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Computational (in silico) methods have been developed and widely applied to pharmacology hypothesis development and
testing. These in silico methods include databases, quantitative structure-activity relationships, similarity searching,
pharmacophores, homology models and other molecular modeling, machine learning, data mining, network analysis tools
and data analysis tools that use a computer. Such methods have seen frequent use in the discovery and optimization of novel
molecules with affinity to a target, the clarification of absorption, distribution, metabolism, excretion and toxicity properties as
well as physicochemical characterization. The first part of this review discussed the methods that have been used for virtual
ligand and target-based screening and profiling to predict biological activity. The aim of this second part of the review is to
illustrate some of the varied applications of in silico methods for pharmacology in terms of the targets addressed. We will also
discuss some of the advantages and disadvantages of in silico methods with respect to in vitro and in vivo methods for
pharmacology research. Our conclusion is that the in silico pharmacology paradigm is ongoing and presents a rich array of
opportunities that will assist in expediating the discovery of new targets, and ultimately lead to compounds with predicted
biological activity for these novel targets.
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Introduction

The first part of this review (Ekins et al., 2007) has briefly

described the history and development of a field that can be

globally referred to as in silico pharmacology. This included

the development of methods and databases, quantitative

structure–activity relationships (QSARs), similarity search-

ing, pharmacophores, homology models and other molecu-

lar modelling, machine learning, data mining, network

analysis and data analysis tools that all use a computer. We

have also previously introduced how some of these methods

can be used for virtual ligand- and target-based screening

and virtual affinity profiling. In this second part of the

review, we will greatly expand on the applications of these

methods to many different target proteins and complex

properties, and discuss the pharmacological space covered by

some of these in silico efforts. In the process, we will detail

the success of in silico methods at identifying new pharma-

cologically active molecules for many targets and highlight

the resulting enrichment factors when screening active drug-

like databases. We will finally discuss some of the advantages

and disadvantages of in silico methods with respect to in vitro

and in vivo methods for pharmacology research.

Pharmacological space covered

The applicability of computational approaches to ligand and

target space in which a lead molecule against one gene
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family member is used for another similar target (termed

chemogenomics) (Morphy et al., 2004; Sharom et al., 2004),

will be discussed thoroughly in an upcoming review in this

journal from Didier Rognan (personal communication) and

will be only briefly addressed here. However, there have been

several attempts to establish relationships between molecu-

lar structure and broad biological activity and effects that

should be considered (see also section 2.3.1 in Ekins et al.

(2007)) (Kauvar et al., 1995, 1998b; Kauvar and Laborde,

1998a). For example, the work of Fliri et al. (2005b) presented

the biological spectra for a cross-section of the proteome.

Using hierarchical clustering of the spectra similarity

enabled a relationship between structure and bioactivity to

be constructed. This work was extended to identify agonist

and antagonist profiles at various receptors, correctly

classifying similar functional activity in the absence of drug

target information (Fliri et al., 2005c). Interestingly, using

IC50 data as affinity fingerprints did not identify functional

activity similarities between molecules as this approach was

suggested to introduce a pharmacophoric bias (Fliri et al.,

2005c). A similar probabilistic approach has also been

applied by the same authors to link adverse effects for drugs

(obtained from the drug labelling information) with biolo-

gical spectra. For instance, clustering molecules by side effect

profile showed that similar molecules had overlapping

profiles, in the same way that they had similar biological

spectra, linking preclinical with clinical effects (Fliri et al.,

2005a). This work offers the intriguing possibility of

predicting a biospectra profile, possible functional activity

and a side effect profile for a new molecule based on

similarity alone. However, confidence in this approach

would be greatly enhanced by further prospective testing

with a large test set of drug-like molecules not used to

generate the underlying signature database.

A second group also from Pfizer presented a global

mapping of pharmacological space and in particular focused

on a polypharmacology network of molecules with activity

against multiple proteins (Paolini et al., 2006). They have

additionally generated Bayesian binary models (for mole-

cules active at o10 mM or inactive) for 698 targets using

over 200 000 molecules with biological data (from their

in-house collection and the literature), suggesting that they

would be useful for predicting primary pharmacology.

Assessment of 617 approved oral drugs in two-dimensional

(2D) molecular property space (molecular weight versus

cLogP) showed that many of them had cLogP 45 and MW

4500. In spite of this, their associated targets were

potentially druggable but had yet to realize their potential

(Paolini et al., 2006). Perhaps this work needs to be combined

with that of Fliri and others for its true potential to be

realized, to enable simultaneous understanding and predic-

tion of target, proteomic, functional activity and side effects.

A recent analysis using 48 molecular 2D descriptors followed

by principal component (PCA) of over 12 000 anticancer

molecules representing cancer medicinal chemistry space,

showed that they populated a different space broader than

hit-like space and orally available drug-like space. This would

indicate that in order to find molecules for anticancer targets

in commercially available databases, different rules are

required other than those widely used for drug-likeness, as

they may unfortunately filter out possible clinical candidates

(Lloyd et al., 2006).

Methods to predict the potential biological targets for

molecules from just chemical structure have been attempted

by using different approaches to those already described

above. For example, one study used probabilistic neural

networks with 24 atom-type descriptors to classify 799

molecules from the MDL Drug Data Reports (MDDR)

database with activity against one of the seven targets

(G protein-coupled receptors (GPCRs), kinases, enzymes,

nuclear hormone receptors and zinc peptidases) with

excellent training, testing and prediction statistics (Niwa,

2004). Twenty-one targets related to depression were selected

and molecules from the MDDR database were used to create

support vector machine (SVM) classification models from

atom-type descriptors (Lepp et al., 2006). These models had

satisfactory predictions and recall values between 45 and

90%, the molecules recovered being on average of low

molecular weight (o300) and some were active against more

than one model. It was suggested that general SVM filters

would be useful for virtual screening owing to their speed.

Others have used similarity searching of the MDDR database

against small numbers of reference inhibitors for several

different targets and were able to show variable enrichment

factors that were greater than random (Hert et al., 2004). The

structure-based alternative to understanding small mole-

cule–protein interactions is to flexibly dock molecules into

multiple proteins. A representative of this inverse docking

approach is INVDOCK, which was recently applied for

identifying potential adverse reactions using a database of

147 proteins related to toxicities (DART). This method has

been recently demonstrated with 11 marketed anti-HIV

drugs resulting in reasonable accuracy against the DNA

polymerase beta and DNA topoisomerase I (Ji et al., 2006).

The public availability of data on drugs and drug-like

molecules may make the analyses described above possible

for scientists outside the private sector. For example,

chemical repositories such as DrugBank (http://redpoll.

pharmacy.ualberta.ca/drugbank/) (Wishart et al., 2006),

PubChem (http://pubchem.ncbi.nlm.nih.gov/), KiDB (http://

kidb.bioc.cwru.edu/) (Roth et al., 2004; Strachan et al., 2006)

and others consist of a wealth of target and small molecule

data that can be mined and used for computational

pharmacology approaches. Although much of the in silico

pharmacology research to date has been focused on human

targets, many of these databases contain data from other

species that would also be useful for understanding

species differences and promoting discovery of molecules

for animal healthcare as well as assisting in understanding

the significance of toxicological findings for chemicals

released into the environment.

Examples of in silico pharmacology

To exhaustively describe all of the proteins that have been

computationally modelled under the auspices of in silico

pharmacology would be impossible in the confines of this

review. Therefore, we will briefly overview the types of

proteins that have been modelled and the methods used (see

below and Table 1). In addition, we will focus on and
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describe particular pharmacological applications with regard

to virtual screening where novel ligands have been identi-

fied. The reader is highly encouraged to study an extensive

review of success stories in computer-aided design, which

covers a large number of proteins that have been targets for

all manner of in silico methods (Kubinyi, 2006), as well as

other reviews that have dealt with the successes of individual

methods (Fujita, 1997; Kurogi and Guner, 2001a; Guner

et al., 2004). As described previously, computational ap-

proaches for drug discovery and development may have

more impact if integrated (Swaan and Ekins, 2005) and we

have previously attempted to show that computational

methods have been broadly applied to virtually all important

proteins in absorption, distribution, metabolism, excretion

and toxicity (ADME/Tox) (Ekins and Swaan, 2004b). The

qaim of this paper is to provide an up-to-date review of all

proteins and protein families addressed through current

state-of-the-art in silico pharmacology methods.

Drug target examples. Enzymes: The ubiquitin regulatory

pathway, in which ubiquitin is conjugated and deconjugated

with substrate proteins, represents a source of many

potential targets for modulation of cancer and other diseases

Table 1 A broad selection of in silico pharmacology targets that have
been used with computational methods to discover new molecules with
binding affinity

Target class Target name Reference

Enzyme Farnesyl transferase Kaminski et al. (1997)
Thrombin Srinivasen et al. (2002)
Acetylcholinesterase Sippl (2002), Rollinger et al.

(2004)
Protein-tyrosine-
phosphatase 1B

Doman et al. (2002), Sippl
(2002)

Factor-Xa O’Brien et al. (2005)
Ubiquitin isopeptidase Mullally et al. (2001), Mullally

and Fitzpatrick (2002)
Aromatase (CYP19) Schuster et al. (2006)
COX-1, COX-2 Rollinger et al. (2005)
LOX Charlier et al. (2006)
12-LOX and 15-LOX Kenyon et al. (2006)
Renin Van Drie (1993), Khadikar et al.

(2005), Bursavich and Rich
(2002), Krovat and Langer
(2004), Hert et al. (2004)

Cathepsin D Kick et al. (1997), Pegg et al.
(2001), Huo et al. (2002), Ekins
et al. (2004a)

Glycogen
phosphorylase

Klabunde et al. (2005)

Sirtuin type 2 Tervo et al. (2004)

Drug
metabolizing
enzymes

Catechol O-
methyltransferase

Chen et al. (2005)

Cytochrome P450s de Groot and Ekins (2002b), de
Graaf et al. (2005), de Groot
(2006), Lill et al. (2006)

UDP-
glucuronosyltransferases

Smith et al. (2004), Sorich et al.
(2004)

Sulfotransferases Dajani et al. (1999)

Kinases Protein kinase C Wang et al. (1994)
CDK1 Furet et al. (2000), Kunick et al.

(2005)
Syk C-terminal SH2
domain

Niimi et al. (2001)

EFGR tyrosine kinase Peng et al. (2003)
Lck SH2 domain Huang et al. (2004)
ERK2 Hancock et al. (2005)
BCR-ABL tyrosine kinase Wolber and Langer (2005)
CK2 and PKD Fullbeck et al. (2005)

Transporter Naþ /D-glucose
co-transporter

Wielert-Badt et al. (2000)

ADME-related (for
example P-gp)

Chang and Swaan (2005),
Zhang et al. (2002a), Zhang
et al. (2002b)

Receptor Endothelial
differentiation gene
receptor antagonists

Koide et al. (2002)

Urotensin antagonists Flohr et al. (2002)
CCR5 antagonist Debnath (2003)
Oestrogen receptor Sippl (2002)
AMPA receptor Barreca et al. (2003)
5-HT2B Singh and Kumar (2001), Brea

et al. (2002), Manivet et al.
(2002), Setola et al. (2005)

5-HT1A Hibert et al. (1988), Nowak et al.
(2006), Becker et al. (2006)

5-HT1D Glen et al. (1995)
5-HT6 Hirst et al. (2003)
Naþ , Kþ -ATPase Keenan et al. (2005)
Dopamine Oloff et al. (2005)
a1A Hessler et al. (2005)

Table 1 Continued

Target class Target name Reference

Channels Potassium, sodium
and calcium

Reviewed by Aronov et al.
(2006)

Transcription
factors

AP-1 transcription
factor

Tsuchida et al. (2006)

Other
therapeutic
targets

Mesangial cell
proliferation inhibitor

Kurogi et al. (2001b)

Prion diseases Lorenzen et al. (2005)
Gbg-protein–protein
interaction

Bonacci et al. (2006)

Integrin VLA-4 (a4b1) Singh et al. (2002b),
Singh et al. (2002a)

Antibacterial Mycobacterium
tuberculosis thymidine
monophosphosphate
kinase

Gopalakrishnan et al. (2005)

Antiviral HIV integrase Carlson et al. (2000), Nicklaus
et al. (1997)

HIV-1 reverse
transcriptase

Griffith et al. (2005), O’Brien
et al. (2005)

Neuroamidase Steindl and Langer (2004)
Human rhinovirus 3C
protease

Steindl et al. (2005a)

Human rhinovirus coat
protein

Steindl et al. (2005b)

Rhinovirus serotype 16 Wolber and Langer (2005)
SARS coronavirus
3C-like proteinase

Liu et al. (2005)

Hepatitis C virus
RNA-dependent RNA
polymerase

Di Santo et al. (2005)

Abbreviations: AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazole propionate;

COX, cyclooxygenase; CYP, cytochrome P450; HIV-1, human immunodefi-

ciency virus; LOX, 5 lipoxygenase.
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(Wong et al., 2003). The recent crystal structure of a

mammalian de-ubiquitinating enzyme HAUSP, which speci-

fically de-ubiquitinates the ubiquitinated p53 protein, may

also assist in drug development despite the peptidic nature of

its substrate (Hu et al., 2002). Novel non-peptidic inhibitors

of the protease ubiquitin isopeptidase, which not only

de-ubiquitinates p53 but other general ubiquitinated proteins

as well, were discovered recently using a simple pharmaco-

phore-based search of the National Cancer Institute (NCI)

database (Mullally et al., 2001; Mullally and Fitzpatrick, 2002).

These inhibitors had IC50 values in the low micromolar range

and caused cell death independent of the tumour suppressor

p53, which is mutated in greater than 50% of all cancers

(hence, p53 inhibition per se may not represent an optimal

target for modulation). The ubiquitin isopeptidase inhibitors

shikoccin, dibenzylideneacetone, curcumin and the more

recently described punaglandins from coral indicate that

a sterically accessible a,b-unsaturated ketone is essential

for bioactivity (Verbitski et al., 2004). All these molecules

represent valuable leads for further chemical optimization.

Aromatase (cytochrome P450 (CYP)19) is a validated target

for breast cancer. A ligand-based pharmacophore was

generated with three non-steroidal inhibitors. This model

could recognize known inhibitors from an in-house library

and was further refined by the addition of molecular shape.

The model was further used to search the NCI database and

molecules were scored with a quantitative Catalyst Hypo-

Refine (Accelrys Inc., San Diego, CA, USA) model generated

with 16 molecules. The hits were also filtered with other

pharmacophores for toxicity-related proteins, before testing.

Two out of the three compounds were ultimately found to be

micromolar inhibitors (Schuster et al., 2006).

A structure-based Catalyst pharmacophore was developed

for acetylcholine esterase, which was subsequently used to

search a natural product database. The strategy identified

scopoletin and scopolin as hits and were later shown to have

moderate in vivo activity (Rollinger et al., 2004). The same

database was also screened against cyclooxygenase (COX)-1

and COX-2 structure-based pharmacophores, leading to the

identification of known COX inhibitors. These represent

examples where a combination of ethnopharmacological

and computational approaches may aid drug discovery

(Rollinger et al., 2005).

A combined ligand-based and structure-based approach

was taken to gaining structural insights into the human

5-lipoxygenase (LOX). A Catalyst qualitative HipHop model

was created with 16 different molecules that resulted in a

five-feature pharmacophore. A homology model of the

enzyme was based on two soybean LOX enzymes and one

rabbit LOX enzyme. Molecular docking was then used to

update and refine the pharmacophore to a four-feature

model that could also be visualized in the homology model

of 5-LOX. As a result of these models, amino-acid residues in

the binding site were suggested as targets for site-directed

mutagenesis while virtual screening with the pharmaco-

phore had suggested compounds with a phenylthiourea or

pyrimidine-5-carboxylate group for testing (Charlier et al.,

2006). Homology models for the human 12-LOX and

15-LOX have also been used with the flexible ligand docking

programme Glide (Schrödinger Inc.) to perform virtual

screening of 50 000 compounds. Out of 20 compounds

tested, 8 had inhibitory activity and several were in the low

micromolar range (Kenyon et al., 2006).

More than 30 years of research on renin have not been

enough to deliver a marketed drug that inhibits this enzyme.

In spite of this, renin remains an attractive yet elusive target

for hypertension (Fisher and Hollenberg, 2001; Stanton,

2003). In this respect, application of structure-based design

leads to the identification of new non-peptidic inhibitors of

human renin. These molecules include aliskiren (Rahuel

et al., 2000; Torres et al., 2003), piperidines, including

Ro-0661168 (Guller et al., 1999; Oefner et al., 1999; Vieira

et al., 1999), and related 3,4-disubstituted piperidines (Marki

et al., 2001). Interestingly, these piperidines bind to and

stabilize a different conformer of the protein termed ‘open

renin’ (Bursavich and Rich, 2002), whereas aliskiren binds to

‘closed renin’. Since these latter structure-based design

efforts, there have been remarkably very few published

attempts at computer-aided design of novel renin inhibitors.

A single early QSAR was derived for a series of chain-

modified peptide analogues of angiotensinogen. The activity

of these molecules was found to correlate with Kier’s first-

order molecular connectivity index descriptor and molecular

weight but not with lipophilicity as measured by logP

(Khadikar et al., 2005). Another computational method for

renin drug discovery used the de novo design software

GrowMol, which could apparently regenerate 3,4-disubsti-

tuted piperidines in 1% of the grown structures (Bursavich

and Rich, 2002). An attempt to use a Catalyst pharmaco-

phore to discover new renin inhibitors was described in the

early 1990s (Van Drie, 1993). Several novel molecules from

the Pomona database (an early three-dimensional (3D)

molecule database) were found that mapped to a renin

pharmacophore but apparently were not tested in vitro. More

recently, a LigandFit docking study with a crystal structure of

the ‘open renin’ form was able to detect 10 known inhibitors

seeded in a library of 1000 compounds within the top 8.4%

when using a consensus scoring function. Four examples of

high-scoring compounds that were not tested as inhibitors

fulfilled the pharmacophore derived from the X-ray data,

consisting of four hydrophobes, a hydrogen bond donor or

positive ionizable feature as well as excluded volumes

(Krovat and Langer, 2004). Another study has used similarity

searching of the MDDR database (for over 100 000 com-

pounds) using 10 renin inhibitors and was able to produce

enrichment factors that were 17-fold greater than random

(Hert et al., 2004). Genetic algorithms have also been used

for class discrimination between renin inhibitors and non-

inhibitors in a subset of the MDDR using a small number of

interpretable descriptors. Among them, amide bond count,

molecular weight and hydrogen bond donor counts were

found to be much higher in renin inhibitors (Ganguly et al.,

2006). The recent publications on novel renin inhibitors

represent a considerable amount of new information that

could be used for further QSAR model development and

database searching efforts in order to derive novel starting

scaffolds for optimization.

Cathepsin D is an aspartic protease found mainly in

lysosomes, which may have a role in b-amyloid precursor

protein release and hence may well be a target for
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Alzheimer’s disease. Cathepsin D may also be elevated in

breast cancer and ovarian cancer hence a means to modulate

this activity could be beneficial in these diseases. There has

been a brief overview of Cathepsin D in a comprehensive

review of protease inhibitors (Leung et al., 2000). A

combination of a structure-based design algorithm and

combinatorial chemistry has been successfully applied to

finding novel molecules for Cathepsin D in the nanomolar

range (Kick et al., 1997). Structures based on pepstatin

(a 3.8 pM inhibitor (Baldwin et al., 1993)) yielded a 6–7% hit

rate. These molecules were tested in vitro using hippocampal

slices and were shown to block the formation of hyperphos-

phorylated Tau fragments (Bi et al., 2000). There have

been relatively few computational studies to date on

Cathepsin D and other related aspartic proteases such as

renin and b-secretase. One study has used molecular

dynamics and free energy analyses (MM-PBSA) of Cathepsin

D inhibitor interactions to suggest new substitutions that

may improve binding (Huo et al., 2002). A genetic algorithm-

based de novo design tool, ADAPT has also been used to

rediscover active Cathepsin D molecules, by placing key

fragments in the correct positions (Pegg et al., 2001).

Computational models may aid in the selection of novel

ligands for protease inhibition that are non-peptidic and

selective. Using the structural features of eight published

inhibitors for Cathepsin D (Huo et al., 2002), a five-feature

pharmacophore was derived consisting of three hydro-

phobes and two hydrogen bond acceptors (r¼0.98). This

pharmacophore was used to search a molecule database and

selected 10 molecules out of 11 441 present. In contrast, a

similarity search at the 95% level using ChemFinder

(CambridgeSoft, Cambridge, MA, USA) suggested 16 different

molecules. All of these were selected for testing in vitro. The

pharmacophore produced four hits (40% hit rate)

and the similarity search generated five hits (31% hit rate),

where at least one replicate showed greater than 40%

inhibition (Ekins et al., 2004a). In silico evaluation of the

ADME properties for all active compounds estimated that

the molecules would be well absorbed, although some

were predicted to have solubility and CYP2D6 inhibition

problems.

Pharmacophore- and structure-based approaches have

been used to optimize an acyl urea hit for human glycogen

phosphorylase. A Catalyst HypoGen five-feature pharmaco-

phore was developed and used to guide further analogue

synthesis. These compounds showed a good correlation with

prediction (r¼0.71). An X-ray structure for one molecule

was used to confirm the predicted binding conformation.

Ultimately, a comparative molecular field analysis (CoMFA)

model was generated with all molecules synthesized and was

found to be complementary to the X-ray structure. The

outcome of this study was a molecule with good cellular

activity that could inhibit blood glucose levels in vivo in rat

(Klabunde et al., 2005).

The human sirtuin type 2, a target for controlling aging

and some cancers, deacetylates a-tubulin and has been

crystallized at high resolution. This structure has been used

for docking the Maybridge database and returned a small hit

list from which 15 compounds were tested and 5 showed

activity at the micromolar level (Tervo et al., 2004).

Catechol O-methyltransferase is a target for Parkinson’s

disease and there is currently a crystal structure of the

enzyme that has been used to generate a homology model of

the human enzyme. This model was used to dock with FlexX

software several catechins from tea and understand the

structure-activity relationship (SAR) for these molecules

and their metabolites, which had been tested in vitro.

Ultimately, the combination of in vitro and computational

work indicated that the galloyl group on catechins, the

distance between Lys 144 on the enzyme, and the reacting

catecholic hydroxy group were important for inhibition

(Chen et al., 2005).

Kinases: The kinases represent an attractive family of over

500 targets for the pharmaceutical industry, with several

drugs approved recently. Kinase space has been mapped

using selectivity data for small molecules to create a

chemogenomic dendrogram for 43 kinases that showed the

highly homologous kinases to be inhibited similarly by small

molecules (Vieth et al., 2004). Virtual screening methods

have been applied quite widely for kinases to date (Fischer,

2004). The structure-based design method has produced new

potent inhibitors of CDK1 starting from the highly similar

apo CDK2 and the positioning of olomoucine. A few amino-

acid residues were mutated to conform to the CDK1

sequence. MacroModel was used to energy minimize mole-

cules in the ATP pocket and visual inspection suggested

points for molecular modification on the ligand. Very

quickly, design efforts guided ligand optimization to

improve activity from 4.5 mM to 25 nM (Furet et al., 2000).

A more recent CDK1/cyclin B homology model was also

used to manually dock ligands, which enabled progression

from alsterpaullone with an IC50 of 35 nM to a derivative

with an IC50 of 0.23 nM (Kunick et al., 2005).

A structure-based in silico screening method was pursued

for the Syk C-terminal SH2 domain using DOCK to find low

molecular weight fragments for each binding site with

millimolar binding affinity. The fragments were then linked

to result in molecules in the 38–350 mM range, which

is a starting point for further lead optimization (Niimi

et al., 2001).

A pseudoreceptor model was built with a set of 27

epidermal growth factor receptor (EGFR) tyrosine kinase

inhibitors with the flexible atom receptor model method.

The top 15 models created had high r2 and q2 and were also

validated with a six-molecule test set. The pseudoreceptor

was also in accord with a crystal structure of CDK2 (Peng

et al., 2003).

Virtual screening using DOCK with the crystal structure of

the Lck SH2 domain was used to screen two million

commercially available molecules. Extensive filtering was

required to result in a manageable hit list using molecular

weight and diversity. Out of 196 compounds tested in vitro,

34 were inhibitory at 100mM, while 2 had activities of 10 and

40 mM. Fluorescence titrations of some of these compounds

suggested the KD values were in the low micromolar range

(Huang et al., 2004). The same group also took a similar

approach to discover inhibitors of ERK2 by screening 800 000

compounds computationally and testing in vitro 80 of them

(Hancock et al., 2005). Five of these molecules inhibited cell
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proliferation and two were shown by fluorescence titration

to bind ERK2 with KD values, which were in the low

micromolar range. In both cases, docking of the active

molecules suggested orientations for verification by X-ray

crystallography (Hancock et al., 2005).

The Ligand Scout method was used with BCR-ABL tyrosine

kinase to find STI-571 (imatinib, Gleevec) in a single and

multiple conformation database (Wolber and Langer, 2005).

A structurally related three-substituted benzamidine deriva-

tive of STI-571 was suggested by structure-based design and

when manually docked into the binding site and energy

minimized, it was shown to form favourable interactions

with a hydrophobic pocket.

CK2 and PKD are part of the COP9 signalosome and can

control stability of p53 and c-Jun, which are important for

tumour development. Curcumin, besides being an inhibitor

of ubiquitin isopeptidase (Mullally et al., 2001; Mullally and

Fitzpatrick, 2002) and activator protein-1 (Tsuchida et al.,

2006), also inhibits CK2 and PKD. Using curcumin and

emodin as reference structures against which a database of

over a million molecules was screened by means of 2D and

3D similarity searches retrieved 35 molecules. Among them,

seven possessed inhibitory activity. For example, piceatannol

was more potent than curcumin against both CK2 and PKD,

with IC50 values of 2.5 and 0.5 mM, respectively (Fullbeck

et al., 2005). Obviously, these examples suggest there has

been some success in finding active molecules for kinases,

but interestingly in few of these studies is selectivity toward

other kinases accounted for. Ultimately, for therapeutic

success activity toward several kinases (but selectivity toward

others) may be required.

Drug-metabolizing enzymes and transporters: Mathematical

models describing quantitative structure–metabolism rela-

tionships were pioneered by Hansch et al. (1968) using small

sets of similar molecules and a few molecular descriptors.

Later, Lewis and co-workers provided many QSAR and

homology models for the individual human CYPs (Lewis,

2000). As more sophisticated computational modelling tools

became available, we have seen a growth in the number of

available models (de Groot and Ekins, 2002b; de Graaf et al.,

2005; de Groot, 2006) and the size of the data sets they

encompass. Some more recent methods are also incorporat-

ing water molecules into the binding sites when docking

molecules into these enzymes and these may be important as

hydrogen bond mediators with the binding site amino acids

(Lill et al., 2006). Docking methods can also be useful for

suggesting novel metabolites for drugs. A recent example

used a homology model of CYP2D6 and docked metoclo-

pramide as well as 19 other drugs to show a good correlation

between IC50 and docking score r2¼0.61 (Yu et al., 2006).

A novel aromatic N-hydroxy metabolite was suggested as the

major metabolite and confirmed in vitro. Now that several

crystal structures of the mammalian CYPs are available, they

have been found to compare quite favourably to the prior

computational models (Rowland et al., 2006). However, for

some enzymes like CYP3A4, where there is both ligand and

protein promiscuity, there may be difficulty in making

reliable predictions with some computational approaches

such as docking with the available crystal structures (Ekroos

and Sjogren, 2006). Hence, multiple pharmacophores or

models may be necessary for this and other enzymes (Ekins

et al., 1999a, b), as it has been indicated by others more

recently (Mao et al., 2006).

The UDP-glucuronosyltransferases are a class of versatile

enzymes involved in the elimination of drugs by catalysing

the conjugation of glucuronic acid to substrates bearing a

suitable functional group, so called phase II enzymes. There

have been numerous QSAR and pharmacophore models that

have been generated with relatively small data sets for rat

and human enzymes. The pharmacophores for the human

UGT1A1, UGT1A4 and UGT1A9 all have in common two

hydrophobes and a glucuronidation feature, while UGT1A9

has an additional hydrogen bond acceptor feature (Smith

et al., 2004; Sorich et al., 2004). Sulfotransferases, a second

class of conjugating enzymes, have been crystallized (Dajani

et al., 1999; Gamage et al., 2003) and a QSAR method has also

been used to predict substrate affinity to SULT1A3 (Dajani

et al., 1999). To the best of our knowledge, computational

models for other isozymes have not been developed. In

general, conjugating enzymes have generally been infre-

quently targeted for in silico models. Perhaps because of a

paucity of in vitro data and limited diversity of molecules

tested, they have been less widely applied in industry.

The computational modelling of drug transporters has been

thoroughly reviewed by numerous groups (Zhang et al.,

2002a, b; Chang and Swaan, 2005) and will not be addressed

here in detail. Various transporter models have also been

applied to database searching to discover substrates and

inhibitors (Langer et al., 2004; Pleban et al., 2005; Chang

et al., 2006b) and increase the efficiency of in vitro screening

(Chang et al., 2006a) or enrichment over random screening.

A pharmacophore model of the Naþ /D-glucose co-transporter

found in renal proximal tubules was derived indirectly using

phlorizin analogues with the DISCO programme to superpose

molecules. This enabled an estimate of the size of the binding

site to be obtained. In contrast to more recent studies with

transporter pharmacophores, this model was not tested or

used for database searching (Wielert-Badt et al., 2000).

Receptors: There are more than 20 different families of

receptors that are present in the plasma membrane,

altogether representing over 1000 proteins of the receptor-

ome (Strachan et al., 2006). Receptors have been widely used

as drug targets and they have a wide array of potential

ligands. However, it should be noted that to date we have

only characterized and found agonists and antagonists for a

small percentage of the receptorome. The a-amino-3-hydroxy-

5-methyl-4-isoxazole propionate receptor is central to

many central nervous system (CNS) pathologies and ligands

have been synthesized as anticonvulsants and neuroprotec-

tants. There is currently no 3D structure information and

therefore a four-point Catalyst HIPHOP pharmacophore was

developed with 14 antagonists. This was then used to search

the Maybridge database and select eight compounds for

testing of which six of these were found to be active in vivo as

anticonvulsants (Barreca et al., 2003).

Serotonin plays a role in many physiological systems, from

the CNS to the intestinal wall. Along with its many

receptors, it has a major developmental function regulating
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cardiovascular morphogenesis. The 5-HT2 receptor family are

G protein-coupled 7-transmembrane spanning receptors

with 5-HT2B expressed in cardiovascular, gut, brain tissues,

as well as human carcinoid tumors (Nebigil et al., 2000). In

recent years, this receptor has been implicated in the

valvular heart disease defects caused by the now banned

‘fen-phen’ treatment of patients. The primary metabolite,

norfenfluramine, potently stimulates 5-HT2B (Fitzgerald

et al., 2000; Rothman et al., 2000). Computational modelling

of this receptor has been limited to date. A traditional QSAR

study used a small number of tetrahydro-b-carboline deriva-

tives as antagonists of the rat 5-HT2B contractile receptor

in the rat stomach fundus (Singh and Kumar, 2001). A

3D-QSAR with GRID-GOLPE using 38 (aminoalkyl)benzo

and heterocycloalkanones as antagonists of the human

receptor resulted in very poor model statistics, possibly

owing to the limited range of activity measured and the fact

that the data corresponded to a functional response that is

likely more complex (Brea et al., 2002). Neither of these

models was validated with external predictions. On the basis

of bacteriorhodopsin and rhodopsin, homology models for

the mouse and human 5-HT2B receptor have been combined

with site-directed mutagenesis. The bacteriorhodopsin

structure provided more reliable models, which confirmed

an aromatic box hypothesis for ligand interaction along

transmembrane domains 3, 6, 7 with serotonin (Manivet

et al., 2002). A more recent 5-HT2B homology model based

on the rhodopsin-based model of the rat 5-HT2A was used to

determine the sites of interaction for norfenfluramine

following molecular dynamics simulations. Site-directed

mutagenesis showed that Val 2.53 was implicated in high-

affinity binding through van der Waals interactions and the

ligand methyl groups (Setola et al., 2005). There is certainly

an opportunity to develop further QSAR models for this

receptor in order to rapidly screen libraries of molecules to

identify undesirable potent inhibitors.

The serotonin 5-HT1A receptor has been frequently

modelled. For example, a conformational study of four

ligands defined a pharmacophore of the antagonist site using

SYBYL (Hibert et al., 1988). The model resulting from such an

active analogue approach was used in molecule design and

predicted molecule stereospecificity. More recently, a series

of over 700 homology models were iteratively created based

on the crystal structure of the bovine rhodopsin that were in

turn tuned by FlexX docking of known ligands. The final

model was used in a virtual screening simulation that was

enriched with inhibitors, compared with random selection

and from this the authors suggested its utility for a real

virtual screen (Nowak et al., 2006). A homology model of the

5-HT1A receptor has also been used with DOCK to screen a

library of 10 000 compounds seeded with 34 5-HT1A ligands.

Ninety percent of these active compounds were ranked in

the top 1000 compounds (Becker et al., 2006), representing a

significant enrichment. The same model was used to screen a

library of 40 000 vendor compounds and select 78 for testing,

of which 16 had activities below 5mM, one possessing 1 nM

affinity. Structure-based in silico optimization was then

performed to improve selectivity with other GPCRs and

optimize the pharmacokinetic (PK) profile. However, as this

proceeded, the molecules were found to have affinity for the

human ether a-go-go-related gene (hERG), and this was

subsequently computationally assessed using a homology

model that pointed to adjusting the hydrophobicity. The

resulting clinical candidate had good target and antitarget

selectivity and backup compounds were selected in the same

way (Becker et al., 2006).

Another early computer-aided pharmacophore generated

with SYBYL using a set of selective and non-selective

analogues was used to design agonists for 5-HT1D as

antimigraine agents with selectivity against 5-HT2A (linked

to undesirable changes in blood pressure) (Glen et al., 1995).

A range of typical and atypical antipsychotics bind to the

5-HT6 receptor. Based on the structure of bovine rhodopsin,

homology models of the human and rodent 5-HT6 receptors

were constructed and used to dock ligands that were known

to exhibit species differences in binding (Hirst et al., 2003).

Following sequence alignment, amino-acid residues were

identified for mutation and the rationalization of these

mutations and their effects on ligand binding were obtained

from the docking studies. The models generated were in

good agreement with the in vitro data and could be used for

further molecule design. This study was a good example

where computational, molecular biology and traditional

pharmacology methods were combined (Hirst et al., 2003).

The Naþ , Kþ -ATPase is a receptor for cardiotonic steroids,

which in turn inhibit the ATPase and cation transport and

have ionotropic actions. Although the effects of digitalis

have been known for hundreds of years, a molecular

understanding has remained absent until recently. A homo-

logy model was generated with the SERCA1a crystal structure

and tested with nine cardiac glycosides (Keenan et al., 2005).

The model was also mutated to mimic the rat receptor and

showed how oubain would orient differently in these

models, perhaps explaining the species difference in affinity.

These models also suggested amino acids that could be

experimentally mutated to validate the hypothesis for the

binding site identification, although this has yet to be tested.

The dopamine receptors have been implicated in Parkin-

son’s disease and schizophrenia. Unfortunately, no crystal

structure is currently available and thus the search for new

antagonists has used QSAR models. A set of 48 compounds

was used with four different QSAR methods (CoMFA,

simulated annealing-partial least square (PLS), k-nearest

neighbours (kNN) and SVM), and training as well as testing

statistics were generated. SVM and kNN models were also

used to mine compound databases of over 750 000 molecules

that resulted in 54 consensus hits. Five of these hits were

known to bind the receptor and were not in the training set,

while other suggested hits did not contain the catechol

group normally seen in most dopamine inhibitors (Oloff

et al., 2005).

The a1A receptor is a target for controlling vascular tone

and therefore useful for antihypertensive agents. A novel

approach for ligand-based screening called multiple feature

tree (MTree) describes the training set molecules as a feature

tree descriptor derived from a topological molecular graph

that is then aligned in a pairwise fashion (Hessler et al.,

2005). A set of six antagonists was used to derive a model

with this method and was compared with a Catalyst

pharmacophore model. Both approaches identified a central
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positive ionizable feature flanked by hydrophobic regions at

either end. These two methods were compared for their

ability to rank a database of over 47 000 molecules. Within

the top 1% of the database, MTree had an enrichment factor

that was over twice that obtained with Catalyst (Hessler

et al., 2005).

Nuclear receptors: Nuclear receptors constitute a family of

ligand-activated transcription factors of paramount impor-

tance for the pharmaceutical industry since many of its

members are often considered as double-edged swords (Shi,

2006). On the one hand, because of their important

regulatory role in a variety of biological processes, mutations

in nuclear receptors are associated with many common

human diseases such as cancer, diabetes and osteoporosis

and thus, they are also considered highly relevant therapeu-

tic targets. On the other hand, nuclear receptors act also as

regulators of some the CYP enzymes responsible for the

metabolism of pharmaceutically relevant molecules, as well

as transporters that can mediate drug efflux, and thus

they are also regarded as potential therapeutic antitargets

(off-targets).

Examples of the use of target-based virtual screening to

identify novel small molecule modulators of nuclear recep-

tors have been recently reported. Using the available

structure of the oestrogen receptor subtype a (ERa) in its

antagonist conformation, a homology model of the retinoic

acid receptor a (RARa) was constructed (Schapira et al., 2000).

Using this homology model, virtual screening of a com-

pound library lead to the identification of two novel RARa
antagonists in the micromolar range. The same approach

was later applied to discover 14 novel and diverse micro-

molar antagonists of the thyroid hormone receptor (Schapira

et al., 2000). By means of a procedure designed particularly to

select compounds fitting onto the LxxLL peptide-binding

surface of the oestrogen receptor, novel ERa antagonists were

identified (Shao et al., 2004). Since poor displacement of

17b-estradiol was observed in the ER-ligand competition

assay, these compounds may represent new classes of ERa
antagonists, with the potential to provide an alternative to

current anti-oestrogen therapies. The discovery of three low

micromolar hits for ERb displaying over 100-fold binding

selectivity with respect to ERa was also recently reported

using database screening (Zhao and Brinton, 2005). A final

example reports the identification and optimization of a

novel family of peroxisome proliferator-activated receptors-g
partial agonists based upon pyrazol-4-ylbenzenesulfonamide

after employing structure-based virtual screening, with good

selectivity profile against the other subtypes of the same

nuclear receptor group (Lu et al., 2006).

Ion channels: Therapeutically important channels include

voltage-gated ion channels for potassium, sodium and

calcium that are present in the outer membrane of many

different cells such as those responsible for the electrical

excitability and signalling in nerve and muscle cells (Terlau

and Stuhmer, 1998). These represent validated therapeutic

targets for anaesthesia, CNS and cardiovascular diseases

(Kang et al., 2001). A recent review has discussed the various

QSAR methods such as pharmacophores, CoMFA, SVM,

2D-QSAR, Genetic Programming, Self Organizing Maps and

recursive partitioning that have been applied to most ion

channels (Aronov et al., 2006) in the absence of crystal

structures. To date L-type calcium channels and hERG appear

to have been the most extensively studied channels in this

regard. In contrast, there are far fewer examples of computa-

tional models for the sodium channel. These three classes of

ion channels have been studied as they represent either

therapeutic targets or antitargets to be avoided.

For example, one of many models for the hERG potassium

channel has compared three different methods with the

same set of molecules for training and a test set. Recursive

partitioning, Sammon maps and Kohonen maps were used

with atom path lengths (Ekins et al., 2006). The average

classification quality was high for both training and test

selections. The Sammon mapping technique outperformed

the Kohonen maps in classification of compounds from the

external test set. The quantitative predictions for recursive

partitioning could be filtered using a Tanimoto similarity to

remove molecules that were markedly different to the

training set (Willett, 2003). The path length descriptors can

also be used to visualize the similarity of the molecules in the

whole training set (Figure 1a). In addition, a subset of

molecules can also be compared, with those highlighted in

blue representing close neighbours and those in red being

more distant (Figure 1b).

Transcription factors: A cyclic decapeptide with activity

against the AP-1 transcription factor was used to derive a

3D pharmacophore to which low energy conformations of

non-peptidic compounds were compared. New 1-thia-4-

azaspiro[4,5]decane and benzophenone derivatives with

activity in binding and cell-based assays were discovered as

AP-1 inhibitors in a lead hopping approach (Tsuchida et al.,

2006).

Antibacterials: Twenty deoxythymidine monophosphate

analogues were used along with docking to generate a

pharmacophore for Mycobacterium tuberculosis thymidine

monophosphosphate kinase inhibitors with the Catalyst

software. A final model was used to screen a large database

spiked with known inhibitors. The model was suggested to

have an enrichment factor of 17, which is highly significant.

In addition, the model was used to rapidly screen half a

million compounds in an effort to discover new inhibitors

(Gopalakrishnan et al., 2005).

Antivirals: Neuroamidase is a major surface protein in

influenza virus. A structure-based approach was used to

generate Catalyst pharmacophores and these in turn were

used for a database search and aided the discovery of known

inhibitors. The hit lists were also very selective (Steindl and

Langer, 2004).

Human rhinovirus 3C protease is an antirhinitis target.

A structure-based pharmacophore was developed initially

around AG 7088 but this proved too restrictive. A second

pharmacophore was developed from seven peptidic inhibi-

tors using the Catalyst HIPHOP method. This hypothesis was

useful in searching the world drug index database to retrieve
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compounds with known antiviral activity and several novel

compounds were selected from other databases with good

fits to the pharmacophore, indicative that they would be

worth testing although these ultimate testing validation data

were not presented (Steindl et al., 2005a). Human rhinovirus

coat protein is another target for antirhinitis. A combined

pharmacophore, docking approach and PCA-based cluster-

ing was used. A pharmacophore was generated from the

structure and shape of a known inhibitor and tested for its

ability to find known inhibitors in a database. Ultimately,

after screening the Maybridge database, 10 compounds were

suggested that were then docked and scored. Six compounds

were tested and found to inhibit viral growth. However, the

majority of them were found to be cytotoxic or had poor

solubility (Steindl et al., 2005b). The Ligand Scout approach

was tested on the rhinovirus serotype 16 and was able to find

known inhibitors in the PDB (Wolber and Langer, 2005).

The SARS coronavirus 3C-like proteinase has been

addressed as a potential drug design target. A homology

model was built and chemical databases were docked into it.

A pharmacophore model and drug-like rules were used to

narrow the hit list. Forty compounds were tested and three

were found with micromolar activity, the best being

calmidazolium at 61 mM (Liu et al., 2005), perhaps a starting

point for further optimization.

A pharmacophore has also been developed to predict the

hepatitis C virus RNA-dependent RNA polymerase inhibition

of diketo acid derivatives. A Catalyst HypoGen model was

Figure 1 (a) A distance matrix plot of the 99 molecule hERG training set showing in general that the molecules are globally dissimilar as
the plot is primarily red (Ekins et al., 2006). (b) A distance matrix plot of a subset of the training set to show molecules similar to astemizole.
Blue represents close molecules and red represents distant molecules based on the ChemTree pathlength descriptors (see colour scale).
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derived with 40 molecules with activities over three log

orders to result in a five-feature pharmacophore model. This

was in turn tested with 19 compounds from the same data

set as well as nine diketo acid derivatives, for which the

predicted and experimental data were in good agreement

(Di Santo et al., 2005).

Other therapeutic targets: The integrin VLA-4 (a4b1) is a

target for autoimmune and inflammatory diseases such as

asthma and rheumatoid arthritis. The search for antagonists

has included using a Catalyst pharmacophore derived from

the X-ray crystal structure of a peptidic inhibitor (Singh et al.,

2002b). This was used to search a virtual database of

compounds that could be made with reagents from the

available chemicals directory. Twelve compounds were then

selected and synthesized, with resulting activities in the

range between 1.3 nM and 20 mM. Hence, a peptide was used

to derive non-peptide inhibitors that were active in vivo. A

second study by the same group used CoMFA with a set of 29

antagonists with activity from 1 to 662 nM to generate a

model with good internal validation statistics that was

subsequently used to indicate favourable regions for mole-

cule substituent changes (Singh et al., 2002a). It is unclear

whether the CoMFA model was also successful for design of

further molecules.

It is possible to use approved drugs as a starting point for

drug discovery for other diseases. For example, the list of

World Health Organization essential drugs has been searched

to try to find leads for prion diseases using 2D Tanimoto

similarity or 3D searching with known inhibitors. This work

to date has suggested compounds, yet they appear not to

have been tested, so the approach has not been completely

validated (Lorenzen et al., 2005).

Protein–protein interactions are key components of cel-

lular signalling cascades, the selective interruption of which

would represent a sought after therapeutic mechanism to

modulate various diseases (Tesmer, 2006). However, such

pharmacological targets have been difficult for in silico

methods to derive small molecule inhibitors owing to

generally quite shallow binding sites. The G-protein Gbg
complex can regulate a number of signalling proteins via

protein–protein interactions. The search for small molecules

to interfere with the Gbg-protein–protein interaction has

been targeted using FlexX docking and consensus scoring of

1990 molecules from the NCI diversity set database (Bonacci

et al., 2006). After testing 85 compounds as inhibitors of the

Gb1g2-SIRK peptide, nine compounds were identified with

IC50 values from 100 nM to 60 mM. Further substructure

searching was used to identify similar compounds to one

of the most potent inhibitors to build a SAR. These efforts

may eventually lead to more potent lead compounds.

Complex property modelling

Up to this point, we have generally considered in silico

pharmacology models that essentially relate to a single target

protein and either the discovery of molecules as agonists,

antagonists or with other biological activity after database

searching and in vitro testing or following searching of

databases seeded with molecules of known activity for the

target. However, there are many complex properties that

have been modelled in silico and these will be briefly

discussed here. It should also be pointed out that while

several physicochemical properties such as ClogP and water

solubility have been extensively studied, the training sets for

these models are in the 1000s or tens of thousands of

molecules, while other complex properties have generally

used much smaller training sets in the range of hundreds of

molecules.

For example, a measure of molecule clearance would be

indicative of elimination half-life that would naturally be of

value for selecting candidates. The intrinsic clearance has

therefore been used as a measure of the enzyme activity

toward a compound and this may involve multiple enzymes.

Some of the earliest models for this property includes a

CoMFA model of the CYP-mediated metabolism of chlori-

nated volatile organic compounds, likely representative of

CYP2E1 (Waller et al., 1996). A more generic set of molecules

with clearance data derived from human hepatocytes has

been used to predict human in vivo clearance using multiple

linear regression, PCA, PLS, Neural Networks with leave-one-

out cross-validation (Schneider et al., 1999). Microsomal and

hepatocyte clearance data sets have also been used separately

to generate Catalyst pharmacophores, which were then

tested by predicting the opposing data set. This method

assumes there are some pharmacophore features intrinsic to

the molecules that dictate intrinsic clearance (Ekins and

Obach, 2000).

A second complex property is the volume of distribution

that is a function of the extent of drug partitioning into

tissue versus plasma and there have been several attempts at

modelling this property (Lombardo et al., 2002, 2004). This

property, along with the plasma half-life, determines the

appropriate dose of a drug. For example, 253 diverse drugs

from the literature were used with eight molecular descrip-

tors with Sammon and Kohonen mapping methods. These

models appeared to classify correctly 80% of the compounds

(Balakin et al., 2005). Recently, a set of 384 drugs with

literature volume of distribution at steady-state data was

used with a mixture discriminant analysis-random forest

method and 31 molecular descriptors to generate a pre-

dictive model. This model was tested with 23 molecules,

resulting in a geometric mean fold error of 1.78, which was

comparable to the values for other predictions for this

property from animal, in vitro, or other methods (Lombardo

et al., 2006).

A third property, the plasma half-life determined by

numerous ADME properties has also been modelled with

Sammon and Kohonen maps using data for 458 drugs from

the literature and four molecular descriptors. Like the

previously described volume of distribution models, these

models appeared to classify correctly 80% of the compounds

(Balakin et al., 2005).

A fourth complex property is renal clearance, which

assumes the excretion of the unchanged drug that takes

place only by this route, hence this represents a method of

monitoring the proportion of drug metabolized. In one set of

published QSAR models, 130 molecules were used with 62

Volsurf or 37 Molconn-Z descriptors. The models were

tested with 20 molecules and one using soft independent
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modelling of class analogies and Molconn-Z descriptors

obtained 85% correct classification between the two classes

(0–20 and 20–100%) (Doddareddy et al., 2006).

A fifth example of a complex property is the protein–

ligand interaction and appropriate scoring functions for

which several methods have been developed such as force

fields, empirical and knowledge-based approaches (see also

Ekins et al., 2007). These are important in computational

structure-based design methods for assessing virtual candi-

date molecules to select those that are likely to bind a

protein with highest affinity (Shimada, 2006). Recently,

a Kernel partial least squares (K-PLSs) QSAR approach has

been used along with a genetic algorithm feature selection

method for the distance-dependent atom pair descriptors

from the 61 or 105 small molecule training sets with binding

affinity data and the proteins they bind to. Bootstrapping,

scrambling the data and external test sets were used to test

the models (Deng et al., 2004). In essence, such K-PLS QSAR

models across many proteins perhaps isolate the key

molecular descriptors that relate to the highest affinity

interactions. It will be interesting to see whether such

models can continue to be generated with the much larger

binding affinity data sets that are now available.

A final example of a complex property is the Vmax of an

enzyme that has been modelled on a few occasions

(Hirashima et al., 1997; Mager et al., 1982; Ghafourian and

Rashidi, 2001; Sipila and Taskinen, 2004). This value will

depend on the properties of the compound in question and

will be influenced by the steric properties of the active site as

well as the ease of expulsion of the leaving group from the

active site. Balakin et al. (2004), have recently used neural

network methods to model the Vmax data for N-dealkylation

mediated by CYP2D6 and CYP3A4, using whole molecules,

centroid of the reaction and leaving group-related descrip-

tors. These models were also used to predict small sets

of molecules not included in training. Ultimately, many

other reactions and the evaluation of other enzymes will

be necessary. Similarly, larger test sets are required for all

the above complex property models to provide further

confidence in the models in terms of their utility and

applicability.

Current scope, limitations, and trends

Uses of in silico pharmacology

We propose a general schema for in silico pharmacology,

which is shown in Figure 2. This demonstrates some of the

key roles of the computational technologies that can assist

pharmacology. These roles include finding new antagonists

or agonists for a target using an array of methods either in

the absence or presence of a structure for the target.

Computational methods may also aid in understanding the

underlying biology using network/pathways based on

annotated data (signalling cascades), determining the con-

nectivity of drug as a network with targets to understand

selectivity, integration with other models for PK/PD (phar-

macodynamic) and ultimately the emergence of systems

in silico pharmacology. Obviously, we have taken more of a

pharmaceutical bias in this review but we would argue these

methods are equally amenable and should be considered to

discover new chemical probes for the academic pharmaco-

logist as opposed to lead molecules for optimization to

become drugs. Some of the advantages of in silico pharma-

cology and in silico methods in general are the reduction in

the number of molecules made and tested through database

searching to find inhibitors or substrates, increased speed of

experiments through reliable prediction of most pharma-

ceutical properties from molecule structure alone and

ultimately reductions in animal and reagent use. We must

however consider the multiple optimization of numerous

predicted properties, possibly either weighting in silico

pharmacology models by importance (or confidence in the

model and or data), as well as data set size and diversity.

Similarly, we should consider the disadvantages of in silico

pharmacology methods as protein flexibility, molecule

conformation and promiscuity all hinder accurate predic-

tions. For example, even with the recent availability of

crystal structures for several mammalian drug-metabolizing

enzymes, there is still considerable difficulty in reliable

metabolism predictions. Our focus thus far has been on the

creation of many in silico pharmacology models for human

properties, yet as pharmacology uses animals for much

in vivo testing and subcellular preparations from several

species for in vitro experiments, we need models from other

species both to understand differences as well as enable

better scaling between them. A widely discussed disadvan-

tage of in silico methods is the applicability of the model,

which will now be discussed further.

Defining in silico model applicability domain

Some of the in silico pharmacology methods that can be used

have similar limitations to models used in other areas, such

as those for predicting physicochemical and ADME/Tox

properties. For example, models may be generated with a

narrow homologous series of pharmacologically relevant

molecules (local model) or a structurally diverse range of

molecules (global model). These two approaches have their

pros and cons, respectively. The applicability domain of the

local model may be much narrower than for the global

model such that changing to a new chemical series will result

in prediction failure. However, global models may also

fail if the predicted molecule falls far enough away from

representative molecules in the training set. These limita-

tions are particularly specific to QSAR models. From many of

the in silico pharmacology model examples described above,

the QSAR models are generally local in nature and this will

limit lead hopping to new structural series, whereas global

models may be more useful for this feature. Several papers

have described the applicability domain of models and

methods in considerable detail (Dimitrov et al., 2005; Tetko

et al., 2006) to calculate this property. Molecular similarity to

training set compounds may be a reliable measure for

prediction quality (Sheridan et al., 2004) as demonstrated

for a hERG model (Ekins et al., 2006). To our knowledge,

there has not been a specific analysis of the applicability

domain specifically for in silico pharmacology models (other

than for those examples described above) to the same degree

as there has been for physicochemical properties like
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solubility and logP. The applicability domain of pharmaco-

phore models have not been addressed either as the focus

has primarily been on statistical QSAR methods.

As we shift toward hybrid or meta-computational

methods (that integrate several modelling approaches and

algorithms) for predicting from molecular structure the

possible physicochemical and pharmacological properties,

then these could be used to provide prediction confidence

by consensus. The docking methods with homology models

for certain proteins of pharmacological interest could be

used alongside QSAR or pharmacophore models if these

are also available. There have been numerous occasions in

the study of drug-metabolizing enzymes were QSAR and

homology models have been combined or used to validate

each other (de Groot et al., 2002a; de Graaf et al., 2005; de

Groot, 2006).

Drug metabolism is a good example as several simulta-

neous outcomes (for example, metabolites) often occur, a

condition not normally found in other pharmacological

assays where a single set of conditions yields a single

outcome. It is here that the classification into specific

(‘local’) and comprehensive (‘global’) methods finds its

clearest use (see Figure 3), with local methods being

applicable to simple biological systems such as a single

enzyme or a single enzymatic activity (Testa and Krämer,

2006). The production of regioselective metabolites (for

example, hydroxylation to a phenol and an alcohol) is

usually predictable from such methods, but that of different

routes (for example, oxidation versus glucuronidation) is

not. This is where global algorithms (that is, applicable to

versatile biological systems) are most useful in their potential

capacity to encompass all or most metabolic reactions and

offer predictions, which are much closer to the in vivo

situation.

Observations and caveats

It is readily apparent that in a minority of papers we have

found that computational approaches have resulted in

predicted lead compounds for testing without the authors

providing further experimental verification of biological

activity (Krovat and Langer, 2004; Langer et al., 2004; Steindl

and Langer, 2004; Gopalakrishnan et al., 2005; Lorenzen

et al., 2005; Steindl et al., 2005a; Amin and Welsh, 2006).

This is an interesting observation as for many years

computational studies were generally performed after synth-

esis of molecules, and essentially provided illustrative

pictures and explanation of the data. Now it appears we are

seeing a shift in the other direction as predictions are

published for pharmacological activity without apparently

requiring in vitro or in vivo experimental verification, as long

as the models themselves are validated in some manner. As

the models may only have a limited prediction domain so

perhaps in future we will see some discussion of the

predicted molecules and their distance from the training

set or some other measure of how far the predictions can be

extended.

Many of the molecules identified by virtual screening

techniques have not been tested in vitro to ensure that they

are not false positives that may actually be involved in

molecule aggregation. These types of molecules have been

termed so-called ‘promiscuous inhibitors’, occurring as micro-

molar inhibitors of several proteins (McGovern et al., 2002;

McGovern and Shoichet, 2003; Seidler et al., 2003).

A preliminary computational model was developed to help

identify these potential promiscuous inhibitors (Seidler et al.,

2003). From reviewing the literature, we suggest it would be

worth researchers either implementing filters for ‘promiscuous

inhibitors’ or performing rigorous experimental verification of

their predicted bioactive molecules to rule out this possibility.

Figure 2 A schematic for in silico pharmacology.
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Publication bias perhaps also limits the number of

examples of failures of computational methods that are

published (if any). It would certainly be very useful to know

the existence of difficult targets for modelling with different

methods, as this apparently is a process of trial and error for

each investigator currently.

In summary, in this and the accompanying review (Ekins

et al., 2007), we have presented our interpretation of in silico

pharmacology and described how the field has developed so

far and is used for: discovery of molecules that bind to many

different targets and display bioactivity, prediction of

complex properties and the understanding of the underlying

metabolic and network interactions. While we have not

explicitly discussed PK/PD, whole organ, cell or disease

simulations in this review, we recognize they too are an

important component of the computer-aided drug design

approach (Noble and Colatsky, 2000; Gomeni et al., 2001;

Kansal, 2004) and may be more widely integrated with other

in silico pharmacology methods described previously (Ekins

et al., 2005).

Conclusion

The brief history of in silico pharmacology has taken perhaps

a rather predictable route with computational models

applied to many of the most important biological targets

where they have the capacity to be used to search large

databases and quickly suggest molecules for testing. Many

of the examples we have presented have demonstrated

significant enrichments over random selection of molecules

and so far these have been the most plentiful types of metrics

that are routinely used to validate in silico models. The future

of in silico pharmacology may be somewhat difficult to

predict. While we are seeing a closer interaction between

computational and in vitro approaches to date, will we see a

similar relationship with in vivo studies in the future? More

broadly, will in silico pharmacology ever be able to replace

entirely experimental approaches in vitro and even in vivo, as

some animal rights activists want us to believe? The answer

here can only be a clear and resounding ‘no’ (at least in the

near future), for two irrefutable reasons. First, biological

entities are nonlinear systems showing ‘chaotic behaviour’.

As such, there is no relation between the magnitude of the

input and the magnitude of the output, with even the most

minuscule differences between initial conditions rapidly

translating into major differences in the output. And second,

no computer programme, however ‘complex and systems-

like’, will ever be able to fully model the complexity of

biological systems. Indeed, and in the formulation of the

mathematician Gregory Chaitin, biological systems are

algorithmically incompressible, meaning that they cannot

be modelled fully by an algorithm shorter than themselves.

In the meantime, in silico pharmacology will likely become

more complex requiring some degree of integration of

models, as we are seeing in the combined metabolism

modelling approaches (Figure 3). Ultimately, to have a much

broader impact, the in silico tools will need to become a part

of every pharmacologist’s tool kit and this will require

training in modelling and informatics, alongside the in vivo,

in vitro and molecular skills. This should provide a realistic

appreciation of what the different in silico methods can and

cannot be expected to do with regard to the pharmacologists

aim of discovering new therapeutics.
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