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Evidence for the importance of 
post-transcriptional regulatory 
changes in ovarian cancer 
progression and the contribution of 
miRNAs
Mengnan Zhang1,2,3, Lilya V. Matyunina1,2,3, L. DeEtte Walker1,2,3, Weixuan Chen1,3,5, Haopeng 
Xiao1,3,5, Benedict B. Benigno1,4, Ronghu Wu1,3,5 & John F. McDonald   1,2,3,4

High-throughput technologies have identified significant changes in patterns of mRNA expression over 
cancer development but the functional significance of these changes often rests upon the assumption 
that observed changes in levels of mRNA accurately reflect changes in levels of their encoded proteins. 
We systematically compared the expression of 4436 genes on the RNA and protein levels between 
discrete tumor samples collected from the ovary and from the omentum of the same OC patient. 
The overall correlation between global changes in levels of mRNA and their encoding proteins is low 
(r = 0.38). The majority of differences are on the protein level with no corresponding change on the 
mRNA level. Indirect and direct evidence indicates that a significant fraction of the differences may be 
mediated by microRNAs.

The last several decades have witnessed historic breakthroughs in the development of new high-throughput 
technologies to detect molecular changes associated with cancer onset and progression. The detection of these 
molecular changes, combined with appropriate computational methods, has proven extremely useful in the 
establishment of highly accurate diagnostic markers of the disease1, 2. The functional significance of the detected 
changes has proven more difficult to interpret because of our limited understanding of the underlying causal 
mechanisms involved3. A case in point is the relationship between changes in levels of RNA transcripts and 
corresponding changes (or lack thereof) in levels of their encoded proteins4. For example, high-throughput tech-
nologies have identified significant changes in patterns of mRNA expression between cancer patient primary and 
metastatic samples but the functional significance of these changes often rests upon the assumption that observed 
changes in levels of mRNA accurately reflect changes in levels of their encoded proteins5, 6. The validity of this 
assumption is far from confirmed and is, in fact, questionable in light of increasing evidence of the importance of 
post-transcriptional mechanisms in both the onset and progression of many cancers7, 8. We report here the results 
of a systematic comparison of the expression of 4436 genes on the RNA and protein levels between tumor samples 
collected from the ovary (OV) and omentum (OM) of same ovarian cancer (OC) patient. Consistent with other 
recent studies9–11, our results indicate that the overall correlation between differences in levels of mRNA and their 
encoding proteins is low (r = 0.38). We find that the majority of the differences in levels of expression are on the 
protein level with no corresponding change on the mRNA level implying the importance of post-transcriptional 
regulatory mechanisms. The results of gene ontology (GO) analyses further support this conclusion. Finally, we 
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present evidence that a significant fraction of the discordant differences in levels of RNA and protein between the 
OV and OM cancer samples is mediated by microRNAs.

Results
The majority of changes in gene expression between tumor samples collected from the ovary 
and omentum of the same patient occur at the post-transcriptional level.  To systematically 
explore the relationship between RNA and protein expression, we integrated quantitative transcriptional and pro-
teomic profiles of cancer cells isolated by laser capture microdissection from bulk tumor samples collected from 
the ovary (OV) and the omentum (OM) of the same patient. Expression of mRNA was measured by microarray 
(Affymetrix Human Transcriptome Array 2.0) as previously described6. Protein expression was measured using 
a recently developed, highly sensitive mass spectrophotometric method12.

Of the 18,643 genes displaying detectable levels of RNA (Supplementary Table 1), the expression of only 
4436 were detectable on the protein level (FDR < 0.01; Supplementary Table 2). The overall correlation between 
changes in levels of mRNA and protein encoded by these 4436 genes between the OV and OM samples was 
low (r = 0.38) (Fig. 1A), in part, because the majority of the genes displayed little or no change in expression 
between the OV and OM samples. Of the 4436 genes detected in both our mRNA and protein expression datasets 
(Fig. 2; Supplementary Table 3), the majority (2490 genes) displayed no significant change in expression (<1.5 
fold change) on either the mRNA or protein levels. Of the 1946 genes displaying a significant change (>1.5 fold) 
in expression between the OV and OM samples, 230 were significantly differentially expressed on both the mRNA 
and protein levels, 1467 were significantly differentially expressed on the protein level but not on the RNA level 
and 249 on the RNA level but not on the protein level. The overall correlation between changes in RNA and 
protein for the 1946 significantly differentially expressed genes (Fig. 1B; r = 0.41, p = 3.376 × 10−79) is in general 
agreement with similar comparative studies previously carried out on a variety of mammalian tissues, tumors 
and/or cell lines9–11, 13–15. This overall correlation is not greatly affected by increasing the stringency of the cut-off 
value used in the analysis (Supplementary Table 4).

We further classified genes differentially expressed between the OV and OM samples into three groups based 
upon changes in their respective mRNA and protein levels: The positively correlated (PC) group is comprised of 
genes displaying positively correlated changes in mRNA and protein levels between the OV and OM samples [i.e. 
up (mRNA)-up (protein) (U-U); down-down (D-D)]; the negatively correlated (NC) group is comprised of genes 
displaying negatively correlated changes in mRNA and protein levels between the OV and OM samples [i.e., up 
(mRNA)-down (protein) (U-D); down-up (D-U)]; and the uncorrelated (UC) group is comprised of genes dis-
playing significant changes in the expression of either protein or mRNA levels but not both [i.e., up (mRNA)-no 
change (protein) (U-NC); no change-up (NC-U); down-no change (D-NC); no change-down (NC-D)]. As shown 
in Fig. 3A, the combined percentage of genes displaying uncorrelated changes (NC-D, NC-U, D-NC, and U-NC) 
in mRNA and protein levels between the OV and OM samples (88%) far exceeds the percentage of genes (12%) 
displaying correlated changes. This suggests that the vast majority of changes in gene expression between the OV 
and OM samples involve processes occurring on the post-transcriptional/translational level. As shown in Fig. 3B, 
most of the uncorrelated changes are in the NC-U sub-group (43%) followed by the NC-D sub-group (32%), 
the U-NC (7%) and D-NC (6%) sub-groups. Most of the positively correlated changes are in the U-U subgroup 
(135/199 = 68%) with only 32% (64/199) of the positively correlated changes being in the D-D subgroup. The 
relatively few changes (1.3%) comprising the negatively correlated group are contained predominantly in the D-U 
subgroup (25 genes) with only six genes being in the U-D subgroup.

Gene ontology analyses implicates EMT in the differences observed between samples and 
underscores the limitations of predictions drawn from RNA profiling alone.  In an effort to evalu-
ate the potential functional significance of the observed changes in RNA and protein expression between the OV 
and OM samples, we employed gene ontology analyses to compare biological pathways enriched for genes identi-
fied as significantly differentially expressed on the RNA and protein levels. Using the combined RNA and protein 
datasets (1946 genes), a total of 250 biological pathways were identified as being significantly (p < 0.05) enriched 

Figure 1.  Correlation between changes in RNA and protein. Scatterplots with associated correlation 
coefficients(r) for (A) genes detected in both our mRNA and protein expression datasets (n = 4436); (B) genes 
displaying a significant (p = 3.376 × 10–79) change in expression between the OV and OM samples (n = 1946).
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among genes differentially expressed between the OV and OM samples. Using the RNA expression dataset alone, 
73 pathways were identified as being significantly enriched, while 218 were significantly enriched using the pro-
tein dataset alone (Supplementary Tables 5 and 6). There was an overlap of only 41 biological pathways (16%) 
enriched in the two datasets (Fig. 4A,B). More than half of the 41 overlapping biological pathways uncovered in 
our analysis (e.g., cell adhesion and cytoskeleton remodeling, etc.) are either directly or indirectly associated with 
epithelial-to-mesenchymal transition (EMT)- a cellular function believed to be critical in cancer metastasis16, 17.

While the 41 overlapping pathways constitute the majority of those predicted from the RNA dataset alone 
(41/73 = 56%), nearly half of the pathways predicted to be significantly overrepresented from the RNA dataset are 
likely spurious since these RNA changes are not manifest on the protein level. This finding coupled with the fact 
that >80% (177/218) of the pathways predicted from the protein dataset were not predicted from the RNA dataset 
points to the limitations of functional pathway predictions drawn from RNA profiling alone.

Figure 2.  Diagram representing the classification of the integrated transcriptomic and proteomic datasets. Step 
1: Integration of transcriptomic and proteomic profiling based on gene symbol matching. Step 2: Classification 
of differentially expressed genes into groups based upon changes in their respective mRNA and protein levels in 
OV and OM samples.

Figure 3.  Pie chart showing the distribution of genes in correlated and uncorrelated groups. (A) The combined 
percentage of genes displaying correlated changes (U-U, D-D, D-U, and U-D) and uncorrelated changes (NC-D, 
NC-U, D-NC, and U-NC) in mRNA and protein levels between the OV and OM. (B) The percentage of genes in 
each subgroup of correlated and uncorrelated changes.
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The fact that many pathways known to be central to EMT and other aspects of metastasis were sig-
nificantly enriched among genes differentially expressed on the protein but not the RNA level (e.g., 
development-TGF-beta-dependent induction of EMT via MAPK, cell adhesion-role of tetraspanins in the 
integrin-mediated cell adhesion, cytoskeleton remodeling-Fibronectin-binding integrins in cell motility, etc.) fur-
ther supports the functional importance of post-transcriptional/translational regulatory controls and underscores 
the importance of understanding the molecular mechanisms involved.

Differences in microRNA (miRNA) expression contribute to post-transcriptional/translational 
changes between the OV and OM samples.  The discordance between changes in levels of protein and 
their encoding mRNAs can be explained in a variety of ways including differences in relative rates of in vivo syn-
thesis and stability18. While some differences in RNA/protein stability can be attributed to inherent differences 
in molecular structure, emerging evidence suggests that relative rates of both protein synthesis and RNA/protein 
stability are often post-transcriptionally regulated by microRNAs (miRNAs)19.

MiRNAs are small, non-encoding regulatory RNAs that can post-transcriptionally regulate levels of RNA 
and protein by degrading targeted mRNAs and/or by repressing translation of targeted mRNA transcripts20. To 
explore the possible role of miRNAs in the observed discordance between mRNA and protein levels between the 
OV and OM samples, we measured changes in levels of miRNAs and correlated these changes with corresponding 
changes in levels of mRNA and protein of their targeted genes. Differences in levels of miRNAs between the OV 
and OM samples were determined by microarray (Affymetrix GeneChip® miRNA 3.0 Array) and the mRNAs 
targeted by the differentially expressed miRNAs predicted using the miRanda-mirSVR algorithm21. Our focus 
was on genes displaying significant decreases in protein levels in the OM sample with no corresponding change in 
levels of mRNA (NC-D group). Our goal was to test the hypothesis that at least some of the observed discordance 
might be explained by the up-regulation of regulatory miRNAs.

The NC-D group is comprised of 622 genes, 592 of which are predicted to be targeted by 1100 miRNAs 
(Supplementary Table 7). Of these 1100 miRNAs, 101 are significantly differentially expressed between the 
OV and OM samples (Supplementary Table 8) and 48 of these are significantly up regulated in the OM sample 
(Supplementary Table 9). For example, the 10 most significantly up-regulated of these miRNAs and the number 
of their predicted gene targets in the NC-D and D-D groups is shown in Table 1. Interestingly, the gene tar-
gets of miRNAs significantly up regulated in the OM sample are contained in both the D-D and NC-D groups 
(Supplementary Tables 10 and 11). This implies that individual miRNAs up regulated in the OM sample may be 
regulating some genes on the transcriptional level (effecting down regulation of mRNAs and correlated changes 

Figure 4.  Results of GeneGo pathway enrichment analysis. (A) 41 GeneGo pathways significantly enriched 
in differentially expressed genes on either mRNA or protein level. (p-value < 0.05) (B) Venn diagram shows 
the number of enriched GeneGo pathways of each dataset that were found to be significantly enriched. 
(p-value < 0.05).
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on the protein level) and some genes on the translational level (effecting levels of protein with no correlated 
change on the mRNA level).

In an effort to independently validate the observation that single miRNAs may preferentially regulate differ-
ent genes on different levels (i.e., transciptionally vs. post-transcriptionally), we selected the most significantly 
up-regulated miRNA in OM, hsa-miR-363-3p, and exogenously over-expressed it in the well-characterized HEY 
ovarian cancer cell line22. Forty-eight hours after transfection of miR-363-3p in HEY cells, we extracted mRNA 
and protein, and monitored levels of two randomly selected genes, one from the D-D group (CTSB, Cathepsin B) 
and one from the NC-D group (PLS1, Plastin1). Western blots demonstrate that levels of CTSB and PLS1 protein 
are both decreased in cells in which hsa-miR-363-3p was over expressed (Fig. 5A,C). RT-PCR quantification of 
mRNA levels of these two genes showed a significant decrease in CTSB mRNA levels but no significant change 
in levels of PLS1 mRNA (Fig. 5B). The results of this experiment are consistent with the results of our RNA 
microarray and protein mass spectrometric analyses indicating that changes in levels of the same miRNAs may 
alternatively regulate levels of RNA and/or proteins in a gene-specific manner.

Discussion
Modern DNA sequencing methods can identify genetic differences in cancer vs. normal tissues with nucleotide 
precision. Similarly, microarray, RNA sequencing and related high-throughput methodologies can quantitate 

miRNA
miRNA accession 
number

miRNA targets

NC-D 
group

D-D 
group

hsa-miR-139-5p MIMAT0000250 150 17

hsa-miR-143* MIMAT0004599 87 6

hsa-miR-150 MIMAT0000451 114 12

hsa-miR-196a MIMAT0000226 66 5

hsa-miR-204 MIMAT0000265 154 11

hsa-miR-363 MIMAT0000707 131 7

hsa-miR-451 MIMAT0001631 32 0

hsa-miR-486-5p MIMAT0002177 66 6

hsa-miR-675 MIMAT0004284 22 1

hsa-miR-675* MIMAT0006790 60 3

Table 1.  The 10 most significantly up-regulated miRNAs in the OM sample and the number of their predicted 
gene targets in the NC-D and D-D groups.

Figure 5.  Effects of over-expression of miR-363-3p in HEY cells on the mRNA and protein expression of its 
predicted targets CTSB and PLS1. (A) Relative protein expression levels of CTSB and PLS1 as determined by 
Western blot. (B) Relative mRNA expression of CTSB and PLS1 as determined by qRT-PCR shows a significant 
decrease in CTSB mRNA levels but no significant changes on levels of PLS1. Expression values are normalized 
to negative control group and represent mean ± SD of at least three biological replicates each performed in three 
technical replicates. Asterisks represent statistically significant differences from the negative control group. 
(**p < 0.05) (C) Western blot analysis of CTSB and PLS1 proteins both display reduced levels of protein in the 
miR-363-3p group relative to negative control group.
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changes in levels of gene expression on the RNA level with remarkable accuracy. The problem is that although 
the consequences of nearly all genome-wide molecular level changes manifest their functional significance on the 
protein level, global changes in the levels of protein are not easily and economically monitored by current meth-
ods. As a consequence, global changes in protein levels associated with cancer onset and progression are typically 
not directly measured but rather inferred from more easily monitored changes on the RNA level. The validity of 
these inferences is often questionable and, in some instance, may be misleading7, 8. For example, modern cancer 
medicine is rapidly embracing the molecular profiling of patient tumors in order to personalize targeted gene 
therapies23. Significant over-expression of a particular “cancer driver” gene on the RNA level may suggest treat-
ment with a chemical inhibitor of the protein encoded by the over-expressed RNA. This may be a reasonable ther-
apeutic strategy but only if elevated levels of mRNAs are an accurate reflection of levels of the targeted proteins.

The purpose of this study was to explore the system-wide relationship between differences in gene expression 
on the RNA and protein levels between tumor samples collected from the same patient. Using recently developed 
proteomic methodologies, we were able to explore this question on a global, level by directly comparing the 
expression of 4436 genes simultaneously on the RNA and protein levels.

We compared system-wide changes in levels of RNA and protein between discrete tumor samples collected 
from the ovary and the omentum of the same OC patient. Comparing molecular profiles between samples col-
lected from the same patient removes the ambiguities associated with between-patient variation and allowed us to 
focus on changes associated with tumor progression within a single patient. Our results indicate that the majority 
of changes in mRNA and protein expression are not correlated with one another, consistent with emerging evi-
dence for the importance of post-transcriptional/translational regulation in various aspects of cancer onset and 
progression7.

There remains controversy as to whether OC metastases originate from primary tumors in the fallopian tube, 
in the ovary or both24. While our studies do not resolve this controversy, our gene ontology (GO) analyses indi-
cate that, for the patient analyzed in this study, the majority of biological pathways associated with the RNA and 
protein level changes between the OV and OM samples are associated with EMT. This is consistent with the grow-
ing body of evidence that EMT is critical to the metastatic process16, 17. The fact that the majority of changes in 
biological pathways between the OV and OM samples were predicted from the observed changes in protein and 
not RNA levels further supports the importance of post-transcriptional regulation in metastasis.

Because of the growing body of evidence implicating miRNAs in various aspects of cancer onset and pro-
gression25, we explored the possibility that miRNAs may be contributing to the observed discordance between 
changes in RNA and protein levels in our OV and OM samples. We measured changes in levels of miRNAs 
between OV and OM samples and correlated these changes with corresponding changes in levels of mRNA and 
protein of their targeted genes. Our focus was on testing the hypothesis that at least some of the genes displaying 
significant decreases in protein levels in the OM sample with no corresponding change in levels of mRNA (NC-D 
group) might be explained by the up regulation of regulatory miRNAs. Consistent with this hypothesis, we found 
that gene targets of miRNAs significantly up regulated in the OM sample are down regulated on the RNA and or 
protein levels. In some instances, individual miRNAs up regulated in the OM sample are associated with down 
regulation of their targeted mRNAs with a correlated down regulation on the protein level. In other instances, the 
same miRNAs up regulated in the OM sample were associated with significant down regulation of their targeted 
proteins but no correlated change in levels of their encoding mRNAs indicating a miRNA-mediated regulatory 
block on the translational level. This suggests that individual miRNAs up regulated in the OM sample may be 
regulating some genes on the RNA level and other genes on the protein level.

The possibility that a single miRNA may preferentially regulate different genes on different levels (i.e., tran-
scriptional vs. translational) was corroborated by in vitro studies. Although the extensiveness and mechanisms 
underlying this phenomenon remains to be determined, previous studies have shown that the association of 
miRNAs with RNA binding proteins can significantly affect the levels (post-transcriptional and/or translational) 
on which individual miRNAs regulate their target genes26.

Collectively, our findings indicate that a significant fraction of the discordance in changes in RNA and protein 
levels between our samples are mediated by miRNAs and that miRNAs may contribute to the regulatory coordi-
nation of changes on the RNA and protein levels to enhance metastasis.

Overall, our findings are consistent with growing evidence of the importance of post-transcriptional/transla-
tional changes in the onset and progression of ovarian and other cancers and the potential significance of miR-
NAs in regulating the process.

Methods
Tissue collection.  Cancer tissues from the right ovary and omental sites were collected from a woman with 
stage IIIc, grade 2/3 serous adenocarcinoma at Northside Hospital (Atlanta, GA) after informed consent was 
obtained under appropriate Georgia Institute of Technology Institutional Review Board protocols (H14337) 
according to previously described methods performed in accordance with the relevant guidelines and regula-
tions6. Briefly, following resection, the tumor tissues were placed in cryotubes and immediately (<1 minute) 
frozen in liquid nitrogen. Samples were transported on dry ice to Georgia Institute of Technology (Atlanta, GA), 
and stored at −80 °C. After examination and verification by a pathologist, tissues were embedded in cryomatrix 
(Shandon, ThermoFisher, Waltham, MA). For each tissue sample, 8 μm frozen sections were cut and attached to 
uncharged microscope slides. Following dehydration and staining (HistoGene, LCM Frozen Section Staining 
Kit, Arcturus, ThermoFisher), slides were processed in an Autopix (Arcturus) instrument for laser capture 
microdissection (LCM). CapSure Macro-LCM Caps (Arcturus) were used to ensure purity of all collected cells. 
Approximately 30,000 cells were collected for each of the tissue samples.
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RNA extraction and amplification.  RNA extraction and amplification were performed according to 
previously described methods6. miRNAs were isolated from the cells using the miRNeasy Micro KIT (Qiagen, 
Germantown, MD). The quality and quantity of miRNAs were assessed on the Bioanalyzer RNA Pico Chip 
(Agilent Technologies, Santa Clara, CA). Labeling of miRNAs was performed with the FlashTag Biotin HSR RNA 
Labeling Kit (Affymetrix, ThermoFisher) and hybridized to GeneChip® miRNA 3.0 Array chips (Affymetrix).

Microarray analysis.  Each individual RNA sample was analyzed both for miRNA and mRNA. miRNA pro-
filing analysis was conducted on the GeneChip® miRNA 3.0 Array (Affymetrix). mRNA transcriptome analysis 
was analyzed using Gene Chip Human Transcriptome Array 2.0 (Affymetrix). In total, six miRNA and mRNA 
(two individual samples in triplicate) global expression data sets were generated in this study.

Raw miRNA and mRNA expression data were processed using Affymetrix Expression Console (EC) Software 
Version 1.4. Briefly, raw data probes were normalized using SST-RMA algorithm. The normalized expression 
values were log2 transformed. Differentially expressed mRNAs or miRNAs were identified through fold change 
and p-value calculated using two-tail Student t-test.

Tissue homogenization, protein extraction and digestion.  The minced tissue samples are dounced 
with tight dounce homogenizer in ice-cold homogenization buffer containing 0.25 M sucrose, 1 mM EDTA, 
10 mM HEPES-NaOH, protease inhibitor mixture (Roche Diagnostics, Indianapolis, IN), pH 7.4 with 40 strokes 
on ice. The solutions were centrifuged at 1,000 g for 10 minutes at 4 °C. The supernatant was kept and the tissue 
pellets were re-suspended in RIPA buffer containing 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES), pH = 7.9, 150 mM NaCl, 0.5% sodium dodecyl sulfate (SDS), benzonase (1 U/mL), and protease 
inhibitor mixture (Roche Diagnostics). After complete solubilization of nuclei and digestion of genomic DNA, 
the lysate was centrifuged at 25,000 g for 10 minutes at 4 °C. The supernatants were combined and proteins were 
reduced by 5 mM DTT (56 °C, 25 min) and alkylated with 15 mM iodoacetamide (RT, 30 minutes in the dark). 
Proteins were purified with the chloroform-methanol precipitation method. Purified proteins were digested with 
Lys-C (the ratio of Lys-C and protein was about 1:50) at 31 °C for 15 hours followed by trypsin digestion at 37 °C 
for 4 hours. Digestion was quenched by the addition of 10% TFA to a final concentration of 0.4%, and the result-
ing peptides were purified using a Sep-Pak tC18 cartridge (Waters, Milford, MA).

Peptide TMT labeling, fractionation and LC-MS/MS analysis.  Purified and dried peptides from each 
sample were tagged with TMT reagents. Each sample was labeled using two channels (i.e. the peptides from the 
tumor tissue of the right ovary were labeled with channel 126 and 127 and the peptides of tumor tissue taken 
from the omentum were with 128 and 129). The four labeled peptide samples were combined and desalted using 
a tC18 Sep-Pak cartridge. Then peptides were fractionated using high-pH reversed phase high performance liq-
uid chromatography (HPLC) (pH = 10). The sample was fractionated into 20 fractions. Each fraction was puri-
fied, dried and dissolved in a solvent containing 5% ACN and 4% formic acid (FA), and 4 μL was loaded onto 
a microcapillary column packed with C18 beads (Magic C18AQ, 5 μm, 200 Å, 100 μm × 16 cm) using a WPS-
3000TPLRS autosampler (Dionex, Sunnyvale, CA). Peptides were separated by reversed-phase chromatography 
and detected in a hybrid dual-cell quadrupole linear ion trap – Orbitrap mass spectrometer (LTQ Orbitrap Elite, 
ThermoFisher) using a data-dependent Top 15 method. For each cycle, one full MS scan (resolution: 60,000) in 
the Orbitrap at 106 AGC target was followed by up to 15 MS/MS for the most intense ions. Selected ions were 
excluded from further analysis for 90 s each. Ions with at least double charges were sequenced. MS/MS scans were 
activated by HCD at 40.0% normalized collision energy with 1.2 m/z isolation width, and detected in the orbitrap 
cell.

Database searching, data filtering, and quantification.  The raw files recorded by MS were con-
verted into mzXML format. Precursors for MS/MS fragmentation were checked for incorrect monoisotopic peak 
assignments27. All MS/MS spectra were matched against a database encompassing sequences of all proteins in 
the Uniprot Human (Homo sapiens) database and common contaminants such as keratins using the SEQUEST 
algorithm (version 28)28. Each protein sequence was listed in both forward and reversed orientations to control 
and estimate the false discovery rate (FDR) of peptide identifications. The following parameters were used for the 
database search: 10 ppm precursor mass tolerance; 0.1 Da product ion mass tolerance; full trypsin digestion; up to 
two missed cleavages; variable modifications: oxidation of methionine (+15.9949); fixed modifications: carbami-
domethylation of cysteine (+57.0214), N-terminus and lysine TMT modification (+229.1629).

The target-decoy method was employed to evaluate and further control FDRs of peptide identification29, 30, 
and linear discriminant analysis (LDA) was utilized to distinguish correct and incorrect peptide identifications 
based on multiple parameters such as XCorr, ΔCn, and precursor mass error27, 31–33. After scoring, peptides less 
than six amino acid residues were deleted and peptide spectral matches were filtered to a less than 1% FDR based 
on the number of decoy sequences in the final data set, then the data set was further filtered to <1% FDR at the 
protein level.

Quantification of confidently identified peptides was based on the TMT reporter ion intensities in MS28. The 
isotopic information provided by the company (ThermoFisher) was used to calibrate the measured intensities. 
The median intensity ratio for each unique peptide in each channel was obtained, and eventually the protein ratio 
is the median value of all unique peptides for the corresponding protein.

Integration of transcriptomic and proteomic profiles.  4436 genes detected by mass spectrometry 
(FDR < 0.01) were mapped to at least one probe set on the HTA 2.0 array by coding gene name matching. For 
genes with multiple mRNA probes corresponding to a single protein, the probe with the highest average expres-
sion level among OV and OM samples was used in the integrated dataset34.
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miRNA target prediction.  The miRNA target prediction (based on mirSVR) was downloaded from 
microRNA.org (August 2010 release)35. The mirSVR score refers to targets of microRNAs with scores obtained 
from their support vector regression algorithm21. To reduce the occurrence of false positives, only predicted tar-
gets with a mirSVR score less than −0.1 were considered.

Pathway enrichment analysis.  Differentially expressed genes on mRNA and protein levels were employed 
for enrichment analysis using the MetaCore suite 6.29 build 68,613 (Thomson Reuters, New York, NY). Briefly, 
significantly perturbed pathways and process networks were identified by mapping differentially expressed genes 
onto manually curated GeneGO canonical pathway maps and cell process network models36. The statistical sig-
nificance of enrichment was evaluated using p-values calculated based on hypergeometric distribution. Pathways 
were considered to be significantly enriched if their p-values were <0.05.

Cell culture and microRNA transfection.  The HEY cell line was kindly provided by Gordon Mills, 
Department of Molecular Therapeutics, University of Texas, MD Anderson Cancer Center. Cells were cultured 
in RPMI 1640 (Mediatech, Manassas, VA) supplemented with 10% FBS (Fetal Bovine Serum; Atlanta Biologicals, 
Lawrenceville, GA) and 1% antibiotic-antimycotic solution (Mediatech). For miRNA transfections, 6 × 104 cells 
were seeded per well in 24-well plates. Cells at exponential phase of growth were transfected with 30 nM miRNA 
purchased as Pre-miR miRNA Precursors (Ambion, Austin, TX) using Lipofectamine 2000 (Invitrogen, Carlsbad, 
CA) and per the manufacturer’s instructions. Cells were allowed to grow for 48 hours before RNA isolation. 
Ambion Pre-miR miRNA Precursor Negative Control was used as a negative control.

Real-time PCR.  Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen). Four micro-
grams of RNA was reversed transcribed into cDNA using the Superscript III First-Strand Synthesis System (Life 
Technologies, ThermoFisher) according to the manufacturer’s instructions. Real-time PCR was performed using 
TaqMan® Real-Time PCR Master Mixes (Applied Biosystems, ThermoFisher) on a CFX96 Real-Time System 
(Bio-Rad, Hercules, CA). Expression values were normalized using GAPDH as a reference gene. Normalization 
and fold-change were calculated using the ∆∆Ct method.

Western Blot.  The total protein concentration of the supernatant was determined using a protein assay rea-
gent kit (Bio-Rad). To the lysates, equal volumes of 2X Laemmli sample buffer were added and the samples were 
heated to 90 °C for 5 minutes. Equal amounts of proteins were separated by 4–20% gradient precast TGX gel 
(Bio-Rad) and transferred to nitrocellulose membrane (Bio-Rad). Membranes were blocked with 5% nonfat dry 
milk in 10 mM Tris buffered saline. After blocking, the membranes were probed with the primary antibody for 
overnight at 4 °C with gentle rocking. Antibodies used are against cathepsin B (CTSB antibody Cat # 365558, 
1:100 dilutions; Santa Cruz Biotechnologies, Dallas, TX), I-Plastin (PLS1 antibody Cat # 386830, 1:200 dilutions; 
Santa Cruz Biotechnologies), and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH antibody Cat # 47724, 
1:100 dilutions; Santa Cruz Biotechnologies). Appropriate secondary antibodies were used at 1:5,000 dilutions 
(Santa Cruz Biotechnologies). After incubation with specific horseradish peroxidase–conjugated secondary 
antibody (goat anti-mouse horseradish peroxidase–(HRP) conjugated secondary antibody (sc-2005, Santa Cruz 
Biotechnologies), donkey anti-goat horseradish peroxidase–(HRP) conjugated secondary antibody (sc-2020, 
Santa Cruz Biotechnologies), protein was visualized using the enhanced chemiluminescence detection system 
(Pierce, ThermoFisher). The quantification of western blot bands was performed using ImageQuant software (GE 
Healthcare, Chicago, IL).

Data availability.  The microarray datasets supporting the conclusions of this article are available in the Gene 
Expression Omnibus (GEO) repository, (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE100315). 
Other datasets supporting the conclusions of this article are included within the article and its Supplementary 
Files.
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