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Comprehensive Gene expression 
meta-analysis and integrated 
bioinformatic approaches reveal 
shared signatures between 
thrombosis and myeloproliferative 
disorders
Prabhash Kumar Jha, Aatira Vijay, Anita Sahu & Mohammad Zahid Ashraf

Thrombosis is a leading cause of morbidity and mortality in patients with myeloproliferative disorders 
(MPDs), particularly polycythemia vera (PV) and essential thrombocythemia (ET). Despite the attempts 
to establish a link between them, the shared biological mechanisms are yet to be characterized. An 
integrated gene expression meta-analysis of five independent publicly available microarray data of 
the three diseases was conducted to identify shared gene expression signatures and overlapping 
biological processes. Using INMEX bioinformatic tool, based on combined Effect Size (ES) approaches, 
we identified a total of 1,157 differentially expressed genes (DEGs) (697 overexpressed and 460 
underexpressed genes) shared between the three diseases. EnrichR tool’s rich library was used for 
comprehensive functional enrichment and pathway analysis which revealed “mRNA Splicing” and 
“SUMO E3 ligases SUMOylate target proteins” among the most enriched terms. Network based meta-
analysis identified MYC and FN1 to be the most highly ranked hub genes. Our results reveal that the 
alterations in biomarkers of the coagulation cascade like F2R, PROS1, SELPLG and ITGB2 were common 
between the three diseases. Interestingly, the study has generated a novel database of candidate 
genetic markers, pathways and transcription factors shared between thrombosis and MPDs, which 
might aid in the development of prognostic therapeutic biomarkers.

Myeloproliferative disorders (MPDs) is a collective term to describe Polycythemia vera (PV), Essential thrombo-
cythemia (ET) and Primary myelofibrosis (PMF) of which the pathogenesis is interconnected1. The MPDs have 
been classified as increased erythrocytes counts in PV, high platelet counts in ET and bone marrow fibrosis in 
the third disease PMF. However, the prevalence of PV and ET in human population is higher and well-studied 
as compared to the third one2. Venous thromboembolism being a multifactorial disease is the third most fatal 
cardiovascular complication after myocardial infarction and stroke and comes as a secondary complication to 
MPDs3. Evidences suggest that there are around 1.5 to 2 cases of PV and ET develop in a population of 100,000 
annually4,5. Approximately 20% to 50% cases of PV and ET are identified with thrombotic complications in their 
vascular system. Although the incidences are more prevalent in PV, while for ET increasing age possesses a major 
risk factor for the progression of thrombogenecity. Remarkably, the thrombotic risk is well ascertained in PV and 
ET indicates that the intrinsic factors responsible for increase in platelet number and blood viscosity further con-
tributing to the thrombotic events6. Epidemiological studies have recommended the pervasiveness of MPDs with 
thrombotic events but the knowledge regarding the hierarchical relationship between the biological pathways 
and shared mechanisms, if any, still lacks. Although the MPDs and thrombosis have different characteristics and 
appearance but thrombotic disorders could either be the result or a parallel secondary complication of MPDs7.
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Microarray is a quantitative technique which facilitates the analysis of not only gene expression but the dis-
covery of new drug targets, novel gene functions and new diagnostic alternatives in a single experiment simulta-
neously8. Gene expression analysis is the integral part of molecular genetics and functional genomics leading to 
understand and analyze global genomic patterns of different diseases. Meta-analysis is a systematic approach to 
study and combine different publically available dataset repositories to perceive shared molecular mechanisms 
of diseases, their risk factors or the effect of their treatment9. Literature evidences are available to correlate the 
robustness of the gene expression signatures through-out the genome for diseases of different types and origin10.

Merging multiple microarray datasets depends on powerful in-silico tools to manage and successfully interpret 
the complex data acquired from the study. Because different microarray studies are associated to different popula-
tion, study design and diseases, it is very difficult to predict the accuracy of the method chosen for the analysis11. 
Meta-analysis provide enhanced statistical power, thereby obtaining more robust and reliable gene signatures and 
using Integrative meta-analysis of expression data (INMEX), a web based tool, facilitates careful data preprocess-
ing and annotation to ensure that the data format and class labels are consistent across datasets. To address the 
differences in study design and platform usage, heterogeneity existing among microarray datasets, we applied the 
Effect size (ES) combination with Random Effect Modeling (REM) which takes both the direction and magnitude 
of gene expression changes into consideration to generate more biologically consistent results12.

Furthermore, the power of microarray meta-analytic techniques has also been well exploited to unearth the 
shared biological signatures between the related diseases and pathophysiological conditions by integrating the 
publically available microarray datasets13–15. In this study we have selected five eligible microarray datasets (based 
on the inclusion criteria) from public repositories for three different but correlated blood disorders; venous 
thrombosis (VT), ET and PV. This is the first time to our knowledge that a form of thrombosis is associated with 
MPDs implicating the common transcriptional signatures in healthy individuals versus patients.

Results
Selection of eligible microarray datasets. A total of 5 studies (accession number: GSE17078, GSE19151, 
GSE2006, GSE26049 and GSE47018) met the inclusion criteria (Fig. 1A) and were selected for meta-analysis, 

Figure 1. Workflow of microarray meta-analysis. (A) Selection process of eligible microarray datasets for 
meta-analysis of the shared signatures between thrombosis, essential thrombocythemia (ET) and polycythemia 
vera (PV), according to Prisma 2009 flow diagram. (B) Depiction of the flow chart of the process involved in 
integrated meta-analysis of the selected microarray datasets.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:37099 | DOI: 10.1038/srep37099

covering three types of coagulation related pathophysiology (2 datasets each for VT, ET and PV). Control/Patient 
datasets were considered with a collective number of 90/73, 29/25 and 27/60 controls/patients in VT, ET, and 
PV respectively. The datasets included in this meta-analysis were case/control studies where the controls were 
healthy individuals and are further defined similarly. Of note, all the datasets were generated using common 
microarray platform i.e. Affymetrix Human Genome U133A series. Only the studies included in which sample 
source were either whole blood or blood components, two studies GSE19151 and GSE26049 had whole blood, 
while blood outgrowth endothelial cells, platelets and peripheral blood CD34+  cells were the sample source 
of GSE17078, GSE2006 and GSE47018 respectively. Table 1 provides detailed information of each datasets and 
highlights the disease condition, sample type, references of the study and microarray platform used. It need to be 
mentioned that samples from GSE26049 were further separated into two subgroups with 19 and 41 patients (ET 
and PV respectively) and 21 common controls, these two subgroups were considered as individual datasets dur-
ing meta-analysis using Integrative Meta-Analysis of Expression Data (INMEX), a web interface for integrative 
meta-analysis.

Batch effect adjustment. The primary goal of the study was to identify the shared differentially expressed 
genes (DEGs) between thrombosis and MPDs using the selected datasets for meta-analysis, however, data inte-
gration is hindered by batch effects and efficient methods for batch effect removal are needed for integrative 
analysis. Before performing meta-analysis, INMEX takes care of reducing potential study-specific “batch effects” 
and thereby reducing confounding factors due to non biological variations. The pre-processed and normalized 
individual datasets were further subjected to the well-established ComBat procedures16. To compare the sample 
clustering patterns before and after applying the ComBat procedures, the results were visually examined using the 
principal component analysis (PCA). Multidimensional scaling of the datasets revealed that before application of 
the batch adjustment algorithm, each dataset clearly separated from all the others (“batch effect”), whereas after 
correction of batch effect, samples from all datasets were well intermixed (Figure S2).

Identification of common Differentially Expressed Genes (DEGs) signatures among thrombo-
sis and myeloproliferative disorders by meta-analysis. To identify a common transcriptional sig-
nature shared between thrombosis and MPDs (ET and PV), five microarray studies (Table 1) were analysed 
using INMEX. The overall meta-analysis workflow used in this study is shown in Fig. 1B. The processed data 
were loaded into INMEX webtool followed by the Cochran’s Q test Random Effect Modelling (REM) and ES 
(Effect Size) statistical analysis to find genes that were differentially expressed between patients and healthy con-
trols across different studies. This statistical approach has the advantage of allowing the true effect size to vary 
from study to study by integrating unknown cross-study heterogeneities (i.e. due to non-biological heterogenei-
ties). The implementation of this method is based on moderated effect size using the metaMA package17. From 
microarray meta-analysis we identified a total of 1,157 DEGs including 697 overexpressed and 460 underex-
pressed genes across the datasets under the significance threshold of adjusted p-value < 0.05. As considered to 
be the advantage of meta-analysis 39 “gained” genes were additionally identified as DEGs in the meta-analysis 
with weak but consistent expression profiles across all five datasets, 9050 “loss” genes (Fig. 2A), (list shown in 
Supplementary sheet) were identified as DEGs in individual analysis but not in meta-analysis with inconsistent 
changes in expression profiles across different datasets, or large variations by different platforms or experimental 
errors. Figure 2B shows the heatmap of top 25 over and underexpressed genes across all datasets. The ZFP36 ring 
protein finger like 2 (ZFP36L2), LUC7 like (LUC7L) and NLR family, pyrin domain containing 1 (NLRP1) were 
among the most significantly overexpressed genes while, X-linked KX blood group (XK), Antioxidant 1 copper 
chaperon (ATOX1) and Protein S alpha (PROS1) were the most underexpressed genes across the five microarray 
datasets (Table 2). The complete list of DEGs is provided in supplementary sheet.

Hub genes identification by network based meta-analysis. Network based meta-analysis was con-
ducted to find out the key hub genes among the DEGs obtained from the meta-analysis of different datasets. 
NetworkAnalyst, a web based tool was implemented to generate a protein-protein interaction (PPI) network 
by integrating the InnateDB interactome with the original seed of 1,157 DEGs. An expanded PPI network was 
generated with 7,235 nodes representing the proteins and 24,928 edges representing the interaction between 

GEO accession no. Disease Samples (Ctl/Pt) Sample source Platform Reference

[GSE17078] Venous Thrombosis (VT) (n =  30) 27/3 Blood Outgrowth 
Endothelial Cells

Affymetrix Human Genome 
U133A Array 70

[GSE19151] Venous Thrombosis (VT) (n =  133) 63/70 Whole Blood Affymetrix Human Genome 
U133A 2.0 Array 71

[GSE2006] Essential Thrombocythemia (ET) (n =  14) 8/6 Platelets Affymetrix Human Genome 
U133A Array 72

[GSE26049] Polycythemia Vera (PV), 
Essential Thrombocythemia (ET) (n =  81) 21/41 (PV)/19 (ET) Whole Blood Affymetrix Human Genome 

U133 Plus 2.0 Array 73

[GSE47018] Polycythemia Vera (PV) (n =  25) 6/19 Peripheral blood 
CD34+  cells

Affymetrix Human Genome 
U133A Array 74

Table 1.  Characteristics of individual studies included in the meta-analysis. GEO: Gene Expression 
Omnibus; GSE 26049 was further separated into two subgroups with 19 Essential Thrombocythemia and 41 
Polycythemia Vera patients with 21 common controls, these two subgroups were considered as individual 
datasets during meta-analysis.
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these proteins, however, for better visualization of the network “Zero order” interaction network was created 
with 555 nodes connected with 1,203 edges (Fig. 3A). MYC (myc protein) with the combined ES of 1.40 and 
adjusted p-value of 1.14E-06 and FN1 (Fibronectin 1) with the combined ES of − 0.42 and adjusted p-value of 
0.0097479 were found to be the most highly ranked hub genes among the overexpressed and underexpressed 
DEGs respectively. The most highly ranked nodes across the five datasets based on network topology meas-
ures were MYC (Betweenness centrality =  3371.02; Degree =  67) and FN1 (Betweenness centrality  =  3325.79; 
Degree =  67) followed by UBE2I (Betweenness centrality =  1215.46; Degree =  28) and IKBKE (Betweenness 
centrality =  688.90; Degree =  25), list of top ten hub genes based on network topology scores is shown in  
supplementary Table 1 (Table S1). Using the module explorer tool, most important modules were extracted as 
sub networks which included MYC (37 nodes and 48 edges) and FN1 (26 nodes and 34 edges). Both the modules 
are independent protein complexes with their interacting nodes likely to work collectively to perform biological 
functions (Fig. 3B and C).

Gene set enrichment analysis for identification of overrepresented biological pathways and 
gene ontology terms. For the analysis of overrepresented biological pathways and gene ontology (GO) 
terms associated with the differentially expressed genes, we performed gene set enrichment analysis using 
EnrichR tool using the list of DEGs (including over- and underexpressed). GO terms and biological pathways 
were significantly overrepresented in the gene list if they showed an adjusted p-value < 0.05. Results for enriched 
biological pathways and gene ontology are shown in Table 3. DEGs in meta-analysis results were associated 
with the enriched pathways with adjusted p-value < 0.05, including “Processing of Capped Intron-Containing 

Figure 2. Gene expression pattern of the DEGs from meta-analysis. (A) Venn diagram of differentially 
expressed genes identified from the meta-analysis (Meta-DE) and those from each individual microarray 
analysis (Individual-DE). (B) Heat-map representation of expression profiles for the top 25 up- and 25 down-
regulated DEGs obtained from meta-analysis. Clustering of selected genes on the heat-map was performed by 
hierarchical clustering algorithm using Euclidean distance measure. Class 1: Control; Class 2: Patient.
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Pre-mRNA (R-HSA-72203)”, “mRNA Splicing (R-HSA-72172)” and “SUMO E3 ligases SUMOylate target 
proteins (R-HSA-3108232)”. The most important GO terms associated with overexpressed genes included 
“RNA splicing (GO:0008380)”, “mRNA processing (GO:0006397)”, “cytosol(GO:0005829)” and “nucleop-
lasm (GO:0005654)”. To gain further insights of shared GO terms and biological pathways associated with the 
meta-analysis DEGs, we used two separate bioinformatic softwares in the integrative environment of cytoscape 
V3.1. Functionally grouped network of enriched biological pathway categories associated to KEGG and reac-
tome pathway databases were generated for the DEGs using ClueGO V2.1.7, which facilitates the visualization of 
pathway interaction in the form of network (Fig. 4A). Using BinGO enrichment clusters of biological processes 
(GO) associated with DEGs of meta-analysis was generated with following groups among the most enriched 
terms: “cellular process”, “mRNA processing”, “biological regulation”, “immune system process” and “regulation 
of lymphocyte differentiation” (Fig. 4B).

Identification of the transcription factors and regulatory kinases network upstream to the 
shared Differentially Expressed Genes obtained from meta-analysis. Expression2Kinase (X2K) 
bioinformatic tool was used to perform regulatory gene network analysis to identify upstream regulators respon-
sible for observed patterns in gene expression meta-analysis studies. Emphasis was made to infer the most impor-
tant transcription factors and protein kinases associated with the complete set of DEGs and rank these regulatory 
gene candidates rendering their involvement in the formation of regulatory complexes. List of top 10 ranked tran-
scription factors and protein kinases are shown in supplementary Table 2 (Table S2). The interaction network was 
constructed between transcription factors, kinases and their intermediate proteins involved in formation of regu-
latory complex. Fli-1 Proto-Oncogene, ETS Transcription Factor (FLI1) and Hepatocyte Nuclear Factor 4, Alpha 
(HNF4A) were among the top transcription factor while Mitogen-Activated Protein Kinase 1/3 (MAPK1/3) and 
Homeodomain Interacting Protein Kinase 2 (HIPK2) were among the top protein kinases associated with the 
DEGs from the meta-analysis across the five datasets (Supplementary Table S2).

Shared coagulation related gene signatures. To identify the coagulation related gene signatures, we 
briefly conducted biological process (Gene Ontology) analysis on the complete set of DEGs (both over- and 
underexpressed) using EnrichR tool. In the analysis “blood coagulation (GO:0007596)” with overlap (45/472) 
was observed. Table 4 depicts the expression pattern of top ten coagulation genes; Selectin P Ligand (SELPG), 
Carboxypeptidase B2 (CPB2), integrin, beta 2 (ITGB2), Protein kinase C, eta (PRKCH), Ras-related C3 botuli-
num toxin substrate 1 (rho family, small GTP binding protein Rac1) (RAC1), 3-phosphoinositide dependent pro-
tein kinase-1 (PDPK1), Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2 
(GNAI2) and Lysine (K)-specific demethylase 1A (KDM1A) were among the overexpressed while the expression 

EntrezID Gene symbol Gene Name Combined ES Adjusted p-value

Top 10 Over-expressed Genes 

678 ZFP36L2 ZFP36 ring finger protein-like 2 2.2679 8.26E-06

55692 LUC7L LUC7 like 1.7633 9.99E-05

22861 NLRP1 NLR family, pyrin domain containing 1 1.6398 2.28E-11

440270 GOLGA8B Golgin A8 family member B 1.543 0.001225

5878 RAB5C RAB5C, member RAS oncogene family 1.5252 0.010788

1606 DGKA Diacylglycerol kinase alpha 1.4978 0.000458

9057 SLC7A6 Solute carrier family 7 member 6 1.4452 0.018486

81669 CCNL2 Cyclin L2 1.4413 0

55696 RBM22 RNA binding motif protein 22 1.4279 1.63E-05

923 CD6 CD6 molecule 1.4242 0.00429

Top 10 Under-expressed Genes

7504 XK X-linked Kx blood group − 1.6059 9.19E-08

475 ATOX1 Antioxidant 1 copper chaperone − 1.4773 1.99E-06

8804 CREG1 Cellular repressor of E1A stimulated genes 1 − 1.4133 0.001229

5627 PROS1 Protein S (alpha) − 1.3574 0.000767

10855 HPSE Heparanase − 1.336 0.022878

4501 MT1X Metallothionein 1X − 1.3259 1.85E-06

9446 GSTO1 Glutathione S-transferase omega 1 − 1.2905 0

4860 PNP Purine nucleoside phosphorylase − 1.2799 0

2281 FKBP1B FK506 binding protein 1B − 1.262 0.001107

51327 AHSP Alpha hemoglobin stabilizing protein − 1.2479 1.30E-09

Table 2.  Top 20 shared DEGs identified in the meta-analysis. Genes were ranked based according to the 
Standardized difference, also known as effect size. The corresponding p-values are adjusted, based on the false 
discovery rate using the Benjamini–Hochberg procedure used to select DE genes obtained in each meta-
analysis. Combined ES: Combined Effect.
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of Coagulation factor II (thrombin) receptor (F2R) and protein S (alpha) (PROS1) were underexpressed. There 
was consistent expression of these genes across the five datasets as shown in supplementary sheet.

Figure 3. Network based meta-analysis of hub genes. (A) Zero-order interaction network of shared 
DEGs obtained from meta-analysis using force-directed algorithm with Fruchterman-Rengold layout; red 
nodes represents overexpressed and green nodes represents underexpressed DEGs. (B) PPI Subnetwork of 
most significant underexpressed DEG with its interacting partners. (C) PPI Subnetwork of most significant 
overerexpressed DEG with its interacting partners.

Enrichment Term Pathway/Term ID Overlap GSEA library Adjusted P-value

Enriched Pathways

Processing of Capped Intron-Containing Pre-mRNA R-HSA-72203 33/193 Reactome 0.00634

mRNA Splicing - Major Pathway R-HSA-72163 25/134 Reactome 0.012207

mRNA Splicing R-HSA-72172 25/144 Reactome 0.023195

SUMO E3 ligases SUMOylate target proteins R-HSA-3108232 19/96 Reactome 0.029891

mRNA Processing WP411 25/127 WikiPathways 0.015246

Enriched Gene Ontology term

RNA splicing (GO:0008380) 45/313 GO 0.011692

mRNA processing (GO:0006397) 50/397 GO 0.018005

mRNA splicing, via spliceosome (GO:0000398) 29/177 GO 0.018005

Cytosol (GO:0005829) 221/2529 GO 0.003815

Nucleoplasm (GO:0005654) 115/1051 GO 0.000197

Table 3.  Top enriched terms and biological pathways identified by functional analysis of the DEGs in the 
meta-analysis. Overlap: indicates the number of hits from the meta-analysis compared to each curated gene set 
library. Gene set functional analysis was performed using extended libraries of the EnrichR tool. Enriched terms 
and pathways were ranked based on the adjusted p-value. GO: gene ontology biological process; GSEA: Gene 
Set Enrichment Analysis.
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Discussion
Thrombotic events are present in 20% to 50% of patients with PV and ET at the stage of diagnosis and involve 
complications in both major vessels and microcirculation. PV and ET are chronic myeloproliferative disorders, 

Figure 4. Overrepresentation of pathways and Gene Ontology categories in Biological Networks identified 
from meta-analysis. (A) Network representations of enriched pathway integrating KEGG and Reactome 
pathways on the DEGs gene list using ClueGO cytoscape plug-in. Hyper-geometric (right-handed) enrichment 
distribution tests, with a p-value significance level of ≤ 0.05), followed by the Bonferroni adjustment for the 
terms and leading term groups were selected based on the highest significance. The node size and deeper color 
indicates greater significance of the enrichment. The pathways having adjusted p-value < 0.05 are shown in the 
network. (B) Enrichment network of shared DEGs based on biological processes. Significantly overrepresented 
biological processes based on GO terms were visualized in Cytoscape. The size of a node is proportional to the 
number of targets in the GO category. The color represents enrichment significance— the deeper the color on 
a color scale, the higher the enrichment significance. p-values were adjusted using a Benjamini and Hochberg 
False Discovery Rate (FDR) correction.
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the benign clinical course of which can be complicated by thrombotic events. Thrombotic complications are 
characterized by microcirculatory disturbances and increased risk of arterial and venous thrombosis18–22. The 
mechanisms underlying the thrombotic events in these cases are still largely obscured and more importantly the 
number of large scale studies performed in this specific setting is very limited for identification of shared genetic 
markers responsible for the predisposition of the thrombosis in MPDs. Although a large quantity of data has been 
produced using microarray studies, the small sample size of these studies is a significant obstacle to the identifica-
tion of common DE genes. A meta-analysis of multiple microarray datasets increases the sample size, making the 
identification of DE genes more reliable. However, previous microarray studies have typically focused on iden-
tifying factors specific to any of the three diseases and focused little on identifying genes and risk factors shared 
between thrombosis and MPDs23–27. Therefore, in this study, we attempted to identify common genes underlying 
thrombosis, PV and ET using gene expression meta-analysis of 5 publically available microarray data. To the best 
of our knowledge, this is the first such attempt in thrombosis research.

By jointly analyzing 5 published microarray gene expression datasets of thrombosis, PV and ET, we defined 
a common signature of a total of 1,157 DEGs including 697 overexpressed and 460 underexpressed genes across 
the datasets under the significance threshold of adjusted p-value < 0.05 in all diseases compared to healthy con-
trols. Interestingly, we identified 38 “gained” DEGs in this meta-analysis which were not discovered in the prior 
individual analyses (supplementary sheet). Among the top ten overexpressed DEGs, ZFP36L2 (ZFP36 ring finger 
protein-like 2) had the highest combined ES of 2.26; it is an RNA binding protein and functions as a molecular 
switch promoting early burst-forming unit-erythroid (BFU-E) self-renewal and a subsequent increase in the 
total numbers of colony-forming unit-erythroid (CFU-E) progenitors and erythroid cells that are generated28. 
Inflammation is one of the major contributor in the pathogenesis of thrombotic complications, evident from the 
overexpression of Nucleotide-binding, leucine-rich repeat, Pyrin domain containing 1 (NLRP1) which potenti-
ates the peripheral immune response, caspase-1 activation involves the formation of a macromolecular complex 
termed as inflammasome29.

While Cyclin L2 (CCNL2) a regulatory protein involved in pre-mRNA splicing process has been shown to be 
upregulated in ET30 which is in agreement with the findings in present meta-analysis study. Among the under-
expressed DEGs X-linked Kx blood group (XK) had the highest combined ES (− 1.60); it controls the synthesis 
of the Kell blood group ‘precursor substance’ (Kx) and is involved in maintenance of hematopoietic systems, 
however, its direct role in thrombosis and MPDs is not known. Interestingly, downregulation of Protein S alpha 
(PROS1) an essential physiological anticoagulant has been established to be one of the important markers for 
thrombosis31,32 although no direct evidence of the role of PROS1 in relation to MPDs have been ascertained. 
Perturbation in the expression of heparanase (HPSE) an endo-beta-glucuronidase that is capable of cleaving 
heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and extracellular matrices have been 
widely associated with thrombosis, PV and ET33,34. Therefore, our results are consistent with previously published 
data for each of the three disorders, but for the first time to our knowledge, we formally show their shared genetic 
signatures.

The emerging tools of network biology offer a platform to systematically investigate the molecular complexity 
of a particular disease, leading to the biomarker discovery and identification of drug targets for the improvement 
in disease management35. Network-based meta-analysis from the original list of DEGs was conducted for the pri-
oritization of the most important hub genes based on network centrality scoring. V-Myc Avian Myelocytomatosis 
Viral Oncogene Homolog (MYC) and FN1 were the most important hub genes among over and under-expressed 
genes respectively across five microarray studies. Of note, FN1 was identified as the unique marker from 
meta-analysis as the part of “gain genes” which was not identified as DEGs in the individual microarray studies. 
MYC is a multifunctional, nuclear phosphoprotein acts as a transcription factor and plays a role in cell cycle pro-
gression, apoptosis and cellular transformation. Mutation and overexpression of MYC gene have been reported 
as a risk factor for blast transformation and fibrotic progression in PV and ET36. Platelets play a key role in 
maintaining the fine balance between thrombosis and hemostasis, it has been established that pattern of c-MYC 
expression, is key to producing functional platelets from selected induced pluripotent stem cells (iPSC) clones37 
pointing to the relation between thrombosis and ET, a chronic disorder related to the over production of throm-
bocytes. Fibronectin (FN1), a glycoprotein present in plasma, cell surface and in extracellular matrix is involved 
in cell adhesion and migration processes including embryogenesis, wound healing and blood coagulation via 
its interaction with various compounds: collagen, fibrin and actin. Significant reduction in the plasma levels of 
fibronectin has been reported due to expanded mononuclear phagocyte system present in the liver and spleen, 
reduced hepatic synthesis and the clearance of circulating immune complexes38. The balance between hemostasis 
and thrombosis relies on a well maintained adhesive response of blood platelets with coagulation factors and 
adhesion molecules. FN1 has been recently associated with platelet thrombus formation via its cell adhesion 
property39,40. Tissue plasminogen Activator (tPA) responsible for clot dissolution by mediating the activation of 
plasmin has a high affinity for FN1 forming the basis of “clot buster”41. Thus the downregulation of FN1 can be 
well linked to the fact that lack of clot dissolution potentiates the thrombotic pathophysiology.

In order to elucidate the role of DEGs obtained from the meta-analysis, we performed gene set enrichment 
analysis and pathway analysis using the comprehensive enrichment library of EnrichR platform on both the gene 
list of over and under expressed DEGs. Interestingly, the most enriched pathway and Gene Ontology (GO) term 
among the shared DEGs of meta-analysis were “Processing of Capped Intron-Containing Pre-mRNA (R-HSA-
72203)”, “mRNA Splicing (R-HSA-72172)”, RNA splicing (GO:0008380)” and “mRNA processing (GO:0006397)”. 
Several studies in the recent past are in agreement with our findings as they have associated various Spliceosome 
complex genes including U2 Small Nuclear RNA Auxillary Factor 1 (U2AF2), pre-mRNA processing factor 
(PRPF), splicing factor 3 (SF3) subunits and Serine Arginine rich factors (SRSF) using whole exome/genome 
technologies in myelodysplastic syndromes and in other hematologic disorders42–44. Briefly to understand the 
association of the DEGs list to the most significant kinases and transcription factors, we conducted regulatory 
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gene network analysis using X2K software. The mitogen-activated protein (MAP) kinases MAPK1, MAPK3, 
MAPK14 were amongst the most significant kinases associated with the DEGs. Besides other cells, MAP kinases 
are present in platelets also and are activated by various stimuli, such as thrombin, collagen, von Willebrand factor 
(VWF) and ADP. These molecules/stimuli have established role in thrombosis and MPDs,46. Among the most 
significant transcription factors associated with the DEGs were friend leukemia integration 1 (FLI1), Runt-related 
transcription factor 1 (RUNX1) and GATA-binding factor 1 (GATA1) which are established as hematopoietic 
transcription factors to be involved in hemostasis and MPDs especially platelet dysfunction47. FLI1 is a transcrip-
tion factor, plays major role in megakaryopoiesis by influencing the expression of several genes and the expression 
of FLI1 was shown to be significantly high in MPDs48.

From the clinical standpoint, the tendency of perturbation in coagulation mechanism towards procoagulant 
state potentiates the risk of thrombosis which is one of the most exceptional characteristics of the myeloprolifera-
tive neoplasms, especially applying to PV and ET. Using differential gene expression meta-analysis, we found sev-
eral coagulation related genes previously identified by alternative strategies, having a potential role in thrombosis 
and MPDs. Evidences suggest that the decrease in the level of natural anticoagulants including Protein S alpha 
(PROS1) and coagulation factor II (thrombin) receptors are associated with PV and ET patients with thrombosis 
and our data is in agreement with the study49. The overexpression of Selectin P Ligand (SELPLG) and Integrin 
beta 2 (ITGB2) are independently and significantly reported to be involved as the shared markers in the patho-
genesis of PV and ET with thrombosis50,51. Although the role of other coagulation proteins including Protein 
kinase C, eta (PRKCH), Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein 
Rac1) (RAC1), 3-phosphoinositide dependent protein kinase-1 (PDPK1), Guanine nucleotide binding protein 
(G protein), alpha inhibiting activity polypeptide 2 (GNAI2) and Lysine (K)-specific demethylase 1A (KDM1A) 
are reported to be involved in the pathophysiology of thrombosis, ET and PV individually, however, the exact 
mechanism of these genes sharing the role in all three diseases still requires in-depth research.

While the present study provides important insights into the shared genetic markers and pathways between 
thrombosis and MPDs at the molecular level, it would be sensible to highlight the strengths and limitations of our 
study. Firstly, heterogeneity and confounding factors may have distorted the analysis. Although we conducted 
individual normalization for different datasets, the heterogeneity of technical variations in individual studies 
cannot be removed completely. Second, there are differences in gene expression between tissues such as whole 
blood, platelets, CD34+  cells and blood outgrowth endothelial cells and confounding factor due to sample source 
variation remains the major limitation of our study as these effects are hard to assess due to the paucity of avail-
able datasets in human for the three diseases we included in this study. Although many sophisticated algorithms 
have been published in recent years, no single statistical method is optimal. However, batch effect adjustment, 
individual data preprocessing and normalization and the random effect model based on Cochrans’Q test was 
done to reduce the non-biological heterogeneities in the present study. Furthermore, the use of similar platform 
(Affymetrix) for generation of microarray data across all the five datasets adds to the strength of the study. Briefly, 

Gene Gene name Role Fold change

SELPLG Selectin P Ligand
Facilitates calcium-dependent interactions with E P and 
L-selectins, mediates rapid rolling of leukocytes over vascular 
surfaces during the initial steps in inflammation and coagulation

0.89846

CPB2 Carboxypeptidase B2
Down regulates fibrinolysis by removing C-terminal lysine 
residues from fibrin that has already been partially degraded by 
plasmin

0.5268

F2R Coagulation factor II (thrombin) receptor High affinity receptor for activated thrombin. May play a role in 
platelets activation and in vascular development − 0.66526

PROS1 Protein S (alpha)
Anticoagulant plasma protein; it is a cofactor to activated protein 
C in the degradation of coagulation factors Va and VIIIa. It helps 
to prevent coagulation and stimulating fibrinolysis

− 1.3574

ITGB2 Integrin, beta 2 Are receptors for the iC3b fragment of the third complement 
component and for fibrinogen 0.91008

PRKCH Protein kinase C, eta Serine/threonine-protein kinase that is involved in the regulation 
of cell differentiation in keratinocytes and pre-B cell receptor 1.3991

RAC1 Ras-related C3 botulinum toxin substrate 1 
(rho family, small GTP binding protein Rac1)

Plasma membrane-associated small GTPase which cycles 
between active GTP-bound and inactive GDP-bound states 0.84209

PDPK1 3-phosphoinositide dependent protein 
kinase-1

Serine/threonine kinase which acts as a master kinase, 
phosphorylating and activating a subgroup of the AGC family of 
protein kinases

0.62861

GNAI2 Guanine nucleotide binding protein (G 
protein), alpha inhibiting activity polypeptide 2

Guanine nucleotide-binding proteins (G proteins) are involved 
as modulators or transducers in various transmembrane 
signaling systems. May play a role in cell division

0.60468

KDM1A Lysine (K)-specific demethylase 1 A
 Component of a RCOR/GFI/KDM1A/HDAC complex that 
suppresses, via histone deacetylase (HDAC) recruitment, 
a number of genes implicated in multilineage blood cell 
development

0.71635

Table 4.  Top coagulation related genes across the different datasets of meta-analysis. List of differentially 
expressed top coagulation-related genes “blood coagulation (GO:0007596)” with overlap (45/472) and as the 
shared signature between Thrombosis, PV and ET individuals from Gene Ontology analysis. Possible roles were 
extracted from STRING database and the expression values were added from the meta-analysis results.
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we used INMEX tool to perform meta-analysis, which uses one of the best statistical methods and has been used 
in several recent publications52–54.

In conclusion, this is the first report that provides biological insights on common gene expression signatures 
shared between thrombosis, PV and ET comprising many genes that have been previously related to one, two or 
each of the three diseases. Although there are previous individual gene expression microarray studies on each dis-
eases and in combination, this study is the first one, to our knowledge, where data on these three specific disorders 
have been integrated, which allowed us to define common biological processes. In addition, our results strengthen 
the association between Thrombosis, PV and ET and provide insights into the molecular mechanisms underlying 
the modulation of coagulation cascade. Furthermore, this study emphasizes on the potential of network analysis 
as a powerful framework to gain insight into the most important hub genes underlying the shared pathophysiol-
ogies between the three diseases and to identify potential therapeutic targets and biomarkers of disease. Further, 
in-depth functional studies on these common genes may improve our understanding of the pathological pro-
cesses of these diseases, which could have important implications for the prevention and treatment of thrombosis 
related complications in MPDs in general.

Methods
Identification and selection of eligible gene expression datasets for meta-analysis. We system-
atically mined PubMed database for microarray expression profiling. The following key words and their combi-
nations were used: “Thrombosis, Polycythemia vera, Essential thrombocythemia, microarray, gene expression 
dataset”. In addition, publicly available microarray datasets by April 2016 were searched in two public reposito-
ries: NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress database of 
the European Molecular Biology Laboratory–European Bioinformatics Institute (http://www.ebi.ac.uk/arrayex-
press/) to ensure no relevant studies were missed. The following information was extracted from each identified 
study: GEO accession number, sample type, platform, number of cases and controls, references, and gene expres-
sion data (Table 1). Inclusion criteria were set and strictly followed for dataset selection: human case/control 
study, comparable conditions, untreated samples and availability of raw and processed data. Non-human studies, 
review articles and integrated analysis of expression profiles were excluded. We conducted this meta-analysis 
in accordance with the guidelines provided in the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines published in 200955. Figure 1A shows the complete workflow of eligible dataset 
selection.

Batch effect adjustment and Individual data analysis. Batch effect correction option in INMEX tool 
was used to reduce potential study-specific batch effects, the pre-processed and normalized individual datasets 
were further subjected to the well-established ComBat procedures16. It uses Emperical Bayes methods designed 
to stabilize the expression ratios for genes with very high or very low ratios, stabilize gene variances by shrinking 
variances across all other genes, possibly protecting their inference from artifacts in the data. To compare the 
sample clustering patterns before and after applying the ComBat procedures, the results were visually examined 
using the principal component analysis (PCA) (supplementary Figure S2). Individual dataset preprocessing and 
normalization was done by log2 transformation and quantile normalization, each individual dataset was visual-
ized in box plots to ensure identical distribution among the samples and identify potential outlier.

Microarray meta-analysis. We conducted a microarray meta-analysis using Integrative Meta-Analysis of 
Expression Data (INMEX), a web interface for integrative meta-analysis12. All gene probes were converted to a 
common Entrez ID using the gene/probe conversion tool in INMEX. After matching all probes to a common 
Entrez ID, individual datasets were preprocessed using the log2 transformation and quantile normalization. Each 
individual dataset was visualized in box plots and Principal Component analysis (PCA) plots to ensure identi-
cal distribution among the samples. GSE26049 contains samples from ET and PV patients but common con-
trols; therefore, these two subpopulations were treated as two different datasets during the analysis. Differential 
expression analysis was performed with INMEX for each dataset independently using adjusted p-value < 0.05, 
based on the false discovery rate using the Benjamini–Hochberg procedure and moderated t-test based on the 
Limma algorithm56. For meta-analysis, data integrity was checked for all datasets, and the differential expression 
meta-analysis across diseases and healthy controls was carried out by Effect size (ES) combination which takes 
into consideration both the direction and magnitude of gene expression changes to generate more biologically 
consistent results. The random effect model57,58 was chosen over Fixed Effect Model (FEM) because there were 
significant cross-study heterogeneities based on the Cochrans’ Q59 test, Random effects model (REM) is based 
on combining the effect sizes (ESs) or changes of gene expression from different studies and obtaining an over-
all mean with a significance level of adjusted p-value < 0.05. Heatmap visualization of a subset of 25 over and 
under-expressed genes from the meta-analysis was performed using the “Pattern extractor” tool from INMEX 
(Fig. 2B) the data for this heatmap normalized within each study before being pooled together. Figure 1B shows 
the overall steps in microarray meta-analysis.

Network- based hub gene analysis. Network-based analysis was performed using NetworkAnalyst60 
which is designed to support integrative analysis of gene expression data through statistical, visual and 
network-based analysis by taking the advantage of common functions for network topology and module analyses 
approaches. Briefly, the complete list of DEGs both over-expressed and under-expressed were uploaded into the 
web- based server of NetworkAnalyst and network construction was restricted to contain only the original seed 
proteins by selecting the zero order interactors to avoid “hairball effect” and to allow proper visualization of inter-
action network. To help identification of highly interconnected hub nodes, NetworkAnalyst provides two widely 
used network centrality topological measures-degree and betweenness centrality. The degree of a node is the 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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number of connections it has with other nodes. The betweenness centrality measures number of shortest paths 
going through the node and nodes with the highest betweenness, control most of the information flowing in the 
network, representing the critical points of the network61. From the parent network the most important modules 
(sub networks) of over and under-expressed DEGs were extracted using the “module explorer” panel which is 
based on the well-established Walktrap algorithm based on random walks62.

Functional gene set enrichment analysis of shared Differentially expressed genes (DEGs). To 
discern the implication of shared DEGs on thrombosis and MPDs, we performed a functional analysis using 
the EnrichR platform63. This state-of-the-art web based software allows evaluation of annotations, significantly 
enriched in a gene list, with its extensive gene set libraries including Gene ontology64 and various pathway analy-
sis libraries like Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), Reactome pathway, Wikipathway, 
panther and biocarta Enriched pathway and gene ontology were selected with adjusted p-value < 0.05. EnrichR 
platform used for gene set Enrichment Analysis in this study performs the p-value adjustment by Z-score permu-
tation background correction on Fischer Exact Test p-value for large gene sets. It gives rank based ranking to the 
enriched pathways derived from running the Fischer Exact Test for many random gene sets in order to compute 
a mean rank and standard deviation from the expected rank for each term in the gene set library and finally cal-
culating a Z-score to assess the deviation from the expected rank. For better visualization and interpretation of 
the biological significance of shared DEGs, we separately conducted the analysis using cytoscape v3.165 plug-ins. 
Using ClueGO66 a user friendly Cytoscape plug-in to analyze interrelations of terms and functional groups in 
biological networks, we conducted pathway analysis by integrating KEGG and Reactome pathway on the DEGs 
gene list. We used enrichment (right-sided) hyper-geometric distribution tests, with a p-value significance level of 
≤ 0.05, followed by the Bonferroni adjustment for the terms and the groups with Kappa-statistics score threshold 
set to 0.3, whileleading term groups were selected based on the highest significance (Fig. 4A). Using Biological 
Networks Gene Ontology tool (BiNGO)67, an open-source cytoscape plug-in, we verified which Gene Ontology 
(GO) biological process terms are significantly overrepresented in a set of DEGs by hyper-geometric test statistics, 
followed by Benjamini and Hochberg false discovery rate (FDR) correction (Fig. 4B).

Expression2Kinases (X2K) analysis of regulatory gene networks. To gain further insights into 
the upstream regulation of gene expression of DEGs, we uploaded the complete list of shared DEGs format-
ted such that there is one Entrez Gene Symbol on each line with no dashes, spaces or special characters in 
Expression2Kinases (X2K) software68. Using the transcription factors and kinases module which make use of 
chip-X from ChEA69 database as background, we extracted ten most significant transcription factors and kinases 
based on Fischer Exact test p-value enrichment scoring. Regulatory network was created and visualized on cyto-
scape environment from the “graphml” file generated from the analysis (Supplementary Fig. S1). The network 
ensures that the protein network obtained during the network expansion must have properly connected nodes 
with edges; in case the enriched transcription factors and kinases are not connected, the path length is automati-
cally increased so that there are more intermediate proteins to connect the transcription factors.

Statistical analyses. The meta-analysis was performed using the web-based tool—INMEX. The effect size 
combination using the random effect model was used for meta-analysis. Effect size is a standardized difference 
defined as the difference between group means divided by its standard deviation (i.e. Z-score). An adjusted p-value 
of < 0.05, based on the false discovery rate using the Benjamini–Hochberg procedure was used to select DE genes. 
For the functional enrichment analysis, significantly enriched GO terms in DEGs relative to the genomic back-
ground by GO function software packages were identified using Selected statistical test: Hypergeometric test 
(right-sided) and Selected correction: Bonferroni/Benjamini & Hochberg False Discovery Rate (FDR) correction. 
Significantly enriched pathways were identified using hypergeometric tests and an adjusted p-value ≤ 0.05 was 
applied as the cut-off value for statistical significance.
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