+PS2PS4_Supporting	S1+PM2+PM6+PS4_ Supporting
Report Ref (PMID) AC	19618372 PV	This paper PV	Case record PV	Case record PM	23794388 PM	This paper PM	Case record PS2	Case record PM	12938084 PV	27175573 PV	Case record PS2	25652356 PS1	Case record PM	10874320 PV	10464652 PV:
Pathogenicity	Pathogenic	Pathogenic	Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Likely Pathogenic	Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Likely Pathogenic	Pathogenic	Pathogenic
De novo	De novo	De novo	Inherited from father	NA	Inherited from father	Inherited from mother	De novo	NA	NA	De novo	De novo	NA	NA	NA	De novo
Mutation type	Stop gain	Frameshift	Stop gain	Missense	Missense	Missense	Missense	Missense	Stop gain	Stop gain	Missense	Missense	Missense	Stop gain	Splicing
Protein change	p. Arg565Ter	p. Asn2624fs	p. Ser2361Ter	p. Cys2442Tyr	p. Arg1530His	p. Asn1463His	p. Leu1243Pro	p. Gly1084Arg	p. Arg516Ter	p. Arg529Ter	p. Arg160Gly	p. Cys2565Phe	p. Cys598Phe	p. Arg1523Ter	Splicing
Nucleotide change	c.1693C>T	c.7869dupC	c.7082C>A	c.7325G>A	c.4589G>A	c.4387A>C	c.3728T>C	c.3250G>C	c.1546C>T	c.1585C>T	c.478A>G	c.7694G>T	c.1793G>T	c.4567C>T	c.1468+5G>A
Exon/Intron	exon14	exon64	exon58	exon59	exon38	exon36	exon28	exon27	exon13	exon13	exon3	exon62	exon15	exon37	intron12
Transcript	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_000138	NM_002474	NM_000138	NM_000138	NM_000138	NM_001130916	NM_000138	NM_000138	NM_000138	NM_000138
Gene	FBN1	FBNI	FBN1	FBNI	FBN1	FBN1	IIHXW	FBN1	FBN1	FBN1	TGFBR1	FBNI	FBN1	FBNI	FBN1
Sample ID	AD151	AD154	AD161	AD165	AD167	AD168	AD171	AD179	AD181	AD183	AD197	AD199	AD207	AD211	AD213

Note: Mutation names are given according to HGVS nomenclature guidelines and numbered with respect to each gene cDNA sequence (+1 = A of ATG) obtained from the National Center for Biotechnology Information (NCBI) database (accession numbers are transcript numbers that have been list in the table). Abbreviation: NA, not available.

TABLE 2 (Continued)

_Molecular Genetics & Genomic Medicine _____ F

TABLE 3 FBN1 mutation type and average age in patients with various aortic events

		Aortic dissection	Aortic aneurysm	Valvular disease	Marfan with mild aortic dilation
Truncating	Frameshift ($n = 13$)	11 (32.0y)	11 (33.3y)	4 (33.8y)	0
	Nonsense $(n = 9)$	7 (36.8y)	7 (32.8y)	5 (29.5y)	0
Splicing $(n = 7)$		6 (32.8y)	5 (35.5y)	4 (26y)	1 (3.5y)
Deletion $(n = 1)$		1 (19.0y)	1 (19.0y)	1 (19.0y)	0
Missense ($n = 28$)		12 (35.1y)	22 (33.8y)	18 (34.6y)	4 (16y)
Total ($n = 58$)		37	46	32	5

Abbreviation: y, years old.

one younger brother died suddenly around the age of 35 years, and his younger brother (II5) was diagnosed with aortic dissection when he was 39 years old. The variant mentioned above was identified by Sanger sequencing in the DNA of II5. However, we still classified the variant as a VUS due to the loss of function of the *ACTA2* gene via an unknown molecular mechanism. Further functional studies are necessary to confirm its pathogenicity.

4 | DISCUSSION

Genetic testing for rare disease-causing variants in TAAD genes is used worldwide now. It is crucial to identify individuals with an increased risk for TAAD because dissections and the associated premature deaths are preventable. NGS has become a practical screening method to identify disease-related gene variants (Chong et al., 2015). In our study, NGS was performed to determine variants in 15 candidate genes associated with TAAD in 212 patients from northwestern China. We found 135 variants in 109 patients, 77 of which were first detected by us, enriching the gene mutation spectrum of TAAD. The high rate of novel variants (62.22%, 84/135) is due to the high degree of clinical and genetic heterogeneity of hereditary TAAD, much of which is unique to the patient's family. These 135 variants were classified according to the ACMG guidelines (Richards et al., 2015); 67 were classified as (likely) PV and 68 were classified as VUSs. Because of the strict enrollment conditions, the positive rate in our study (31.60%, 67/212) was higher than that in others (Proost et al., 2015; Zheng et al., 2018; Ziganshin et al., 2015).

In our study, the mean age of patients was 38.14 ± 11.33 years, which is significantly younger than that of patients with AAD in the Sino-Registry of Aortic Dissection (RAD) in China (51.8 ± 11.4 years) and the International Registry of Acute Aortic Dissection $(IRAD, 63.1 \pm 14.0 \text{ years})$ (Wang et al., 2014). Previous studies have reported more men than women with AAD (Fang et al., 2017; Zheng et al., 2018). The proportion of male patients in this study was 78.30%, consistent with that of patients in the Sino-RAD (77.8%), and higher than that of patients in the IRAD (65.3%). Our results show that patients with causative variants have obvious clinical distinctions from patients without variants. First, patients with causative variants were significantly younger than those without variants, and the average height of patients in the causative variant

Ę	
our	
in	
/ariants	
Reclassified v	
4	
Е 4	
BLE 4	
ABLE 4	

sts

Sample ID	Gene	Transcript	Exon/Intron	Nucleotide change	Protein change	Variant called	Variant reclassification	Reclassification based on	Pop Freq MAX	Report Ref (PMID)
AD32	IIHAM	NM_002474	exon28	c.3766A>C	p. Lys1256Gln	SUV	likely benign	Family segregation	0.001	This paper
AD44	NOTCHI	NM_017617	exon21	c.3334G>A	p. Val1112Ile	SUV	likely benign	Family segregation	0.0003	This paper
AD47	I I HAM	NM_002474	exon28	c.3766A>C	p. Lys1256Gln	SUV	likely benign	Family segregation	0.001	This paper
AD51	COL3A1	060000 MN	exon5	c.469T>G	p. Ser157Ala	NUS	likely benign	Family segregation		This paper
AD58	IIHAM	NM_022844	exon41	c.5798C>G	p. Pro1933Arg	SUV	likely benign	Family segregation		This paper
AD58	COL3A1	060000 MN	exon51	c.4351G>T	p. Gly1451Cys	NUS	likely benign	Family segregation		This paper
AD59	FBN2	NM_001999	exon17	c.2260G>A	p. Gly754Ser	NUS	likely benign	Family segregation		19006240
AD79	FBNI	NM_000138	exon61	c.7559C>T	p. Thr2520Met	NUS	likely benign	Family segregation	0.0001	17657824
AD171	IIHAM	NM_002474	exon28	c.3728T>C	p. Leu1243Pro	SUV	Likely pathogenic	Family segregation		Case record
AD197	TGFBRI	NM_001130916	exon3	c.478A>G	p. Arg160Gly	NUS	Likely pathogenic	Family segregation		27724990
AD213	NOTCHI	NM_017617	exon34	c.7229C>T	p. Pro2410Leu	NUS	likely benign	Family segregation	0.00007	Case record
Note: Mutation n Information (NC	ames are given ac BI) database (acce	cording to HGVS non ession numbers are as	nenclature guideline the same as transcr	ss and numbered with int numbers which h	arespect to each gene and here here and here here and here here here here here here here her	cDNA sequend le).	ce (+1 = A of ATG) obtai	ned from the National Cer	nter for Biotechn	tology

Abbreviation: VUS, variants of unknown significance.

group was distinctly higher than that of patients in the no variant group. Second, although there was no significant difference in the incidence of aortic dissections, ascending aortic aneurysms, or valvular diseases between the two groups, aortic root aneurysms were more severe in the causative variants group. This suggests that patients with causative variants suffer from the earlier onset and more severe phenotypes. Third, as we expected, hypertension was more commonly found in the no variant group, since hypertension is the main predisposing factor of nonhereditary TAAD. Overall, the phenotype of patients with detected causative variants is distinguishable from those without variants. The differences in clinical characteristics may reflect different pathophysiologic processes between the two groups. In addition, although the ratio of males to females in all patients studied was almost 3:1, this is consistent with previous reports (Pape et al., 2015; Zheng et al., 2018). However, in the (likely) PV group, the male/female ratio decreased to 2.53:1, which may be related to poor lifestyle choices made by men (e.g., smoking and alcohol abuse).

Many studies have shown that patients with pathogenic FBN1 variants are at risk for developing Marfan syndrome, and a detailed genotype-phenotype correlation between the FBN1 variant type and aortic events was investigated (Tan et al., 2017). In this study, most of the variants were detected in the FBN1 gene, including 58 (likely) PVs and 12 VUSs. Among the 58 (likely) PVs, missense mutations (28/58) and frameshift mutations (13/58) had the highest incidence. However, most of the VUSs were missense mutations (9/12). In summary, the incidence of missense mutations was the highest, followed by frameshift mutations, which is mostly consistent with the literature, but the ratios were slightly different (Becerra-Munoz et al., 2018; Franken et al., 2016). Furthermore, patients with truncating and splicing mutations were more prone to developing severe aortic dissections than those with missense mutations, especially frameshift mutations, in which patients showed an earlier age of aortic dissection occurrence than those with missense mutations. Similarly, Baudhuin et al. and Yang et al. once reported that a higher frequency of truncating or splicing FBN1 variants in patients with Marfan syndrome who experienced an aortic event than in those who did not (Baudhuin et al., 2015; Yang et al., 2016). However, the mechanism is still not clear.

In this study, 43 (20.28%) patients had a family history of sudden death or TAAD, which falls within the previously reported 20–40% range of patients with a family history (Dietz et al., 1991; Fang et al., 2017). When considering family history, the variant detection rate was 76.74% (33/43), whereas that in patients

10 of 13

FIGURE 2 Pedigree of the family with the *ACTA2* (p. Leu195Term) variant. Circles represent females, squares represent males, and the arrowhead indicates the proband. A diagonal line through a symbol indicates that the individual is deceased, with their age of death shown below the symbol. Age at detection is shown below each individual. Symbols used to represent disease and variant status are indicated in the figure key. TAAD, Thoracic aortic aneurysm and dissection

without a family history was 18.93% (25/132). This result indicates that genetic testing is more efficient in TAAD patients with family history than in those without. According to the ACMG guidelines, we readjusted the pathogenic grades of 10 variants by family member verification, and the variants were downgraded to likely benign because the healthy family members also carried the same variants. An ACTA2 nonsense mutation was detected in our test in a distinctive TAAD family. The molecular mechanism of TAAD induced by missense mutations in ACTA2 due to dominant-negative effects has been defined (Guo et al., 2007). However, the mechanism of the loss of function of ACTA2 is not yet clear, although Marjolijn Renard et al. once reported nonsense mutations in two TAAD patients (Renard et al., 2013). As a result, we classified this variant as a VUS. Further functional studies are needed to confirm its pathogenicity in future work.

Although the results of our study are important, the number of patients in our study is still insufficient. Larger sample size is critical for determining the correlation between genotype and phenotype. For patients with a VUS, we performed relative verification only in a family with a family history, which may have resulted in the omission of some potentially positive information. Our panel contains only 15 genes, and genes that are not yet included may also have PVs. These variants are difficult to detect due to limitations in gene panel detection methods. Our team is currently experimenting with whole-exome sequencing to overcome these shortcomings.

ACKNOWLEDGMENTS

We are grateful to the patients and their families for their participation. We would like to thank the medical teams, technicians, and sonographers whose work supports the clinic.

CONFLICT OF INTEREST

All authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Jinjie Li performed the majority of the data analysis and wrote the manuscript. Liu Yang was in charge of patient recruitment, sample, and clinical information collection. Yanjun Diao was in charge of communication with the clinicians. Lei Zhou analyzed the sequencing data. Yijuan Xin performed the NGS sequencing and Sanger validation. Liqing Jiang and Juan Wang collected samples and communicated with patients. Rui Li was in charge of the clinical evaluation and sample management. Weixun Duan gave a direction on the experiment, data analysis, and interpretation. Jiayun Liu was in charge of the project design and revised the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

ORCID

Jinjie Li https://orcid.org/0000-0002-4439-6276 *Liu Yang* https://orcid.org/0000-0003-0045-8380

REFERENCES

- Albornoz, G., Coady, M. A., Roberts, M., Davies, R. R., Tranquilli, M., Rizzo, J. A., & Elefteriades, J. A. (2006). Familial thoracic aortic aneurysms and dissections–incidence, modes of inheritance, and phenotypic patterns. *Annals of Thoracic Surgery*, 82(4), 1400–1405. https://doi.org/10.1016/j.athoracsur.2006.04.098.
- Baudhuin, L. M., Kotzer, K. E., & Lagerstedt, S. A. (2015). Increased frequency of FBN1 truncating and splicing variants in Marfan syndrome patients with aortic events. *Genetics in Medicine*, *17*(3), 177–187. https://doi.org/10.1038/gim.2014.91.
- Becerra-Muñoz, V. M., Gómez-Doblas, J. J., Porras-Martín, C., Such-Martínez, M., Crespo-Leiro, M. G., Barriales-Villa, R., de Teresa-Galván, E., Jiménez-Navarro, M., & Cabrera-Bueno, F. (2018). The importance of genotype-phenotype correlation in the clinical management of Marfan syndrome. *Orphanet Journal of Rare Diseases*, 13(1), 16. https://doi.org/10.1186/ s13023-017-0754-6.
- Biddinger, A., Rocklin, M., Coselli, J., & Milewicz, D. M. (1997). Familial thoracic aortic dilatations and dissections: A case control study. *Journal of Vascular Surgery*, 25(3), 506–511. https:// doi.org/10.1016/s0741-5214(97)70261-1.
- Chong, J. X., Buckingham, K. J., Jhangiani, S. N., Boehm, C., Sobreira, N., Smith, J. D., Harrell, T. M., McMillin, M. J., Wiszniewski, W., Gambin, T., Coban Akdemir, Z. H., Doheny, K., Scott, A. F., Avramopoulos, D., Chakravarti, A., Hoover-Fong, J., Mathews, D., Witmer, P. D., Ling, H., ... Bamshad, M. J. (2015). The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. *American Journal of Human Genetics*, 97(2), 199–215. https://doi.org/10.1016/j.ajhg.2015.06.009.
- Dietz, H. C., Cutting, C. R., Pyeritz, R. E., Maslen, C. L., Sakai, L. Y., Corson, G. M., Puffenberger, E. G., Hamosh, A., Nanthakumar, E. J., Curristin, S. M., Stetten, G., Meyers, D. A., & Francomano, C. A., ... 1991). Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. *Nature*, *352*(6333), 337– 339. https://doi.org/10.1038/352337a0.
- Erbel, R., Aboyans, V., Boileau, C., Bossone, E., Bartolomeo, R. D., Eggebrecht, H. ... Guidelines, E. S. C. C. f. P. (2014). 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). *European Heart Journal*, *35*(41), 2873-2926. https://doi.org/10.1093/eurheartj/ehu281
- Fang, M., Yu, C., Chen, S., Xiong, W., Li, X., Zeng, R., Zhuang, J., & Fan, R. (2017). Identification of novel clinically relevant variants in 70 southern chinese patients with thoracic aortic aneurysm and dissection by next-generation sequencing. *Scientific Reports*, 7(1), 10035. https://doi.org/10.1038/s41598-017-09785 -y.
- Franken, R., Groenink, M., de Waard, V., Feenstra, H. M. A., Scholte, A. J., van den Berg, M. P., Pals, G., Zwinderman, A. H., Timmermans, J., & Mulder, B. J. M. (2016). Genotype impacts survival in Marfan syndrome. *European Heart Journal*, *37*(43), 3285–3290. https://doi.org/10.1093/eurheartj/ehv739.
- Gago-Díaz, M., Ramos-Luis, E., Zoppis, S., Zorio, E., Molina, P., Braza-Boïls, A., Giner, J., Sobrino, B., Amigo, J., Blanco-Verea, A., Carracedo, Á., & Brion, M. (2017). Postmortem genetic testing should be recommended in sudden cardiac death cases due to thoracic aortic dissection. *International Journal of Legal*

Medicine, *131*(5), 1211–1219. https://doi.org/10.1007/s0041 4-017-1583-9.

- Guo, D., Pannu, H., Tran-Fadulu, V., Papke, C., Yu, R., Avidan, N., & Sparks, E. (2007). Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. *Nature Genetics*, 39(12), 1488–1493.
- Hoyert, D. L., Arias, E., Smith, B. L., Murphy, S. L., & Kochanek, K. D. (2001). Deaths: final data for 1999. *National Vital Statistics Reports*, 49(8), 1–113.
- Huynh, T. T., & Starr, J. E. (2013). Diseases of the thoracic aorta in women. *Journal of Vascular Surgery*, 57(4 Suppl), 11S–17S. https://doi.org/10.1016/j.jvs.2012.08.126.
- Jondeau, G., Ropers, J., Regalado, E., Braverman, A., Evangelista, A., Teixedo, G., & Montalcino Aortic, C. (2016). International registry of patients carrying TGFBR1 or TGFBR2 mutations: Results of the MAC (Montalcino Aortic Consortium). *Circulation: Cardiovascular Genetics*, 9(6), 548–558. https://doi. org/10.1161/CIRCGENETICS.116.001485.
- Kuzmik, G. A., Sang, A. X., & Elefteriades, J. A. (2012). Natural history of thoracic aortic aneurysms. *Journal of Vascular Surgery*, 56(2), 565–571. https://doi.org/10.1016/j.jvs.2012.04.053.
- Meszaros, I., Morocz, J., Szlavi, J., Schmidt, J., Tornoci, L., Nagy, L., & Szep, L. (2000). Epidemiology and clinicopathology of aortic dissection. *Chest*, 117(5), 1271–1278. https://doi.org/10.1378/ chest.117.5.1271.
- Moll, F. L., Powell, J. T., Fraedrich, G., Verzini, F., Haulon, S., & Waltham, M. ... European Society for Vascular, S (2011). Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. *European Journal of Vascular and Endovascular Surgery*, 41(Suppl 1), S1–S58. https://doi.org/10.1016/j.ejvs.2010.09.011.
- Nienaber, C. A., & Clough, R. E. (2015). Management of acute aortic dissection. *Lancet*, 385(9970), 800–811. https://doi.org/10.1016/ S0140-6736(14)61005-9.
- Pape, L. A., Awais, M., Woznicki, E. M., Suzuki, T., Trimarchi, S., Evangelista, A., & O'Gara, P. (2015). Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. *Journal of the American College of Cardiology*, 66(4), 350–358. https://doi. org/10.1016/j.jacc.2015.05.029.
- Proost, D., Vandeweyer, G., Meester, J. A. N., Salemink, S., Kempers, M., Ingram, C., Peeters, N., Saenen, J., Vrints, C., Lacro, R. V., Roden, D., Wuyts, W., Dietz, H. C., Mortier, G., Loeys, B. L., & Van Laer, L. (2015). Performant mutation identification using targeted next-generation sequencing of 14 thoracic aortic aneurysm genes. *Human Mutation*, *36*(8), 808–814. https://doi. org/10.1002/humu.22802.
- Regalado, E. S., Guo, D. C., Prakash, S., Bensend, T. A., Flynn, K., Estrera, A., & Milewicz, D. M. (2015). Aortic disease presentation and outcome associated with ACTA2 mutations. *Circulation: Cardiovascular Genetics*, 8(3), 457–464. https://doi. org/10.1161/CIRCGENETICS.114.000943.
- Renard, M., Callewaert, B., Baetens, M., Campens, L., MacDermot, K., Fryns, J. P., & De Backer, J. (2013). Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD. *International Journal of Cardiology*, *165*(2), 314– 321. https://doi.org/10.1016/j.ijcard.2011.08.079.
- Renard, M., Francis, C., Ghosh, R., Scott, A. F., Witmer, P. D., Adès, L. C., Andelfinger, G. U., Arnaud, P., Boileau, C., Callewaert, B. L., Guo, D., Hanna, N., Lindsay, M. E., Morisaki, H., Morisaki,

LI ET AL.

T., Pachter, N., Robert, L., Van Laer, L., Dietz, H. C., ... De Backer, J. (2018). Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. *Journal of the American College of Cardiology*, *72*(6), 605–615. https://doi.org/10.1016/j. jacc.2018.04.089.

- Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genetics in Medicine*, 17(5), 405–424. https://doi.org/10.1038/ gim.2015.30.
- Tan, L., Li, Z., Zhou, C., Cao, Y., Zhang, L., Li, X., Cianflone, K., Wang, Y., & Wang, D. W. (2017). FBN1 mutations largely contribute to sporadic non-syndromic aortic dissection. *Human Molecular Genetics*, 26(24), 4814–4822. https://doi.org/10.1093/ hmg/ddx360.
- Wang, W., Duan, W., Xue, Y., Wang, L., Liu, J., Yu, S., & Registry of Aortic Dissection in China Sino, R. A. D. I. (2014). Clinical features of acute aortic dissection from the Registry of Aortic Dissection in China. *Journal of Thoracic and Cardiovascular Surgery*, 148(6), 2995–3000. https://doi.org/10.1016/j. jtcvs.2014.07.068.
- Yang, H., Luo, M., Fu, Y., Cao, Y., Yin, K., Li, W., Meng, C., Ma, Y., Zhang, J., Fan, Y., Shu, C., Chang, Q., & Zhou, Z. (2016). Genetic testing of 248 Chinese aortopathy patients using a panel assay. *Scientific Reports*, 6, 33002–33009. https://doi.org/10.1038/srep33002.

- 13 of 13
- Zheng, J., Guo, J., Huang, L., Wu, Q., Yin, K., Wang, L., Zhang, T., Quan, L. I., Zhao, Q., & Cheng, J. (2018). Genetic diagnosis of acute aortic dissection in South China Han population using next-generation sequencing. *International Journal of Legal Medicine*, 132(5), 1273–1280. https://doi.org/10.1007/s0041 4-018-1890-9.
- Ziganshin, B. A., Bailey, A. E., Coons, C., Dykas, D., Charilaou, P., Tanriverdi, L. H., Liu, L., Tranquilli, M., Bale, A. E., & Elefteriades, J. A. (2015). Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. *Annals of Thoracic Surgery*, 100(5), 1604–1611. https://doi.org/10.1016/j. athoracsur.2015.04.106.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Li, J., Yang, L., Diao, Y., Zhou, L., Xin, Y., Jiang, L., Li, R., Wang, J., Duan, W., & Liu, J. (2021). Genetic testing and clinical relevance of patients with thoracic aortic aneurysm and dissection in northwestern China. *Molecular Genetics* & *Genomic Medicine*, 9, e1800. <u>https://doi.</u> org/10.1002/mgg3.1800